

FACULTAD DE CIENCIAS E INGENIERÍA PROGRAMA ACADEMICO DE INGENIERÍA CIVIL

TESIS

"ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020"

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Bach. CONTOGURIS POMA, KARLO'S MIJAIL

Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

ASESOR : Lic. NEREA GALLARDO SÁNCHEZ, Mg.

CO-ASESOR: Ing. MIGUEL ANGEL ROBALINO OSORIO

San Juan Bautista - Maynas - Loreto - Perú

MINO OSORIO

CIP. Nº 48741

2020

DEDICATORIA

A Dios por la vida, la salud y las oportunidades que día a día se nos presenta para ser mejores seres humanos.

A nuestros padres Matilde Poma, Dolores Shahuano, Carlos Contoguris, Tony Pasmiño, y hermanos, por su amor apoyo y confianza que nos brindan en cada momento de nuestras vidas personales y profesionales.

AGRADECIMIENTOS

A la Universidad Científica del Perú, por estos años de aporte a nuestro desarrollo profesional, a los docentes por motivarnos a superarnos en cada paso de la carrera profesional.

A la Lic. Gallardo Sánchez, Nerea por su disponibilidad, dedicación y apoyo en el proyecto de investigación.

Al Ing. Robalino Osorio, Miguel Angel, por su disponibilidad, dedicación y orientación en todas las fases del proyecto de investigación.

A la Ing. Angel Portillo Jange, responsable del laboratorio APJ contratistas y consultores, por apoyarnos y orientarnos en la realización de los ensayos de los suelos con polímero para la ejecución de la tesis.

A todas las personas que de forma indirecta nos dieron el apoyo para la realización de esta tesis y sobre todo por el apoyo moral y confianza que siempre depositaron en nosotros.

KMCP - MAPS

"Año del Bicentenario del Perú: 200 años de Independencia"

CONSTANCIA DE ORIGINALIDAD DEL TRABAJO DE INVESTIGACIÓN DE LA UNIVERSIDAD CIENTÍFICA DEL PERÚ - UCP

El presidente del Comité de Ética de la Universidad Científica del Perú - UCP

Hace constar que:

La Tesis titulada:

"ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020"

De los alumnos: CONTOGURIS POMA KARLO'S MIJAIL Y PASMIÑO SHAHUANO MARCO ANTONIO, de la Facultad de Ciencias e Ingeniería, pasó satisfactoriamente la revisión por el Software Antiplagio, con un porcentaje de 9% de plagio.

Se expide la presente, a solicitud de la parte interesada para los fines que estime conveniente.

San Juan, 06 de Diciembre del 2021.

Dr. César J. Ramal Asayag Presidente del Comité de Ética - UCP

CJRA/ri-a 536-2021

Document Information

Analyzed document UCP_INGENIERIA_2020_TESIS_KARLO'SCONTOGURIS_MARCOPASMIÑO_V1.pdf

(D120353664)

Submitted 2021-11-29T16:30:00.0000000

Submitted by Comisión Antiplagio

Submitter email revision.antiplagio@ucp.edu.pe

Similarity 9%

Analysis address revision.antiplagio.ucp@analysis.urkund.com

Sources included in the report

W	URL: http://www.austlatin.com/ Fetched: 2021-11-29T16:36:00.000000	88	1
SA	TFM LETICIA LÓPEZ_LÓPEZ_FEBRERO 2021.pdf Document TFM LETICIA LÓPEZ LÓPEZ_ FEBRERO 2021.pdf (D95412427)		13
SA	PARA URKUND.doc Document PARA URKUND.doc (D117181821)	88	3
SA	CIVIL_2021_PERSEORAMIREZ_EPIFANIOGUERRA_V1.pdfpdf Document UCP_INGENIERIA CIVIL_2021_PERSEORAMIREZ_EPIFANIOGUERRA_V1.pdfpdf (D107915271) Submitted by: revision.antiplagio@ucp.edu.pe Receiver: revision.antiplagio.ucp@analysis.urkund.com	88	1
SA	TESIS AGOSTO 10082021.docx Document TESIS AGOSTO 10082021.docx (D111952381) Universidad Científica del Perú / UCP_INGENIERIA	88	į
SA	Universidad Científica del Perú / PROYECTO DE INVESTIGACIÓN TERMINADO (FINAL).docx Document PROYECTO DE INVESTIGACIÓN TERMINADO (FINAL).docx (D54970209) Submitted by: alata.200796@gmail.com Receiver: uirigoin.ucp@analysis.urkund.com		•
W	URL: https://repositorio.urp.edu.pe/bitstream/handle/URP/1672/SMVILLANUEVAF-cps.pdf? sequence=1&isAllowed=y Fetched: 2021-11-15T04:25:05.2600000		2:
W	URL: http://repositorio.uprit.edu.pe/bitstream/handle/UPRIT/494/TESIS%20-%20QUIPUZCOA%20LE%C3%93N%20GEORGE%20BRYAN.pdf?sequence=1&isAllowed=yFetched: 2021-11-16T18:46:09.7430000	88	:
SA	TESIS_KATERIN RS_ JHONY AV.pdf Document TESIS_KATERIN RS_ JHONY AV.pdf (D118944553)		
W	URL: http://repositorio.ucp.edu.pe/bitstream/handle/UCP/1220/ANGULO%20ROLDAN%20MARISELV A%20Y%20ZAVALETA%20PAPA%20CINTIA%20NICOL%20-%20TESIS.pdf?sequence=1&isAllowed=y Fetched: 2021-11-16T18:43:17.0470000		

"Año del Bicentenario del Perú: 200 años de Independencia"

ACTA DE SUSTENTACIÓN DE TESIS

FACULTAD DE CIENCIAS E INGENIERÍA

FACULTAD DE CIENCIAS E INGENIERÍA

Con Resolución Decanal № 399-2020-UCP-FCEI de fecha 09 de octubre del 2020, la FACULTAD DE CIENCIAS E INGENIERÍA DE LA UNIVERSIDAD CIENTÍFICA DEL PERÚ - UCP designa como Jurado Evaluador de la sustentación de tesis a los señores:

- Ing. Carmen Patricia Cerdeña del Aguila, Dra.
- Ing. Carol Begoña García Langer, M.Sc.
- Ing. Keuson Saldaña Ferreyra, Mg.

Presidente

Miembro

Miembro

Como Asesor: Lic. Nerea Gallardo Sánchez, Mg. Y Co Asesor el Ing. Miguel Ángel Robalino Osorio.

En la ciudad de Iquitos, siendo las 10:00 horas del día 02 de febrero del 2022, a través de la plataforma ZOOM supervisado en línea por el Secretario Académico del Programa Académico de Ingeniería Civil de la Facultad de Ciencias e Ingeniería de la Universidad Científica del Perú, se constituyó el Jurado para escuchar la sustentación y defensa de la Tesis: "ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020".

Presentado por los sustentantes:

KARLO'S MIJAIL CONTOGURIS POMA y MARCO ANTONIO PASMIÑO SHAHUANO

Como requisito para optar el título profesional de: INGENIERO CIVIL

Luego de escuchar la sustentación y formuladas las preguntas las que fueron: ABSUELTAS. El Jurado después de la deliberación en privado llegó a la siguiente conclusión:

La sustentación es: APROBADA POR UNANIMIDAD.

En fe de lo cual los miembros del Jurado firman el acta.

Presidente

Miembro

Miembro

Iquitos – Perú 065 - 26 1088 / 065 - 26 2240 Av. Abelardo Quiñones Km. 2.5 **Filial Tarapoto – Perú**42 – 58 5638 / 42 – 58 5640
Leoncio Prado 1070 / Martines de Compagñon 933

ACTA DE APROBACION

Tesis sustentada en acto público el día 02 de febrero del 2022 a las 10:00 a.m

Ing. Carmen Patricia Cerdeña del Aguila, Dra.

PRESIDENTE DE JURADO

Ing. Carol Begoña García Langer, M. Sc.

MIEMBRO DE JURADO

Ing. Keuson Saldaña Ferreyra, Mg.

MIEMBRO DE JURADO

Lic. Nerea Gallardo Sánchez, Mg.

ASESOR

Ing. Miguel Angel Robalino Osorio

CO ASESOR

INDICE DE CONTENIDO

DEDICATO	RIA	ا
AGRADEC	MIENTOS	11
CONSTAN	CIA DE ORIGINALIDAD DEL TRABAJO DE TESIS	.
ACTA DE S	USTENTACIÓN DE TESIS	V
HOJA DE A	PROBACIÓN	. VI
INDICE DE	CONTENIDO	VII
INDICE DE	TABLAS	. IX
INDICE DE	GRAFICOS	X
INDICE DE	IMAGENES	. XI
RESUMEN		XII
ABSTRACT		XIII
CAPITULO	I: MARCO TEORICO	1
1.1. A n	tecedentes del Estudio	1
1.2. Ba	ses teóricas	4
	finición y términos básicos	
CAPITULO	II: PLANTEAMIENTO DEL PROBLEMA	9
2.1. De	scripción del problema	9
	rmulación del Problema	
2.2.1.	Problema General	
	Problema Específico	
	objetivos	
2.3.1. 2.3.2.	Objetivo GeneralObjetivo Específico	
	oótesis	
2.4.1.		
2.4.2.	Hipótesis Específicas	11
	riables	
2.5.1. 2.5.2.	Identificación de las Variables	
2.5.2. 2.5.3.	Definición conceptual y operacional de las Variables Operacionalización de las Variables	
CADITUU	·	
	III: METODOLOGIA	
Tipo y Dis	seño de Investigación	13

Población y muestra	13
Técnicas, Instrumentos y Procedimiento de recolección de datos	15 16
Procesamiento y análisis de datos	21
CAPITULO IV: RESULTADOS	22
 4.1. Resultados de ensayos de Laboratorio	22 22 23 26
CAPITULO V: DISCUSIÓN, CONCLUSIONES Y RECOMENDACIONES	34
5.1. Discusión	34
5.2. Conclusiones	38
5.3. Recomendaciones	
CAPITULO VI: ANEXOS	43
6.1. Instrumento de Recolección de Datos 6.1.1. Clasificación de suelos Sin Polímero – Con Polímero calicata C-1 6.1.2. Proctor Modificado sin Polímero – Con Polímero calicata C-1 6.1.3. Capacidad de Soporte sin Polímero – Con Polímero calicata C-1 6.1.4. Clasificación de suelos Sin Polímero – Con Polímero calicata C-2 6.1.5. Proctor Modificado sin Polímero – Con Polímero calicata C-2 6.1.6. Capacidad de Soporte sin Polímero – Con Polímero calicata C-2 6.1.7. Clasificación de suelos Sin Polímero – Con Polímero calicata C-3 6.1.8. Proctor Modificado sin Polímero – Con Polímero calicata C-3 6.1.9. Capacidad de Soporte sin Polímero – Con Polímero calicata C-3	43 43 43 43 43 43
6.2. Matriz de Consistencia	43
6.3. Información Complementaria 6.3.1. Información General del Producto 6.3.2. Especificaciones Técnicas 6.3.3. Hoja de datos de Seguridad del Material 6.3.3. Proceso Constructivo – instrucciones de procedimiento	43 43 43
6.4. Panel Fotográfico	43

INDICE DE TABLAS

Tabla 1: Cuadro de calicatas	16
Tabla 2: Relación de Ensayos de suelos y Norma respectiva	17
Tabla 3: Símbolos de grupo (SUCS)	18
Tabla 4: Tipología de suelos (SUCS)	18
Tabla 5: Cuadro resumen de las características físicas de suelo Natural	23
Tabla 6: resumen de las características físicas de calicata C-1 luego de adicionar el polímero Polycom	24
Tabla 7: resumen de las características físicas de calicata C-2 luego de adicionar el polímero Polycom	24
Tabla 8: resumen de las características físicas de calicata C-3 luego de adicionar el polímero Polycom	24
Tabla 9: Características mecánicas - Proctor y CBR en estado natural	27
Tabla 10: resultados de Proctor modificado de la muestra C-1, adicionando el políme Polycom	
Tabla 11: resultados de Proctor modificado de la muestra C-2, adicionando el políme Polycom	
Tabla 12: resultados de Proctor modificado de la muestra C-3, adicionando el políme Polycom	
Tabla 13: Valores de CBR, expansión y absorción de la muestra C-1, C-2, C-3	30
Tabla 14: Variación del CBR, expansión y absorción de la muestra C-1, adicionando polímero Polycom	
Tabla 15: Variación del CBR, expansión y absorción de la muestra C-2, adicionando polímero Polycom	
Tabla 16: Variación del CBR, expansión y absorción de la muestra C-3, adicionando polímero Polycom	

INDICE DE GRAFICOS

Gráfico 1: Curva granulométrica	22
Gráfico 2: límite líquido e Índice plástico del suelo de la calicata C-1, adicionando el polímero Polycom	25
Gráfico 3: límite líquido e Índice plástico del suelo de la calicata C-2, adicionando el polímero Polycom	25
Gráfico 4: límite líquido e Índice plástico del suelo de la calicata C-3, adicionando el polímero Polycom	26
Gráfico 5: Variación de MDS Y OCH de la muestra C-1, adicionando el polímero Polycom	29
Gráfico 6: Variación de MDS Y OCH de la muestra C-2, adicionando el polímero Polycom	29
Gráfico 7: Variación de MDS Y OCH de la muestra C-3, adicionando el polímero Polycom	30
Gráfico 8: curva Variación de CBR 95% y CBR 100% de la muestra C-1, adicionando el polímero Polycom	
Gráfico 9: curva Variación de CBR 95% y CBR 100% de la muestra C-2, adicionando el polímero Polycom	
Gráfico 10: curva Variación de CBR 95% y CBR 100% de la muestra C-3, adicionano el polímero Polycom	

INDICE DE IMAGENES

Imagen 1: Vista panorámica de la condición actual de la zona	14
Imagen 2: Ubicación de calicatas	14
Imagen 3: Cuadro clasificación de Suelos AASHTO	19
Imagen 4: Cuadro cantidad de calicatas según el tipo de carretera	21
Imagen 5: Métodos de Compactación para Proctor Modificado	27
Imagen 6: Vista de la excavación de la calicata, para exploración de suelo a cielo abierto	47
Imagen 7: Vista del perfil estratigráfico del suelo a cielo abierto	47
Imagen 8: Secado de las muestras sobre una superficie limpia	48
Imagen 9: Secado y molido de grumos de las muestras sobre una superficie limpia	48
Imagen 10: molido de grumos de las muestras sobre una superficie limpia, para ensayos de compactación	49
Imagen 11: Disolución del polímero en agua potable para su aplicación en el suelo seco, para ensayos de compactación	49
Imagen 12: moldeo de las muestras para ensayo de CBR	50
Imagen 13: colocación de las muestras en agua, para el curado de 4 días	50
Imagen 14: Preparación de la muestra para el ensayo de penetración en la prensa de CBR.	
Imagen 15: Ensayo de penetración en la prensa de CBR.	51

RESUMEN

La presente investigación "Estabilización de suelos finos mediante el uso del polímero Polycom en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos, 2020", fue realizado en el A.A.H.H. Tierra Prometida - Calle Jerusalén, distrito de Belén a inicios del año 2020. El estudio, como parte de vías en desarrollo en distintas zonas de nuestra región, es considerado como una partida fundamental, tiene como objetivo explicar la estabilización de suelos finos mediante el uso del polímero Polycom en subrasantes, el cual se enfoca en un método experimental, para ello, se realizó estudios de suelos en la zona (calicatas), sacando así muestras de suelo de las distintas calicatas, para luego llevar las muestras al laboratorio para su estudio respectivo, tanto como para muestras de suelos naturales y muestras estabilizadas con polímero Polycom.

Luego de adicionar el polímero al suelo, se presenta los resultados obtenidos al mezclar el suelo con 3 dosificaciones del polímero Polycom que fueron 0.10, 0.20, 0.30 kg/m3, se muestra la mejora considerable a las características físicas que proporciona al suelo natural, y a su vez, provoca la disminución del límite líquido a medida que se iba incrementando la cantidad de dosificación, reduce la plasticidad de los suelos cohesivos, para el tipo A-7-6(22) desde 40.10% hasta 29.95% por cada 0.10kg/m3 de polímero agregado al suelo, aumenta la Capacidad de Soporte (CBR) hasta 44.00% por cada 0.30 kg/m3 de polímero aplicado al suelo.

Finalmente, se concluye que el polímero Polycom se ha utilizado para la estabilización de suelos finos y se ha logrado así proporcionar una mejora considerable a las características tanto físicas como mecánicas de suelos limo-arcillosos y puede ser un material apto para la conformación de las estructuras de pavimento. Se plantea una alternativa de diseño haciendo uso de productos químicos, como es el caso del polímero POLYCOM, el cual es un producto con antecedentes muy efectivos en algunas zonas del país, siendo nuestra propuesta una opción viable.

Palabras claves:

Calicatas, Polímero Polycom, CBR, Estabilización de suelos.

ABSTRACT

The present research "Stabilization of fine soils through the use of Polycom polymer in subgrades for roads of low trafficability in Iquitos city, 2020". It was carried out in the human settlement "Tierra Prometida" Jerusalen Street in Belen district at the beginning of the year 2020. The research study, as part of the development roads in different areas of our region, it is considered as a fundamental departure, it aims to explain the stabilization of fine soils through the use of Polycom polymer in subgrades, which focuses on an experimental method, for this, soil studies were conducted in the area (soil pits), thus taking soil samples from the various soil pits, and then take the samples to the laboratory for their respective study, both for samples of natural soils and samples stabilized with Polycom polymer.

After adding the polymer to the soil, the results obtained by mixing the soil with 3 dosages of Polycom polymer 0.10, 0.20, 0.30 kg/m3, are presented, showing the considerable improvement in the physical characteristics provided to the natural soil, and in turn, causes a decrease in the liquid limit as the amount of dosage increases, reduces the plasticity of cohesive soils, for the type A-7-6(22) from 40% to 29.95% for each 0.10 kg/m3 of polymer added to the soil, increases the bearing capacity (CBR) up to 44.00% for each 0.30 kg/m3 of polymer applied to the soil. 10% to 29.95% for each 0.10kg/m3 of polymer added to the soil, increases the bearing capacity (CBR) to 44.00% for each 0.30 kg/m3 of polymer applied to the soil.

Finally, it is concluded that Polycom polymer has been used for the stabilization of fine soils and has been able to provide a considerable improvement to both the physical and mechanical characteristics of silty-clay soils and can be a suitable material for the shaping of pavement structures. An alternative design is proposed using chemical products, such as POLYCOM polymer, which is a product with very effective antecedents in some areas of the country, being our proposal a viable option.

KEYWORDS:

Soil pits, Polycom Polymer, CBR, Soil stabilization.

CAPITULO I: MARCO TEORICO

1.1. Antecedentes del Estudio

Con el propósito de desarrollar la presente investigación, a continuación, se presenta el resumen de una serie de trabajos de investigación enlazados con el tema a tratar. Tenemos los siguientes:

"DESEMPEÑO DE SUELOS ESTABILIZADOS CON POLÍMEROS EN PERÚ". NESTERENKO CORTES, DARKO. Plantea y propone un procedimiento constructivo, debido a que, en las normas del Ministerio de Transportes y Comunicaciones, no define un procedimiento constructivo para la estabilización de suelos con polímeros, por lo cual realizaron ensayos de laboratorio dando como resultado que el uso de polímeros como estabilizadores proporcionan al suelo en cuestión un gran mejoramiento en sus características físico y mecánicas, sobre todo con suelos con IP>=9.

"MEJORAMIENTO DE SUBRASANTES DE BAJA CAPACIDAD PORTANTE MEDIANTE EL USO DE POLÍMEROS RECICLADOS EN CARRETERAS, PAUCARÁ HUANCAVELICA 2014", Bach. RAMOS HINOJOSA, GABRIEL PAÚL. Da a conocer:

La adición de polímeros reciclados, los cuales se obtuvieron de botellas recicladas, se añadió al suelo arcilloso en cantidades de 1.5% con respecto al peso seco del suelo a tratar, y de dimensiones entre 5 a 10 milímetros, lo cual dio un incremento del CBR en 26%.

"ENSAYO DE FIABILIDAD CON ADITIVO PROES PARA LA ESTABILIZACIÓN DEL SUELO EN EL AA. HH EL MILAGRO, 2016", ANGULO ROLDAN, DIEGO; ROJAS ESCAJADILLO, HEMBER FEMILANIO. Dan a conocer que:

En la tesis trabajaron con diferentes tipos de suelos como A-4(1), A-3(0), A-2-4(0) y A-7-5(9), proponen combinaciones de suelos en porcentajes concluyendo que la mejor dosificación es de A-3(0) en 85% y A-7-5(9) en 15% agregando 2% cemento, 0.3 lt/m3 aditivo líquido, dando como resultado un aumento en el CBR de 23.6% a 83% en un 352% con respecto al estado natural.

PALOMINO, K. (2016). "CAPACIDAD PORTANTE (CBR) DE UN SUELO ARCILLOSO, CON LA INCORPORACIÓN DEL ESTABILIZADOR MAXXSEAL 100". PALOMINO TERÁN, KAREN ESTEFANY. Concluye que:

Con un suelo de baja a mediana plasticidad clasificado como A-7-6(5) según AASHTO, al cual se le adicionó 2%,4% y 6% de estabilizador dio como resultado el aumento del CBR a 7%, 9.60% y 11% respectivamente comparado con un CBR patrón de 5.10% a 0.1"; seguidamente para incorporaciones de 2%,4% y 6% de estabilizador se obtuvo 7.30%, 10.10% y 11.70% para un CBR de 0.2", además la adición del estabilizador modifico las características físicas como la plasticidad del suelo.

AUSTLATIN Perú (2014), "Proyecto Huachón", Chiclayo, Lambayeque, Perú, proyecto que consistía en estabilizar un camino principal de 1km de longitud, el tramo a tratar consistía en un suelo arenoso con poca presencia de suelos finos, estando afectado por presencia de agua superficial; los resultados obtenidos fueron el incremento del CBR, resistencia al agua superficial, reducción de la importación de material gravoso a la ejecución del proyecto.

AUSTLATIN Perú (2013), "Proyecto Pilco Marca, carretera central Km 232", Pilco Marca, Huánuco, Perú, proyecto que consistía en estabilizar un camino principal distribuido en 8 tramos de diferentes Longitudes dando un total de 967.5 ml de longitud, los tramos a estabilizar predomina un suelo gravoso reciclado de baja resistencia, con presencia de ahuellamientos y baches, siendo tratado anteriormente con emulsión y sellado con un Slurry, los resultados obtenidos fueron el incremento de la resistencia, el CBR, resistencia al agua superficial y los cambios bruscos de temperatura, utilización del material propio, ahorro de 30 – 40% de agua para compactación, reducción de la importación de material gravoso adicional.

AUSTLATIN Perú (2012), "Proyecto Mamaca", Localidad de Mamaca, San Felipe, Jaén, Cajamarca, Perú, proyecto que consistía en estabilizar un trecho de la carretera de 550 ml de longitud, en los tramos a estabilizar predomina un suelo arcilloso de baja resistencia y lugares arenosos con presencia de grava,

los resultados obtenidos fueron el mejoramiento de las tasas de compactación del suelo tratado, incremento de la fuerza y resistencia al agua garantizando un mayor durabilidad, mejorar el CBR, no produjo impacto ambiental.

AUSTLATIN Perú (2013), "Proyecto Panao Localidad de Panao, Chaglia, Pachitea, Huánuco, Perú, proyecto que consistía en estabilizar un camino principal de 1000 ml de longitud, conformado principalmente por un suelo gravoso mal graduado con presencia de arenas, las características físicas del tramo era huecos, encalaminados y bajo confort para los vehículos, los resultados obtenidos en la ejecución fueron el incremento de la capacidad de soporte (CBR), mayor densidad, disminución del contenido de humedad, resistencia al agua y mejor comportamiento elástico de los materiales, uso del material propio.

AUSTLATIN Perú (2013), "Proyecto Huachón", localidad Huachón, Huachón, Pasco, Pasco, Perú, proyecto que consistía en estabilizar un camino principal de 1000 ml de Longitud, conformado por un suelo arenoso con bajo porcentaje de suelos finos, afectado presencia de humedad en época de invierno, fecha en que se estaba ejecutando; los resultados obtenidos fueron el incremento de la resistencia, el CBR, resistencia al agua superficial y los cambios estacionarios o fatiga térmica, utilización del material propio, reducción de la importación de material gravoso adicional al proceso de estabilización del camino.

AUSTLATIN Perú (2012), "Proyecto Jirón Callao", localidad Jirón Callao, Yarinacocha, Coronel Portillo, Ucayali, Perú, proyecto que consistía en estabilizar un camino principal distribuido en 5 tramos con un total de d 931 ml de Longitud, conformado por un suelo areno-arcilloso y arcilla de baja plasticidad, de baja resistencia, con gran cantidad de ahuellamientos y baches que había sido tratado con un afirmado normal; los resultados obtenidos fueron el incremento del CBR, incremento de resistencia al agua y flexibilidad (resistencia a los cambios bruscos de temperatura), utilización del material propio, reducción de la importación de material gravoso adicional al proceso de estabilización del camino.

"ESTABILIZACIÓN DE SUELOS ARCILLOSOS MEDIANTE EL USO DE POLÍMEROS RECICLADOS PET A NIVEL DE LA SUBRASANTE DE LA CARRETERA JULIACA – CAMINACA, 2019". CLIVER CAPIA MAMANI. Concluye que:

Se demuestra parcialmente a la hipótesis que dice: existe una dosificación adecuada de los polímeros reciclados PET como adición para la estabilización de la subrasante. Según los resultados se observa que para un suelo natural más adición del 3% de polímero reciclado PET aumenta su capacidad de soporte CBR en un 0.58% hasta 0.87% de la capacidad de soporte CBR de suelo sin adición, llegando así a la conclusión que la adición de polímero reciclado PET logra mejorar su resistencia a la deformación de cargas vehiculares si logramos agregar una dosificación de 3% de polímeros reciclados PET, ya que el polímero es un material resistente de baja densidad que ayuda a tener mayor fricción y resistencia al corte.

Se demuestra parcialmente la hipótesis que dice: La aplicación de la dosificación óptima de polímeros reciclados PET influye de manera positiva en la densidad máxima seca en la subrasante. Se concluye que la D.M.S. de suelo más polímero reciclado PET en la dosificación

óptima disminuye entre 0.043 gr/cm3 hasta 0.047 gr/cm3 con respecto a la densidad del suelo natural.

1.2. Bases teóricas

- a) **Suelos:** el suelo ha sido definido de diferentes maneras ya sea que dicha definición provenga del agrónomo, del geólogo o del ingeniero civil. Una que podría considerarse como definición general es: Suelo es una delgada capa sobre la corteza terrestre de material que proviene de la desintegración y/o alteración física y/o química de las rocas y de los residuos de la actividad de los seres vivos que en ella se asientan, Ing. Carlos Crespo Villalaz (1979).
- b) CBR: acrónimo de California Bearing Ratio. Relación de soporte de California. Medida de la resistencia relativa de un suelo a la penetración bajo condiciones controladas de densidad y contenido de humedad. Es la relación

del esfuerzo necesario para penetrar un material dado respecto al esfuerzo que se necesita para penetrar un material de referencia (roca triturada para base de pavimento) cuya resistencia a la penetración en condiciones normalizadas es conocida. (Normas ASTM D1883 y D4429)

- c) Mecánica de Suelos: es una disciplina de la ingeniería que tiene por objeto el estudio de una serie de métodos que conducen, directa o indirectamente, al conocimiento del suelo en los diferentes terrenos sobre los cuales sobre los cuales se van a erigir estructuras de índole variable, Ing. Carlos Crespo Villalaz (1979).
- d) Clasificación de Suelos: dada a la gran variedad de suelos existentes, la mecánica de suelos ha desarrollado algunos métodos de clasificación, cada método tiene su campo de aplicación según la necesidad y el uso que los requiera. Se tiene la clasificación según el tamaño de sus partículas (AASHTO, SUCS).
- e) Clasificación AASHTO de suelos: clasificación geotécnica de suelos desarrollada por Terzaghi y Hogentogler, que se basa en sus características granulométricas y de plasticidad. Todos los suelos son clasificados en 8 grupos básicos designados por los símbolos A-1, A-2, A-3, etc. Los primeros tres grupos corresponden a suelos grueso granulares; los grupos A-4 y A-5 corresponden a suelos predominantemente limosos; los grupos A-6 y A-7 corresponden a suelos arcillosos; el grupo A-8 corresponde a suelos altamente orgánicos. (Normas AASHTO M145 y ASTM D3282).
- f) Clasificación unificada de suelos, SUCS: clasificación geotécnica de suelos, desarrollada inicialmente por A. Casagrande que se basa en sus características de granulometría y de plasticidad. (Norma ASTM D2487). En esta clasificación todos los suelos resultan ubicados en uno de 15 grupos, cada uno de los cuales es designado por dos letras que indican sus características relevantes.
- g) **Estabilización de suelos:** La estabilización de suelos se define como el mejoramiento de las propiedades físicas de un suelo a través de

procedimientos mecánicos e incorporación de productos químicos, naturales o sintéticos. Tales estabilizadores, por lo general se realizan en los suelos de subrasante inadecuado o pobre, en este caso son conocidas como estabilización suelo cemento, suelo cal, suelo asfalto y otros productos diversos. En cambio, cuando se estabiliza una subbase granular o base granular, para obtener un material de mejor calidad se denomina subbase o base granular tratada.

h) Tipos de estabilización: La estabilización de suelos tiene como finalidad en proporcionar a estos, de resistencia mecánica y resistencia al agua de manera permanente y pueda mantener la calidad de servicio en óptimas condiciones.

En las prácticas de estabilización de suelos se pueden encontrar algunas maneras de proporcionar estabilidad a los mismos, dentro de los cuales podemos encontrar:

- Estabilización Mecánica
- Estabilización física
- Estabilización guímica
- Estabilización con cal
- Estabilización suelo-cemento
- Estabilización con asfalto
- Estabilización con polímeros
- i) Arcilla: suelo fino granular, o la porción fina granular de un suelo que puede presentar un comportamiento plástico dentro de un intervalo de contenido de humedad más o menos amplio, y que tiene una considerable resistencia al corte cuando se seca al aire. Este término ha sido utilizado para designar el conjunto de partículas de un suelo menores de 2 μm (5 μm en algunos casos), pero existe suficiente evidencia que, desde el punto de vista de la ingeniería, las propiedades descritas en esta definición normalmente son más importantes que el solo tamaño de las partículas para la caracterización de los materiales arcillosos. Las propiedades de las arcillas dependen

principalmente del tipo de minerales que las componen y de los cationes intercambiables que contienen (Norma ASTM D653, Grim, 1962).

j) Base granular: Elemento de la estructura de una vía que consiste en una capa de material seleccionado y compactado, de espesor definido de acuerdo con un diseño previo, que se construye sobre la subbase o sobre la subrasante de una vía. La base debe permitir un adecuado drenaje, transmitir y distribuir las cargas de tráfico a la subbase y a la subrasante y minimizar el efecto de las heladas donde estas se presentan. 2. lon presente en la superficie de un cristal; sinónimo de catión. Cf. Súbase, base intercambiable.

1.3. Definición y términos básicos

AASHTO: Norma para el cálculo y el diseño vial. Sistema de clasificación que está basado en los resultados de la determinación en laboratorio de la distribución del tamaño de partículas, el límite líquido y el límite plástico.

ADITIVO: Sustancia que se puede agregar o incorporar a otra cosa.

ANILLO DE CARGA: instrumento utilizado en los laboratorios de suelos y materiales para la medición de cargas. Consiste en un anillo de acero cuya deformación bajo la acción de una fuerza puede ser medida mediante un extensómetro. La relación entre la fuerza aplicada y la deformación resultante está dada por la constante del anillo determinada para cada uno de ellos por el fabricante.

CASUELA DE CASAGRANDE: instrumento utilizado en la determinación del límite líquido, consiste en un recipiente de bronce en forma de sector esférico montado sobre un bastidor diseñado y construido para controlar su caída, desde una altura de 1 cm, sobre una base de caucho duro (Norma ASTM D4318).

ASTM: acrónimo de American Society for Testing and Materials. Sociedad Norteamericana de Ensayos y Materiales.

CBR: Capacidad de Soporte de Suelos y Agregados Compactados.

CL: símbolo utilizado para designar la arcilla con un límite líquido menor de 50, Arcilla de baja Plasticidad

CH: símbolo utilizado para designar la arcilla con un límite líquido mayor de 50, llamada también arcilla de alta plasticidad.

COMPACTACIÓN: densificación de un suelo por manipulación mecánica.

CURVA DE COMPACTACIÓN: curva que muestra la relación entre el peso unitario seco, o la densidad, y el contenido de agua de un suelo compactado, para un esfuerzo de compactación dado. (Normas ASTM D698 y D1557).

CURVA GRANULOMÉTRICA: representación gráfica de la distribución granulométrica de un suelo.

DENSIDAD, ρ (ML-3): Masa de un cuerpo o de un material por unidad de volumen. Relación numérica entre (a) la masa y (b) el volumen de un cuerpo.

DOSIFICACIÓN: Regulación de la cantidad o porciones de sustancias o materiales

ENSAYO: Prueba que se hace para determinar si un elemento o material funciona o resulta como se desea.

MDS: Máxima densidad seca.

OCH: Optimo Contenido de Humedad.

PRÓCTOR: Prueba de laboratorio que sirve para determinar la relación entre el contenido de humedad y el peso unitario seco de un suelo compactado.

SUCS: Sistema Unificado de Clasificación de Suelos.

CAPITULO II: PLANTEAMIENTO DEL PROBLEMA

2.1. Descripción del problema

La ciudad de Iquitos se encuentra ubicada en la región natural denominado Selva Baja u Omagua, la geomorfología o estructura geológica de la región se encuentra constituida por sedimentos del tipo arena fina, limos y arcillas, sin embargo, el suelo que predomina son las arcillas, en gran porcentaje.

Para la construcción de pavimentos el material del lugar donde se pretende construir son comúnmente las arcillas, las cuales son eliminadas y reemplazadas por material de préstamo conocido como arena fina (A-3), los costos para realizar estas partidas aumentan.

Actualmente el uso de las arcillas tiene poca demanda, debido a que sus características físicas y químicas no son muy funcionales, el uso común que se le da a las arcillas es la elaboración de ladrillos para mampostería de edificaciones, y el material de mayor uso es la arena fina (A-3), la cual se usa en los diferentes tipos de obras de edificación, pavimentación y saneamiento.

Por tal motivo se pretende realizar la utilización del material arcilloso haciendo mejoras a sus características físicas y químicas mediante el uso de polímero Polycom y así poder reemplazar arena fina en subrasantes para caminos de baja transitabilidad y en las estructuras de base y subbase de los pavimentos, con la finalidad de aumentar la demanda del uso de las arcillas y bajar el costo en el proceso de construcción de obras de pavimentación.

Se realizarán diferentes tipos de ensayos para demostrar la eficiencia y calidad del material arcilloso después de haber sido mejorado con el polímero Polycom para conformar las subrasantes, las bases y subbases

en la construcción de caminos de baja transitabilidad y de estructuras de pavimento

2.2. Formulación del Problema

2.2.1. Problema General

 ¿Cómo influye el uso de polímero Polycom en la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos, 2020?

2.2.2. Problema Específico

- ¿Cuál es el alcance del uso del polímero Polycom en la estabilización de suelos finos en la ciudad de Iquitos?
- ¿Cuál es la ventaja en la estabilización de suelos finos con el polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos?
- ¿Qué impactos ambientales ocasiona el uso del polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos?

2.3. Objetivos

2.3.1. Objetivo General

 Estabilizar los suelos finos mediante el uso del polímero Polycom en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos, 2020.

2.3.2. Objetivo Específico

- Determinar el alcance del uso del polímero Polycom en la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos.
- Determinar las ventajas en la estabilización de suelos finos utilizando polímero Polycom en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos

 Explicar los impactos ambientales que ocasiona el uso del polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos

2.4. Hipótesis

2.4.1. Hipótesis General

 Los suelos finos estabilizados con el Polímero Polycom pueden ser utilizados en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos 2020.

2.4.2. Hipótesis Específicas

- El uso de polímero Polycom influye de manera considerable en la estabilización de suelos finos en la ciudad de Iquitos.
- El uso de polímero Polycom proporciona grandes ventajas para la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos.
- El uso de polímero Polycom ocasiona impactos ambientales positivos en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos.

2.5. Variables

2.5.1. Identificación de las Variables

- Polímero Polycom (X) = Variable independiente
- Suelos finos (Y) = Variable dependiente

2.5.2. Definición conceptual y operacional de las Variables

VARIABLES	VARIABLE	VARIABLE
VANIABLES	INDEPENDIENTE (X)	DEPENDIENTE (Y)
	Es un producto químico,	Son aquellos suelos en
DEFINICION	producido para	los que el tamaño de
CONCEPTUAL	estabilización de suelos	sus partículas
CONCEPTUAL		predominante (más del
		50%) es igual o inferior

		a 0,075 mm (pasan por
		el tamiz 200 ASTM)
	Rendimiento de	El aumento de su
	polímero según el tipo	capacidad de soporte,
DEFINICION	suelo.	dependiendo de la
OPERACIONAL		cantidad de polímero
		agregado para su
		mejoramiento.
	Cantidad de Polímero	- Aumento de CBR.
	utilizado para cierto tipo	- Variación en las
	de suelo fino,	características
INDICADORES Y	dependiendo de sus	mecánicas como
ESCALA DE MEDICION	características físicas y	Expansión y
	mecánicas.	Absorción.
		- Variación de sus
		características físicas.

2.5.3. Operacionalización de las Variables.

VARIABLES	INDICADOR	INDICE DE MEDICIÓN
VARIABLE INDEPENDIENTE (X)	RENDIMIENTO DE CANTIDAD DE POLÍMERO	KG
VARIABLE INDEPENDIENTE (Y)	TIPO DE SUELO	% DE CBR

CAPITULO III: METODOLOGIA

Tipo y Diseño de Investigación

Para la elaboración del presente trabajo se considera la investigación de tipo **experimental**, porque el objetivo es agregar ciertas cantidades de polímero al suelo que se quiere mejorar, luego de este proceso se analizará los incrementos que produce en el suelo.

El método de trabajo que se procedió para el **diseño** del presente trabajo se asentó en 3 partes trascendentales, las cuales fueron trabajos de campo, trabajos de laboratorio y elaboración de gabinete, procediendo de la siguiente manera:

- Visita previa de la zona de investigación, y analizar las condiciones actuales del lugar.
- Ubicación y excavación de las calicatas.
- Toma y registro de las muestras extraídas de cada calicata.
- Ensayos de laboratorio.
- Análisis y evaluación de la Información obtenida en campo y laboratorio.
- Comparación de los resultados con el polímero.
- Elaboración del informe de tesis.

Población y muestra

Población

Se seleccionó como población de investigación la calle Jerusalén en el AA. HH Tierra prometida, que abarca una longitud total de 325 metros, se encuentra ubicado en la zona periférica en el distrito de Belén – Maynas – loreto. Debido a las condiciones poco favorables que actualmente presenta para el tránsito de los vehículos de los pobladores de esta zona, se busca la alternativa de solución favorable para ellos, y además intentando innovar con nuevos productos para nuestra amazonia.

Imagen 1: Vista panorámica de la condición actual de la zona Fuente: propia

Muestra

Tomando como referencia el Manual de Carreteras: suelos, geología, geotecnia y pavimentos del MTC, nos indica en el cuadro 4.1 de la sección suelos la cantidad mínima de calicatas y la profundidad mínima de exploración, para cada tipo de carretera, por lo cual tomando en consideración esto, se realizó 3 calicatas en todo el largo de la zona del estudio con sus respectivas progresivas 0+000, 0+150, 0+300 y profundidades de exploración mínimas de 1.50 m.

Imagen 2: Ubicación de calicatas Fuente: propia

Técnicas, Instrumentos y Procedimiento de recolección de datos

3.1.1. Investigaciones de Campo

Lugar del Estudio:

La zona del estudio se ubica en la calle Jerusalén, AA. HH Tierra prometida, distrito de Belén, Región de Loreto, el acceso al lugar es desde el aeropuerto de lquitos, siguiendo por la carretera lquitos – Nauta hasta llegar a la intersección con la Av. Participación, continuando por el lado izquierdo, siguiendo por la participación hasta llegar a la calle Primavera, continuando por la calle 6 de julio por la derecha hasta llegar a la zona de estudio en la calle Jerusalén.

Se hizo el reconocimiento de la zona a investigar, para determinar las características y condiciones actuales en las que se encuentra el subsuelo, luego se programó realizar 3 calicatas distribuidas de manera estratégica en todo el tramo de la zona, esto teniendo en cuenta el capítulo IV – suelos del Manual de carreteras del MTC.

Calicatas o Pozos de Exploración

Según el manual del Ministerio de Transportes y comunicaciones (MTC), en el ítem 4.1. exploración de suelos y rocas, nos indica que el espaciamiento entre calicatas debe tener entre 250 – 2000 m, pero pueden ser más próximas dependiendo de las características de la topografía, la cantidad de suelo a extraer dependerá de los tipos de ensayos a efectuar, además la profundidad mínima para realizar el perfil estratigráfico es de 1.50m medido desde el nivel de subrasante.

Con el objetivo de obtener la información necesaria del subsuelo se realizaron 3 calicatas ubicadas de manera uniforme en todo el largo de la vía en las progresivas correspondientes a 0+050, 0+150 y 0+300, el siguiente cuadro muestra un resumen de las calicatas:

Calicata	Profundidad (m)	Cantidad Muestras	Progresiva (m)	Ubicación	
Calicata 1	1.50	1	0+050		
Calicata 2	1.50	1	0+150	Ca. Jerusalén	
Calicata 3	1.50	1	0+300		

Tabla 1: Cuadro de calicatas Fuente: propia

Toma de Muestras y Registro de excavaciones

Se obtuvieron muestras alteradas de cada una de las calicatas exploradas, tomándose cantidades suficientes con el objetivo de ensayarlos para poder clasificarlas e identificar el tipo de suelo.

Paralelamente al muestreo se realizó el registro de cada una de las calicatas, anotándose las principales características de los tipos de suelos encontrados, tales como: espesor, color, humedad, plasticidad, cuales se observa en los ensayos de clasificación de suelos.

3.1.2. Investigaciones de Laboratorio

De cada una de las muestras se realizaron los siguientes ensayos, esto para identificar las características físicas y mecánicas de los estratos de la zona del estudio y así poder sugerir las dosificaciones necesarias, de acuerdo con eso se procederá a realizar los posteriores ensayos para determinar las características mecánicas del suelo natural y el mezclado con el polímero.

Los ensayos se realizaron en el Laboratorio de Mecánica de Suelos y Ensayo de Materiales del Laboratorio de APJ CONTRATISTAS y CONSULTORES SRL, se realizaron los ensayos de laboratorio tomando en consideración el manual de ensayo de materiales para carretera del MTC (2013) y la norma del American Society for Testing and Materials (ASTM) de acuerdo con la siguiente relación:

N°	Ensayo	Norma
1	Análisis Granulométrico por Tamizado	NTP 339.128 (ASTM D-422) MTC E107
2	Límite Líquido	NTP 339.129 (ASTM D-4318) MTC E110
3	Límite Plástico e Índice de Plasticidad	NTP 339.129 (ASTM D-4318) MTC E111
4	Contenido de Humedad	NTP 339.127 (ASTM D-2216) MTC E108
5	Clasificación de Suelos SUCS	NPT 339.134 (ASTM D-2487)
6	Clasificación de Suelos AASHTO	NTP 339.135 (ASTM D-3282) M-145
7	Proctor modificado	NTP 339.141 (ASTM D1557) MTC E115
8	Relación de Soporte CBR	NTP 339.143 (ASTM D1883) MTC E132

Tabla 2: Relación de Ensayos de suelos y Norma respectiva Fuente: propia

Descripción de los ensayos de laboratorio Análisis Granulométrico por Tamizado - MTC E107

Determinar cuantitativamente la distribución de tamaños de partículas de suelo, este modo operativo describe el método para determinar los porcentajes de suelo que pasan por los distintos tamices de la serie empleada en el ensayo, hasta el tamiz N° 200.

Límite Líquido MTC E110

Es el contenido de humedad, expresado en porcentaje, para el cual el suelo se halla en el límite entre los estados líquido y plástico. Arbitrariamente se designa como el contenido de humedad al cual el surco separador de dos mitades de una pasta de suelo se cierra a lo largo de su fondo en una distancia de 13mm cuando se deja caer la copa 25 veces desde una altura de 1cm a razón de 2 caídas por segundo.

Límite Plástico e Índice de Plasticidad MTC E111

Se denomina limite plástico a la humedad más baja con la que pueden formarse barritas de suelo de unos 3,2 mm de diámetro, rodando dicho suelo entre la palma de la mano y una superficie lisa, sin que dichas barritas se desmoronen.

Contenido de Humedad MTC E108

Es la relación, expresada como porcentaje, del peso del agua en una masa seca de suelo, al peso de las partículas sólidas. Este modo operativo determina el peso del agua eliminada, secando el suelo húmedo hasta un peso constante en

un horno controlado a 110± 5 °C. El peso del suelo que permanece del secado en horno es usado como el peso de las partículas sólidas. La pérdida del peso debido al secado es considerada como el peso del agua.

Clasificación de Suelos SUCS

Este sistema de clasificación se ha extendido en cooperación con la oficina de mejoramiento de terrenos de los estados unidos, y se denomina actualmente Sistema de Clasificación Unificado, está basado en la identificación de los suelos según sus cualidades estructurales y de plasticidad. La base de la clasificación de suelos está de acuerdo con la fracción que pasa por el tamiz N° 200, la forma de la curva de distribución granulométrica, y características de plasticidad y compresibilidad.

Se establecen fracciones de suelos: cantos rodados, gravas, arenas y finos (limos y arcilla). Los límites de demarcación entre las diversas fracciones y aspectos descriptivos, simbología, descripciones y criterios de clasificación de laboratorio.

TIPO DE SUELO	PREFIJO	SUBGRUPO	SUFIJO
Grava	G	Bien Graduado	W
Arena	S	Pobremente Graduado	Р
Limo	М	Limoso	М
Arcilla	С	Arcilloso	С
Orgánico	0	Alta Plasticidad LL>50	L
Turba	Pt	Baja Plasticidad LL<50	Н

Tabla 3: Símbolos de grupo (SUCS)

Fuente: propia

. с.се. р. ср.с.								
SIMBOLO	PREFIJO	SUBGRUPO	SUFIJO					
GW	GRAVAS	Limpias	Bien Graduadas					
GP	(>50% en tamiz #4)	(finos<5%)	Pobremente graduados					
GM		Con finos	Componente Limoso					
GC		(finos>12%)	Componente Arcilloso					
SW	ARENAS	Limpias	Bien Graduadas					
SP	(<50% en tamiz #4)	(finos<5%)	Pobremente graduados					
SM		Con finos	Componente Limoso					
SC		(finos>12%)	Componente Arcilloso					
ML	LIMOS	Baja Plasticidad (LL<50)						
MH	LIIVIOS	Alta Plasticidad (LL>50)						
CL	ARCILLAS	Baja Plasticidad (LL<50)						
CH	ARCILLAS	Alta Plasticidad (LL>50)						
OL	SUELOS	Baja Plasticidad (LL<50)						
ОН	ORGANICOS	Alta Plasticidad (LL>50)						
Pt	TURBA	Suelos altamente orgánicos						

Tabla 4: Tipología de suelos (SUCS)

Fuente: propia

Clasificación de Suelos AASHTO

El sistema describe un procedimiento para clasificar suelos en grupos, basados en las determinaciones de laboratorio de granulometría, limite liquido e índice de plasticidad. La evaluación en cada grupo se hace, mediante un "índice de grupo".

Se informa en números enteros y si es negativo se informa igual a 0. El grupo de clasificación, incluyendo el índice de grupo, se usa para determinar la calidad relativa de suelos de terraplenes, material de subrasante, subbases y bases.

El valor del índice de grupo debe ir siempre en paréntesis después del símbolo del grupo, como: A-2-6 (3); A-7-5 (17), etc. Cuando el suelo es NP o cuando el límite no se puede determinar, el índice de grupo debe considerarse igual a 0.

Si el suelo es altamente orgánico puede ser clasificado como A-8 solo con una verificación visual, sin considerar el porcentaje bajo 0.08 mm, limite liquido e índice de plasticidad. Generalmente es de color oscuro, fibroso y olor putrefacto y fuerte.

GRUPO Subgrupo		Materiales Granulares (pasa menos del 35% por el tamiz ASTM #200)						Materiales Limo-arcillosos (más del 35% por el tamiz ASTM #200)					
		A-1			A-2				A-5		A-7		
		A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5	A-7-6
ANÁ	LISIS	RANUL	OMÉTR	ICO (%	que pasa	por cad	a tamiz)						
W	#10	≤ 50											
e ASTM	#40	≤ 30	≤ 50	≥ 51									
Serie	#200	≤ 15	≤ 25	≤ 10	≤ 35	≤ 35	≤ 35	≤ 35	≥ 36	≥ 36	≥ 36	≥ 36	≥ 36
ESTA	DO DE	CONSI	STENC	A (de la	a fracción	de suelo	que pas	a por el t	amiz AST	M #40)			
Limite liquido				NP	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	>41 (IP <ll-30)< td=""><td>>41 (IP>LL-3</td></ll-30)<>	>41 (IP>LL-3
	dice de sticidad	<u> </u>	6	NP	≤ 10	≤ 10	≥ 11	≥ 11	≤ 10	≤ 10	≥ 11	≥ 11	≥ 11
ÍNDICE DE GRUPO		0 0		0	0 ≤4		4	≤ 8	≤ 12	≤ 20	≤ 20		
TIPOLOGÍA		de pi	nentos ledra, y arena	Arena fina			y arenas o arcillosas		Suelos limosos Suelos arcillos		osos		
CAUDAD EXCEL		ENTE A	BUENA		ACEPTABLE A MALA								

Imagen 3: Cuadro clasificación de Suelos AASHTO Fuente: Manual de Carreteras — Ing. Luis Bañón Blázquez

Proctor modificado MTC E115

Este ensayo abarca procedimientos de compactación usados en laboratorio, para determinar la relación entre el contenido de agua y peso unitario seco de 19

los suelos compactados en un molde de 101.6 mm (4") de diámetro con un pisón de 10lbf que cae de una altura de 457mm (18"), produciendo una energía de compactación de 2700 kN-m/m3.

El suelo utilizado como relleno en ingeniería (terraplenes, rellenos de cimentación, bases para caminos) se compacta a un estado denso para obtener propiedades satisfactorias de ingeniería tales como: resistencia al esfuerzo de corte, comprensibilidad o permeabilidad. Los ensayos de compactación en laboratorio proporcionan las bases para determinar el porcentaje de compactación y contenido de agua que se necesita para obtener las propiedades de ingeniería requeridas, y para el control de la construcción para asegurar la obtención de la compactación requerida y los contenidos de agua.

Relación de Soporte CBR MTC E132

Este ensayo se usa para evaluar la resistencia potencial de subrasante, subbase y base, incluyendo materiales reciclados para usar en pavimentos de vías y de campos de aterrizaje. El valor de CBR obtenido en esta prueba forma una parte integral de varios métodos de diseño de pavimento flexible.

Para aplicaciones donde el efecto del agua de compactación sobre el CBR es mínimo, tales como materiales no cohesivos de granos gruesos, o cuando sea permisible para el efecto de diferenciar los contenidos de agua de compactación en el procedimiento de diseño, el CBR puede determinarse al optimo contenido de agua de un esfuerzo de compactación especificado. El peso unitario seco especificado es normalmente el mínimo porcentaje de compactación permitido por las especificaciones de campo en la entidad usuaria.

Los criterios para la preparación del espécimen de prueba con respecto a los materiales cementados los cuales recuperan resistencia con el tiempo deben basarse en una evaluación geotécnica de ingeniería.

Cuadro 4.1 Número de Calicatas para Exploración de Suelos

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación	
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles	1.50m respecto al nivel de subrasante del proyecto	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	Las calicatas se ubicarán longitudinalmente	
Carreteras Duales o Multicarril: carreteras de IMDA entre 6000 y 4001 veh/dia, de calzadas separadas, cada una con dos o más carriles	1.50m respecto al nivel de subrasante del proyecto	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	y en forma alternada	
Carreteras de Primera Clase: carreteras con un IMDA entre 4000- 2001 veh/día, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	4 calicatas x km	Las calicatas se ubicarán longitudinalmente y en forma alternada	
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000-401 veh/dia, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	3 calicatas x km		
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 vehídia, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	2 calicatas x km		
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	1.50m respecto al nivel de subrasante del proyecto	1 calicata x km		

Imagen 4: Cuadro cantidad de calicatas según el tipo de carretera Fuente: Manual de Carreteras – suelos – geotecnia MTC

3.1.3. Trabajo de Gabinete

Se juntó los datos recolectados en campo, y se procedió a comparar con los obtenidos en laboratorio, para realizar una comparación del teórico con el operacional, obteniendo resultados precisos del tipo de suelo a estabilizar.

Procesamiento y análisis de datos

Se realizó el desarrollo el análisis de los valores obtenidos tanto en campo como en laboratorio, procesándolos mediante hojas de cálculo en Microsoft Excel, analizando los factores que influyen en el comportamiento del suelo sometido a diferentes cantidades de Aditivo, haciendo una comparación en la variación de sus características tanto físicas como mecánicas, obteniendo los datos que se presentaran más adelante y así poder definir un resultado satisfactorio en la estabilización de suelos de este tipo.

CAPITULO IV: RESULTADOS

4.1. Resultados de ensayos de Laboratorio

Con frecuencia en la Amazonía los materiales propios de la zona de estudio, no cumplen con las especificaciones técnicas para proyectos de mejoramiento de vías, para definir esto se procedió a realizar los ensayos de suelos en el laboratorio, obteniéndose los datos necesarios como humedad natural, limite líquido, índice plástico, clasificación SUCS, clasificación AASHTO, y granulometría por tamizado, en el estado natural de cada suelo; en el anexo se puede ver detalladamente las características físicas de cada suelo.

4.1.1. Contenido de humedad natural

La muestra extraída de la calicata se conservó de manera alterada en recipientes de bolsas plásticas y fueron ensayadas para determinar el grado de humedad contenida.

Los valores del contenido de humedad presente se muestran en el cuadro de resumen de clasificación de suelos.

4.1.2. Granulometría por tamizado

Para determinar de manera cuantitativa la distribución de las partículas contenidas en el suelo, se hizo uso de ciertos números de tamices indicados en el Manual de ensayos del MTC, tanto para suelos de grano fino y suelos de grano grueso.

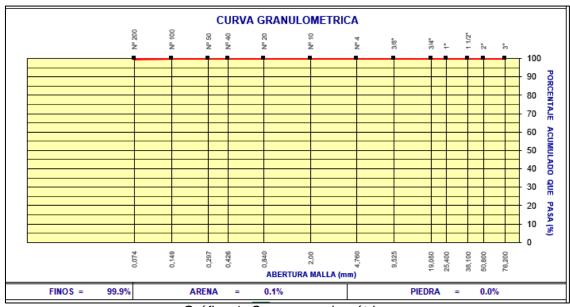


Gráfico 1: Curva granulométrica

Fuente: laboratorio de suelos APJ CONTRATISTAS Y CONSULTORES

La curva granulométrica del suelo ensayado no es muy definida, lo cual indica que contiene escasas partículas de arena (0.1%) del peso total de la muestra, y mayor porcentaje de sedimentos finos (99.9%).

La granulometría obtenida del ensayo de tamizado nos indica que es un suelo perteneciente al grupo A-7-6, ubicado en división general de materiales limo-arcillosos según clasificación AASHO y según SUCS clasificado como un CL.

4.1.3. Resultados: Limite líquido, limite plástico e índice de plasticidad (con polímero – sin polímero)

Sin polímero - Natural

Determinado los valores de los límites de consistencia, los resultados nos muestran que es un suelo con mediana consistencia y compresibilidad de color beige con pintas de color marrón claro, con capacidad de absorber un mayor grado humedad, se indica en el cuadro.

	Humedad	Limite	Índice			Granul	ometría
Calicata	natural %	Liquido (%)	plástico %	SUCS	AASHTO	Finos %	Arena %
C-1	26.87	40.10	20.83	CL	A-7-6(22)	99.9	0.1
C-2	28.21	43.65	23.15	CL	A-7-6(25)	99.9	0.1
C-3	29.79	44.10	22.49	CL	A-7-6(25)	99.9	0.1

Tabla 5: Cuadro resumen de las características físicas de suelo Natural Fuente: propia

Con polímero

Luego de adicionar el polímero al suelo, se pudo identificar ciertos cambios ocurridos en las características físicas del suelo, dado que ese aditivo es compuesto químico con ciertas características viscosas al mezclarse con el agua, provocó la disminución del límite líquido a medida que se iba incrementando la cantidad de dosificación, en el siguiente cuadro se muestra en detalle los valores arrojados.

Calicata C-1								
Polycom Kg/m3	Limite Liquido (%)	Índice plástico %	sucs	AASHTO				
0.00	40.10	20.83	CL	A-7-6(22)				
0.10	29.95	11.88	CL	A-6(11)				
0.20	27.80	9.92	CL	A-4(9)				
0.30	26.55	9.53	CL	A-4(8)				

Tabla 6: resumen de las características físicas de calicata C-1 luego de adicionar el polímero Polycom fuente: propia

Calicata C-2							
Polycom Kg/m3	Limite Liquido (%)	Índice plástico %	sucs	AASHTO			
0.00	43.65	23.15	CL	A-7-6(25)			
0.10	30.95	13.22	CL	A-6(13)			
0.20	29.55	11.18	CL	A-6(11)			
0.30	27.80	9.21	CL	A-4(8)			

Tabla 7: resumen de las características físicas de calicata C-2 luego de adicionar el polímero Polycom fuente: propia

Calicata C-3							
Polycom Kg/m3	Limite Índice plástico %		sucs	AASHTO			
0.00	44.10	22.49	CL	A-7-6(25)			
0.10	32.25	14.14	CL	A-6(14)			
0.20	30.60	13.48	CL	A-6(13)			
0.30	29.25	10.66	CL	A-6(10)			

Tabla 8: resumen de las características físicas de calicata C-3 luego de adicionar el polímero Polycom fuente: propia

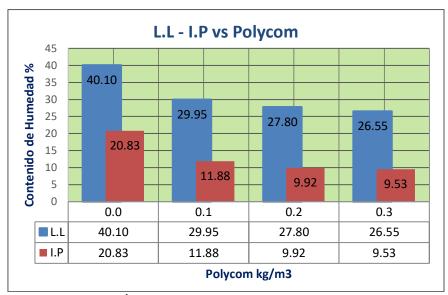


Gráfico 2: límite líquido e Índice plástico del suelo de la calicata C-1, adicionando el polímero Polycom

Fuente: propia

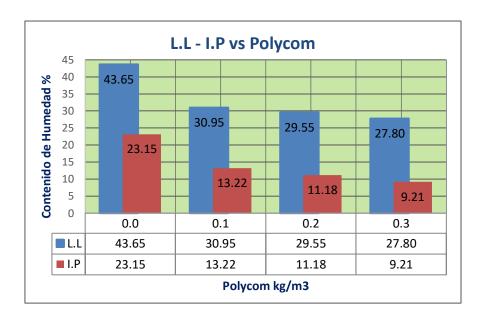


Gráfico 3: límite líquido e Índice plástico del suelo de la calicata C-2, adicionando el polímero Polycom

Fuente: propia

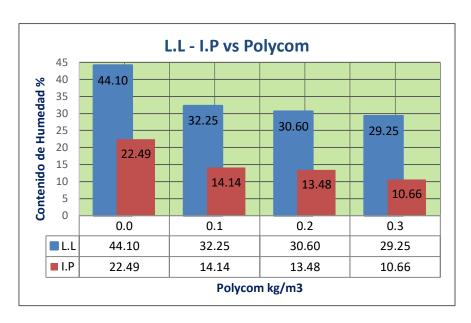


Gráfico 4: límite líquido e Índice plástico del suelo de la calicata C-3, adicionando el polímero Polycom

Fuente: propia

4.1.4. Resultados de Proctor Modificado

Luego de determinar las características físicas en estado natural y adicionando polímero, se procedió a determinar las características mecánicas del suelo, tomando en consideración el manual de carreteras – suelos y geotecnia del MTC, nos indica que para carreteras de bajo volumen de tránsito se debe realizar un CBR por cada 3km, sin embargo, por razones de investigación se realizaron los ensayos de las 3 calicatas exploradas.

En las pruebas para determinar las características mecánicas del suelo, se siguieron los procedimientos del manual de ensayo de materiales del MTC, para realizar el ensayo del Proctor Modificado se utilizó el METODO "A", el cual indica las características que debe tener el material a ensayar; seguidamente para realizar el ensayo del CBR, se toma los resultados del Proctor modificado, para realizar el procedimiento del ensayo y determinar su capacidad de soporte del suelo en cuestión.

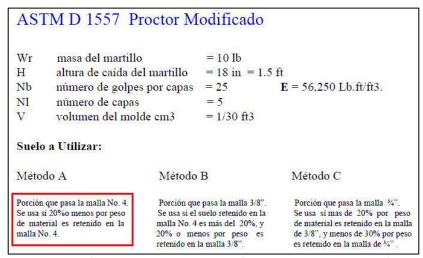


Imagen 5: Métodos de Compactación para Proctor Modificado Fuente: Ing. Luis Chang Chang – Laboratorio Geotécnico CISMID

Sin Polímero - Natural

En el siguiente cuadro se muestra las características mecánicas del suelo extraído de la calicata sin adicionar el polímero.

Calicata	PROCTOR MODIFICADO			
Calicata	MDS (gr/cm3)	OCH (%)		
C-1	1.794	15.00		
C-2	1.831	15.20		
C-3	1.844	15.70		

Tabla 9: Características mecánicas - Proctor y CBR en estado natural Fuente: propia

Con polímero

Luego del análisis del suelo en estado natural se procedió a realizar las dosificaciones con el polímero para determinar las variaciones que produce en este tipo de suelos, se presenta los resultados obtenidos al mezclar el suelo con 3 dosificaciones del polímero Polycom que fueron 0.10, 0.20, 0.30 kg/m3, se muestra la mejora considerable que proporciona al suelo natural.

Debido a que el polímero produce una considerable mejora a las características físicas, se procedió a determinar el alcance en sus características mecánicas, en

el siguiente cuadro se muestra los detalles de cada dosificación y la variación en la MDS y OCH del suelo.

C-1	PROCTOR MODIFICADO			
PROPORCION POLYCOM (kg/m3)	MDS (gr/cm3)	OCH (%)		
0.00 (natural)	1.794	15.00		
0.10	1.781	14.60		
0.20	1.777	13.80		
0.30	1.769	13.50		

Tabla 10: resultados de Proctor modificado de la muestra C-1, adicionando el polímero Polycom
Fuente: propia

C-2	PROCTOR MODIFICADO			
PROPORCION POLYCOM (kg/m3)	MDS (gr/cm3)	OCH (%)		
0.00 (natural)	1.831	15.20		
0.10	1.815	14.50		
0.20	1.810	14.30		
0.30	1.804	13.80		

Tabla 11: resultados de Proctor modificado de la muestra C-2, adicionando el polímero
Polycom
Fuente: propia

C-3	PROCTOR MODIFICADO			
PROPORCION POLYCOM (kg/m3)	MDS (gr/cm3)	OCH (%)		
0.00 (natural)	1.844	15.70		
0.10	1.821	14.80		
0.20	1.801	14.00		
0.30	1.778	13.70		

Tabla 12: resultados de Proctor modificado de la muestra C-3, adicionando el polímero Polycom
Fuente: propia

El grafico a continuación hace una representación de eficiencia del polímero cuando se encuentra en contacto con el suelo a estabilizar.

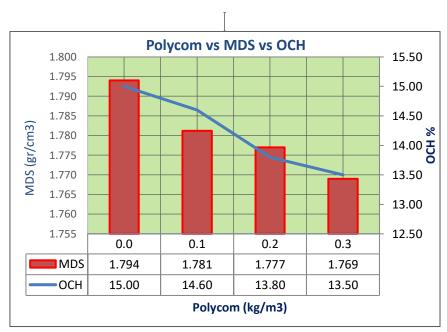


Gráfico 5: Variación de MDS Y OCH de la muestra C-1, adicionando el polímero Polycom Fuente: propia

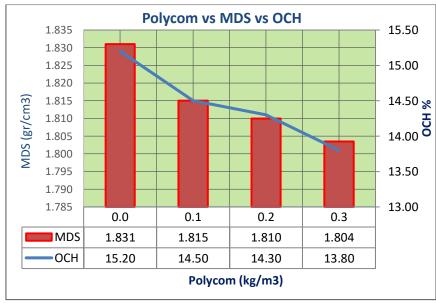


Gráfico 6: Variación de MDS Y OCH de la muestra C-2, adicionando el polímero Polycom Fuente: propia

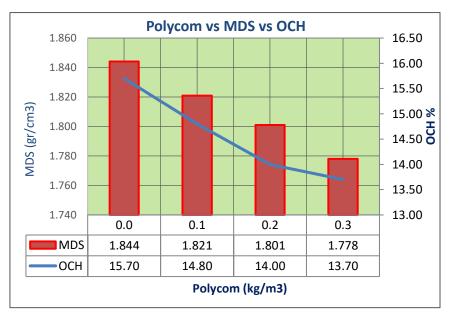


Gráfico 7: Variación de MDS Y OCH de la muestra C-3, adicionando el polímero Polycom Fuente: propia

4.1.5. Resultados de Capacidad de Soporte (CBR)

Sin polímero

Luego de los ensayos realizados para determinar los valores de la Máxima densidad seca, se procede a definir la capacidad de soporte del suelo en estado natural para conocer su grado de resistencia.

	RELACION DE SOPORTE (CBR)				
CALICATA	CBR 95%	CBR 100%	EXPANSIÓN (%)	ABSORCION (%)	
C-1	2.80	6.05	3.40	5.9	
C-2	2.40	6.90	3.29	5.2	
C-3	2.35	6.50	3.42	5.4	

Tabla 13: Valores de CBR, expansión y absorción de la muestra C-1, C-2, C-3 Fuente: propia

Con polímero

Siguiendo con el procedimiento de adicionar el aditivo al suelo, se obtienen los siguientes valores para la capacidad de soporte del suelo con cada dosificación

propuesta, se puede observar el aumento considerable del valor del CBR para cada caso.

C-1	RELACION DE SOPORTE (CBR)			
PROPORCION POLYCOM (kg/m3)	CBR 95%	CBR 100%	EXPANSIÓN (%)	ABSORCION (%)
0.000 (natural)	2.80	6.05	3.40	5.9
0.10	6.25	12.70	3.08	4.2
0.20	10.90	24.00	2.44	3.9
0.30	22.00	44.00	2.07	3.6

Tabla 14: Variación del CBR, expansión y absorción de la muestra C-1, adicionando el polímero Polycom

Fuente: propia

C-2	RELACION DE SOPORTE (CBR)			
PROPORCION POLYCOM (kg/m3)	CBR 95%	CBR 100%	EXPANSIÓN (%)	ABSORCION (%)
0.000 (natural)	2.40	6.90	3.29	5.2
0.10	5.80	12.50	3.09	4.0
0.20	11.70	23.20	2.52	3.7
0.30	18.60	39.10	2.19	3.3

Tabla 15: Variación del CBR, expansión y absorción de la muestra C-2, adicionando el polímero Polycom

Fuente: propia

C-3	RELACION DE SOPORTE (CBR)				
PROPORCION POLYCOM (kg/m3)	CBR 95%	CBR 100%	EXPANSIÓN (%)	ABSORCION (%)	
0.000 (natural)	2.35	6.50	3.42	5.4	
0.10	5.70	12.40	3.05	4.0	
0.20	10.10	22.50	2.54	3.7	
0.30	18.75	38.00	2.07	3.2	

Tabla 16: Variación del CBR, expansión y absorción de la muestra C-3, adicionando el polímero Polycom

Como se puede observar en el cuadro anterior, la adición del polímero al suelo lo proporciona una mejora considerable a sus características mecánicas

Para hacer más visible los detalles del cambio producido en las características mecánicas, se presenta el siguiente grafico para mostrar la variación.

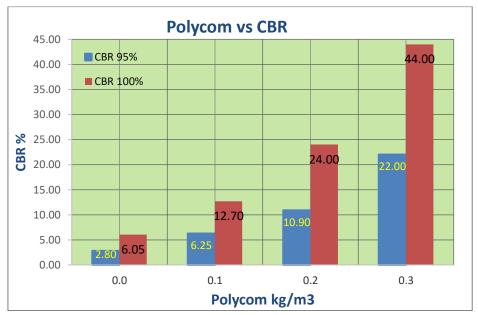


Gráfico 8: curva Variación de CBR 95% y CBR 100% de la muestra C-1, adicionando el polímero Polycom

Fuente: propia

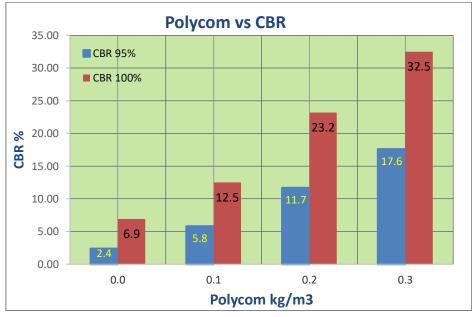


Gráfico 9: curva Variación de CBR 95% y CBR 100% de la muestra C-2, adicionando el polímero Polycom Fuente: propia

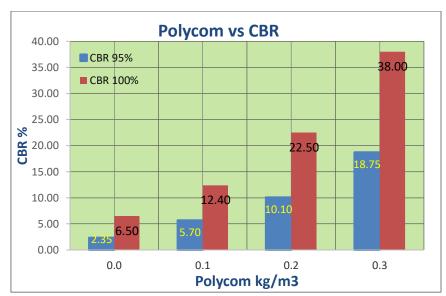


Gráfico 10: curva Variación de CBR 95% y CBR 100% de la muestra C-3, adicionando el polímero Polycom

Fuente: propia

CAPITULO V: DISCUSIÓN, CONCLUSIONES Y RECOMENDACIONES

5.1. Discusión

a. NESTERENKO CORTES, DARKO. Plantea y propone un procedimiento constructivo, debido a que, en las normas del Ministerio de Transportes y Comunicaciones, no define un procedimiento constructivo para la estabilización de suelos con polímeros, por lo cual realizaron ensayos de laboratorio dando como resultado que el uso de polímeros como estabilizadores proporcionan al suelo en cuestión un gran mejoramiento en sus características físico y mecánicas, sobre todo con suelos con IP>=9.

En la presente tesis se realizaron ensayos de laboratorio con tipos de suelos A-7-6(22) y A-7-6(25), con IP>=11, de acuerdo con sus características nos indica que es un suelo inestable; al aplicar el polímero Polycom con dichos tipos de suelos, nos proporciona un buen resultado en sus características físicas y mecánicas.

b. RAMOS HINOJOSA, GABRIEL PAÚL. A través de su tesis plantea que la adición de polímeros reciclados, los cuales se obtuvieron de botellas recicladas, se añadió al suelo arcilloso en cantidades de 1.5% con respecto al peso seco del suelo a tratar, y de dimensiones entre 5 a 10 milímetros, lo cual dio un incremento del CBR en 26%.

La presente investigación se fundamenta en la aplicación del polímero Polycom y de acuerdo a los ensayos realizados en laboratorio se obtuvo que para valores de la Capacidad de Soporte (CBR) nos indica que el cambio provocado en sus características es muy significativo, ya que los valores arrojados indican que provee al tipo de suelos A-7-6 (22) resulta una capacidad que va desde 6.05% hasta 12.70% por cada 0.10 kg/m3 de polímero aplicado al suelo, aumentando aproximadamente al doble de su valor inicial (natural), hasta 24.00% por cada 0.20 kg/m3 de polímero aplicado al suelo, y finalmente 44.00% por cada 0.30 kg/m3 de polímero aplicado al suelo.

c. ANGULO ROLDAN, DIEGO; ROJAS ESCAJADILLO, HEMBER FEMILANIO. En sus tesis trabajaron con diferentes tipos de suelos como A-4(1), A-3(0), A-2-4(0) y A-7-5(9), proponen combinaciones de suelos en porcentajes concluyendo que la mejor dosificación es de A-3(0) en 85% y A-7-5(9) en 15% agregando 2% cemento, 0.3 lt/m3 aditivo líquido, dando como resultado un aumento en el CBR de 23.6% a 83% en un 352% con respecto al estado natural.

Por otro lado, en nuestra investigación utilizamos solo los tipos de suelo A-7-6(22) y A-7-6(25) con el polímero Polycom, sin combinaciones con otros tipos de suelos y sin agregar cemento, obteniendo así aumento de la Capacidad de Soporte (CBR) muy significativo, teniendo en cuenta para el tipo de suelo A-7-6 (22) los valores arrojados indican una capacidad que va desde 6.05% hasta 12.70% por cada 0.10 kg/m3, luego aumenta a un 24.00% por cada 0.20 kg/m3 y finalmente 44.00% por cada 0.30 kg/m3 de polímero aplicado al suelo. Caso contrario, si realizamos combinaciones con otros tipos de suelos como son los A-4(1), A-3(0), A-2-4(0) y agregamos cemento en un mínimo porcentaje, uniendo dichos elementos con 0.30 kg/m3 de polímero Polycom, aumentaría en gran manera el CBR con respecto al estado natural.

d. PALOMINO, K. (2016). Sustenta que con un suelo de baja a mediana plasticidad clasificado como A-7-6(5) según AASHTO, al cual se le adicionó 2%,4% y 6% de estabilizador dio como resultado el aumento del CBR a 7%, 9.60% y 11% respectivamente comparado con un CBR patrón de 5.10% a 0.1"; seguidamente para incorporaciones de 2%,4% y 6% de estabilizador se obtuvo 7.30%, 10.10% y 11.70% para un CBR de 0.2", además la adición del estabilizador modifico las características físicas como la plasticidad del suelo.

De otro modo, la investigación a través de los ensayos realizados en laboratorio a los suelos A-7-6(22) y A-7-6(25) se deduce que para el tipo de suelo A-7-6(22) adicionamos 0.10 kg/m3, 0.20 kg/m3 y 0.30 kg/m3 del

polímero Polycom en distintas muestras, se obtuvo como resultado el aumento de la Capacidad de Soporte (CBR) al 12.70%, 24.00% y 44.00% respectivamente. Para el tipo de suelos A-7-6 (25) adicionamos las mismas cantidades de polímero en distintas muestras de 0.10 kg/m3, 0.20 kg/m3 y 0.30 kg/m3 y obtuvimos como resultado el aumento en el CBR de 12.50%, 23.20%, 39.10% respectivamente. A su vez, se determinó que el polímero reduce la plasticidad de los suelos cohesivos.

e. AUSTLATIN Perú (2012), "Proyecto Mamaca", Localidad de Mamaca, San Felipe, Jaén, Cajamarca, Perú, proyecto que consistía en estabilizar un trecho de la carretera de 550 ml de longitud, en los tramos a estabilizar predomina un suelo arcilloso de baja resistencia y lugares arenosos con presencia de grava, los resultados obtenidos fueron el mejoramiento de las tasas de compactación del suelo tratado, incremento de la fuerza y resistencia al agua garantizando un mayor durabilidad, mejorar el CBR, no produjo impacto ambiental.

En la investigación se sustenta que este polímero provee de ciertos cambios al tipo de suelo como el analizado, el cual fue caracterizado según Norma AASHTO como un A-7-6(22) y A-7-6(25), aumenta significativamente la Capacidad de Soporte (CBR) del suelo y ofrece un alto grado de resistencia al agua. Al poseer características ambientales ecológicas, no produce impacto ambiental.

f. CLIVER CAPIA MAMANI. A través de su tesis se demuestra parcialmente a la hipótesis que dice: existe una dosificación adecuada de los polímeros reciclados PET como adición para la estabilización de la subrasante. Según los resultados se observa que para un suelo natural más adición del 3% de polímero reciclado PET aumenta su capacidad de soporte CBR en un 0.58% hasta 0.87% de la capacidad de soporte CBR de suelo sin adición, llegando así a la conclusión que la adición de polímero reciclado PET logra mejorar su resistencia a la deformación de cargas vehiculares si logramos agregar una dosificación de 3% de polímeros reciclados PET, ya que el polímero es un material resistente de baja densidad que ayuda a tener mayor fricción y resistencia al corte.

Se demuestra parcialmente la hipótesis que dice: La aplicación de la dosificación óptima de polímeros reciclados PET influye de manera positiva en la densidad máxima seca en la subrasante. Se concluye que la D.M.S. de suelo más polímero reciclado PET en la dosificación óptima disminuye entre 0.043 gr/cm3 hasta 0.047 gr/cm3 con respecto a la densidad del suelo natural.

En la investigación se plantea que para el tipo de suelo A-7-6 (25) aplicando el polímero Polycom, la Capacidad de Soporte (CBR) va desde 6.90% hasta 12.50% por cada 0.10 kg/m3, hasta 39.10% por cada 0.30 kg/m3 de polímero aplicado al suelo, ayuda a disminuir el porcentaje de expansión del suelo en valores que van desde 3.29% hasta 2.99% por cada 0.10 kg/m3 de polímero aplicado, hasta 2.44% por cada 0.20 kg/m3 de polímero aplicado, y hasta 2.07% por cada 0.30 kg/m3 de polímero aplicado. Para las características mecánicas evaluadas se determinó que el polímero reduce en valores poco significativos la Densidad del Suelo, dado los resultados nos indica que para suelos de tipo A-7-6(25), la MDS=1.831gr/cm3 se reduce hasta MDS = 1.815gr/cm3, a otro suelo de tipo A-7-6(25) con una MDS=1.844 gr/cm3 se reduce hasta MDS = 1.821gr/cm3.

El presente trabajo de tesis es el primer registro de investigaciones para estabilización de suelos que se realizó en esta región del país con el producto del Polímero Polycom presentado, por lo cual, los suelos de fundación encontrados en esta zona no poseen las mismas características que el de otras regiones, se han realizado ejecuciones de proyectos con este producto en otras regiones del Perú donde el tipo de suelo tiene características del tipo regular a bueno en estadísticas de CBR, en cual se presentaron resultados muy favorables según sus referencias.

5.2. Conclusiones

- Analizando los resultados arrojados en el laboratorio de suelos, podemos concluir que este polímero provee de ciertos cambios al tipo de suelo como el analizado, el cual fue caracterizado según Norma AASHTO como un A-7-6(22) y A-7-6(25), de acuerdo con sus características nos indica que es un suelo inestable, No Apto para conformaciones de Bases Y Subbases.
- Las características físicas evaluadas nos determinó que el polímero reduce la plasticidad de los suelos cohesivos, en este caso nos indica que se redujo para el tipo A-7-6(22) desde 40.10% hasta 29.95% por cada 0.10kg/m3 de polímero agregado al suelo, luego de eso por cada 0.10kg/m3 la plasticidad del suelo no varió mucho, para el tipo de suelo A-7-6 (25), indica que reduce la plasticidad desde 43.65% hasta 30.95% por cada 0.10kg/m3 de polímero agregado, luego con las siguientes dosificaciones la plasticidad del suelo no varía significativamente.
- Para las características mecánicas evaluadas se determinó que el polímero reduce en valores poco significativos la Densidad del Suelo, pero en el caso de la humedad la disminución es medianamente significativa, dado los resultados nos indica que para un suelo A-7-6(22), la MDS = 1.794gr/cm3 se reduce hasta MDS = 1.781gr/cm3 por cada 0.10 kg/m3 de polímero aplicado al suelo, además para suelos de tipo A-7-6(25), la MDS=1.831gr/cm3 se reduce hasta MDS = 1.815gr/cm3, a otro suelo de tipo A-7-6(25) con una MDS=1.844 gr/cm3 se reduce hasta MDS = 1.821gr/cm3.
- Luego para valores de la Capacidad de Soporte (CBR) indica que el cambio provocado en sus características es muy significativo, ya que los valores arrojados indican que provee al tipo de suelos A-7-6 (22) de una capacidad que va desde 6.05% hasta 12.70% por cada 0.10 kg/m3 de polímero aplicado al suelo, aumentando aproximadamente

al doble de su valor inicial (natural), luego hasta 24.00% por cada 0.20 kg/m3 de polímero aplicado al suelo, hasta 44.00 por cada 0.30 kg/m3 de polímero aplicado al suelo; además del aumento del CBR, ayuda de disminuir el porcentaje de expansión del suelo en valores que van desde 3.42% hasta 3.05% por cada 0.10 kg/m3 de polímero aplicado, hasta 2.54% por cada 0.20 kg/m3 de polímero aplicado, y hasta 2.07% por cada 0.30 kg/m3 de polímero aplicado.

- Para el tipo de suelos A-7-6 (25) de una capacidad que va desde 6.90% hasta 12.50% por cada 0.10 kg/m3 de polímero aplicado al suelo, aumentando aproximadamente al doble de su valor inicial (natural), luego hasta 23.20% por cada 0.20 kg/m3 de polímero aplicado al suelo, hasta 39.10 por cada 0.30 kg/m3 de polímero aplicado al suelo; ayuda de disminuir el porcentaje de expansión del suelo en valores que van desde 3.29% hasta 2.99% por cada 0.10 kg/m3 de polímero aplicado, hasta 2.44% por cada 0.20 kg/m3 de polímero aplicado, y hasta 2.07% por cada 0.30 kg/m3 de polímero aplicado.
- Dando un análisis final, el polímero utilizado para la estabilización de suelos finos, proporciona una mejora considerable a las características tanto físicas como mecánicas de suelos limo-arcillosos como es el caso del A-7-6, y puede ser un material apto para la conformación de las estructuras de pavimento en zonas de baja transitabilidad.
- Según las referencias de proyectos ejecutados en otras regiones, el producto en mención no produce impacto ambiental debido a sus características ecológicas y composiciones químicas, no es inflamable, no es un producto nocivo, a comparación de productos

estabilizadores como el cemento, la cal, el asfalto, y otros productos utilizados en el mejoramiento de suelos.

 Debido a que en la región amazónica la mayor parte de los suelos son identificados como suelos no aptos para realizar conformaciones de estructuras para cualquier tipo de pavimento, es por esa razón que se presenta un producto estabilizador no comercial en esta región del país.

5.3. Recomendaciones

- Teniendo en cuenta que nos encontramos en una zona tropical, se debería tener en cuenta el control de la humedad presente en el suelo al momento de conformar las bases y subbases, haciendo uso de una hornilla o estufa en campo.
- Si en caso la zona a tratar se encuentra por encima del OCH, se recomienda escarificar el suelo para eliminar de manera más rápida la humedad presente en el suelo.
- Se recomienda realizar el batido y mezclado del polímero con el suelo con humedades presente menores a 8%, esto para que el polímero no tenga su activación muy acelerada.
- Asimismo, el control de compactación mediante cono de arena, de espesores menores a 20 cm, debido a que espesores mayores reducen el grado de compactación que puede proporcionar la maquinaria.
- La maquinaria recomendada para el tratamiento de la zona a estabilizar es:
 - Una moto niveladora de 12 pies, con escarificadores traseros.
 - Un camión cisterna mínimo de 10.000 litros de agua.

- Una compactadora Rodillo Liso Vibratorio, mínimo 12 toneladas.
- Una compactadora Pata de Cabra, mínimo 12 toneladas.
- Un Rodillo Multi Neumático, mínimo 12 toneladas.
- Se recomienda utilizar el polímero Polycom en diversos proyectos a realizar en nuestra región, ya que en la mayoría de casos se centran en la estabilización de suelos como son pavimentos rígidos y flexibles y mejoramiento de suelos en diversas edificaciones.
- Asimismo, usar el polímero Polycom ya que se busca una alternativa viable y económica para continuar con los proyectos de mejoramiento de las calles, además de hacer uso del material propio de la zona, con la finalidad de disminuir la explotación de bancos de arena fina, dado que este material se está haciendo muy escaso y de un costo muy elevado.
- Realizar investigaciones con los tipos de suelos finos de la región loreto para mayor información de la calidad del polímero utilizado en estabilización de suelos.

REFERENCIAS BIBLIOGRÁFICAS

- NESTERENKO CORTES, DARKO: "Desempeño De Suelos Estabilizados Con Polímeros En Perú".
- RAMOS HINOJOSA, GABRIEL PAÚL: "Mejoramiento De Subrasantes De Baja Capacidad Portante Mediante El Uso De Polímeros Reciclados En Carreteras, Paucará Huancavelica 2014".
- PALOMINO TERÁN, KAREN ESTEFANY: "Capacidad Portante (CBR) De Un Suelo Arcilloso, Con La Incorporación Del Estabilizador Maxxseal 100".
- 4. AUSTLATIN Perú (2014), "Proyecto Huachón", Chiclayo, Lambayeque, Perú.
- 5. AUSTLATIN Perú (2013), "Proyecto Pilco Marca, carretera central Km 232", Pilco Marca, Huánuco, Perú.
- 6. AUSTLATIN Perú (2012), "Proyecto Mamaca", Localidad de Mamaca, San Felipe, Jaén, Cajamarca, Perú.
- 7. AUSTLATIN Perú (2013), "Proyecto Panao Localidad de Panao, Chaglia, Pachitea, Huánuco, Perú.
- 8. AUSTLATIN Perú (2013), "Proyecto Huachón", Localidad Huachón, Huachón, Pasco, Pasco, Perú.
- 9. AUSTLATIN Perú (2012), "Proyecto Jirón Callao", Localidad Jirón Callao, Yarinacocha, coronel Portillo, Ucayali, Perú.
- 10. CLIVER CAPIA MAMANI: "Estabilización de Suelos Arcillosos Mediante El Uso de Polímeros Reciclados PET a Nivel de la Subrasante de la Carretera Juliaca – Caminaca, 2019".

CAPITULO VI: ANEXOS

- 6.1. Instrumento de Recolección de Datos
- 6.1.1. Clasificación de suelos Sin Polímero Con Polímero calicata C-1
- 6.1.2. Proctor Modificado sin Polímero Con Polímero calicata C-1
- 6.1.3. Capacidad de Soporte sin Polímero Con Polímero calicata C-1
- 6.1.4. Clasificación de suelos Sin Polímero Con Polímero calicata C-2
- 6.1.5. Proctor Modificado sin Polímero Con Polímero calicata C-2
- 6.1.6. Capacidad de Soporte sin Polímero Con Polímero calicata C-2
- 6.1.7. Clasificación de suelos Sin Polímero Con Polímero calicata C-3
- 6.1.8. Proctor Modificado sin Polímero Con Polímero calicata C-3
- 6.1.9. Capacidad de Soporte sin Polímero Con Polímero calicata C-3
- 6.2. Matriz de Consistencia
- 6.3. Información Complementaria
- 6.3.1. Información General del Producto
- 6.3.2. Especificaciones Técnicas
- 6.3.3. Hoja de datos de Seguridad del Material
- 6.3.3. Proceso Constructivo instrucciones de procedimiento
- 6.4. Panel Fotográfico

6.1. Instrumento de Recolección de Datos

6.1.1. Clasificación de suelos Sin Polímero – Con Polímero calicata C-1

LABORATORIO DE MECANICA DE SUELOS

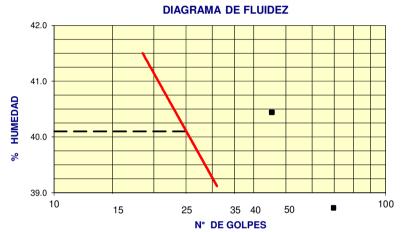
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

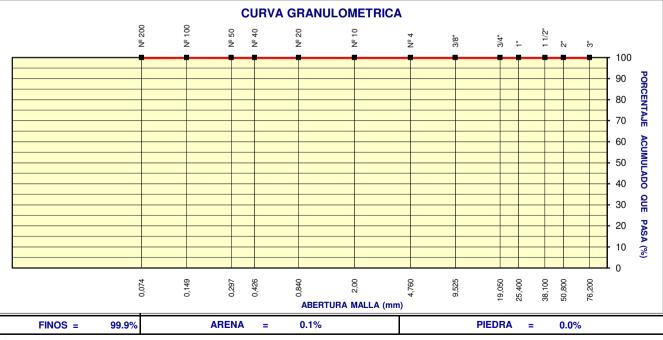
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> ING. RESP.: ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA C - 1 PROG: 0+050 PROF. (m) 0.10 - 1.50 TECNICO:


MUESTRA NATURAL ene.-21 FECHA:

MUESTRA		NATURAL					
MALLAS SERIE AMERICANA		GRANULO NTP 339			E		
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	ľ		
3"	76.200		-	100.0	F		
2"	50.800	0.0	-	100.0	F		
11/2"	38.100	0.0	-	100.0	F		
1"	25.400	0.0	-	100.0	F		
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0	Ī		
N° 4	4.760	0.0	-	100.0			
N° 10	2.000	0.0	-	100.0			
N° 20	0.840	0.0	-	100.0			
N° 40	0.426	0.0	-	100.0			
N° 50	0.297	0.0	-	100.0			
N° 100	0.149	0.1	0.0	100.0			
N° 200	0.074	0.2	0.0	99.9			
-200		499.7	99.9	0.0			
TOTAL		500.0					
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION			
IMITE LÍQUIDO % 40.10 SUCS AASHTO							

DESCRIPCION	LI	MITE LIQUI	LIMITE P	LASTICO	
Ensayo No.	1	2	3	1	2
Capsula No.	5	9	13	11	8
Numero de Golpes	19	24	29	1	-
Peso Capsula + Suelo Humedo(gr)	18.13	17.96	17.72	9.06	9.15
Peso Capsula + Suelos Seco (gr)	14.90	14.65	14.29	8.29	8.38
Peso Agua (gr)	3.23	3.31	3.43	0.77	0.77
Peso de la Capsula (gr)	6.36	6.45	6.54	4.29	4.39
Peso Suelo Seco (gr)	7.80	8.20	8.71	4.00	3.99
Contenido de Humedad (%)	41.35	40.37	39.39	19.25	19.30

RESULTADOS DE E	NSAYOS	CLASIFICACION				
LÍMITE LÍQUIDO, %	40.10	SUCS	AASHTO			
LÍMITE PLÁSTICO, %	19.27	NTP 339.134 (99)	NTP 339.135 (99)			
ÍND. PLASTICIDAD, %	20.83	CL	A-7-6 (22)			
HUMEDAD NATURAL %	26.87	OL.	A-1-0 (22)			

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE MEDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

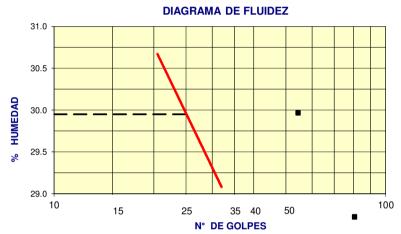
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

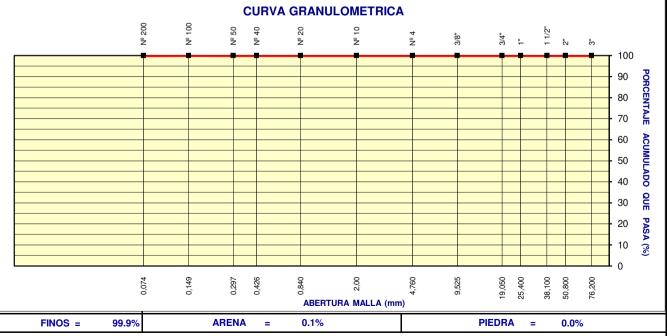
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES Bach. CONTOGURIS POMA, KARLO'S MIJAIL


> ING. RESP. ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA C - 1 PROF. (m) 0.20 - 1.50 TECNICO:


MUESTRA POLYCOM 0.100 kg/m3 ene.-21 FECHA :

MUESTRA	UESTRA POLYCOM 0.100 kg/m3								
MALLAS SERIE AMERICANA		GRANULO NTP 339							
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)					
3"	76.200		-	100.0					
2"	50.800	0.0	-	100.0					
11/2"	38.100	0.0	-	100.0					
1"	25.400	0.0	-	100.0					
3/4"	19.050	0.0	-	100.0					
3/8"	9.525	0.0	-	100.0					
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	-	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	-	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200		499.7	99.9	0.0					
TOTAL		500.0							
RESULT	ADOS DE E	NSAYOS	CLASIFI	ICACION					
LÍMITE LÍOUII	IMITELIQUIDO % 20.05 SUCS AASHTO								

DESCRIPCION	LI	MITE LIQUI	LIMITE PLASTICO			
Ensayo No.	1	2	3	1	2	
Capsula No.	25	23	19	34	36	
Numero de Golpes	21	26	30			
Peso Capsula + Suelo Humedo(gr)	18.79	19.27	19.92	8.63	8.86	
Peso Capsula + Suelos Seco (gr)	15.89	16.32	16.88	7.97	8.17	
Peso Agua (gr)	2.90	2.95	3.04	0.66	0.69	
Peso de la Capsula (gr)	6.41	6.44	6.49	4.31	4.36	
Peso Suelo Seco (gr)	9.48	9.88	10.39	3.66	3.81	
Contenido de Humedad (%)	30.57	29.86	29.29	18.03	18.11	

RESULTADOS DE E	NSAYOS	CLASIF	ICACION
LÍMITE LÍQUIDO, %	29.95	SUCS	AASHTO
LÍMITE PLÁSTICO, %	18.07	NTP 339.134 (99)	NTP 339.135 (99)
ÍND. PLASTICIDAD, %	11.88	CL	A-6 (11)
HUMEDAD NATURAL %	-		A-0 (11)

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO

CARACTERIZACION DE SUELOS

ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

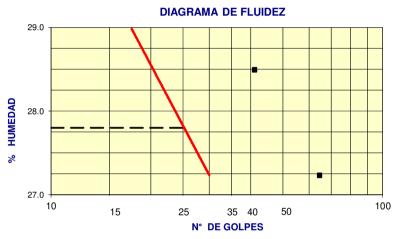
BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES Bach. CONTOGURIS POMA, KARLO'S MIJAIL

> ING. RESP. ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA PROF. (m) 0.20 - 1.50 TECNICO :

POLYCOM 0 200 kg/m2 MILECTOA feb.-21 FECHA:


MUESTRA	A POLYCOM 0.200 kg/m3								
MALLAS SERIE AMERICANA		GRANULO NTP 339			E				
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	ľ				
3"	76.200		-	100.0	F				
2"	50.800	0.0	-	100.0	F				
11/2"	38.100	0.0	-	100.0	F				
1"	25.400	0.0	1	100.0	F				
3/4"	19.050	0.0	1	100.0	(
3/8"	9.525	0.0	-	100.0	Ī				
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	1	100.0					
N° 20	0.840	0.0	ı	100.0					
N° 40	0.426	0.0	1	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200	-	499.7	99.9	0.0					
TOTAL		500.0	·						
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION					
LÍMITE LÍQUII	LÍQUIDO, % 27.80 SUCS AASHTO								

17.88

9.92

CL

			0, .		
DESCRIPCION	LI	MITE LIQUII	00	LIMITE P	PLASTICO
Ensayo No.	1	2	3	1	2
Capsula No.	17	25	10	18	22
Numero de Golpes	18	23	28		
Peso Capsula + Suelo Humedo(gr)	18.44	19.04	19.64	8.20	8.36
Peso Capsula + Suelos Seco (gr)	15.73	16.29	16.82	7.63	7.75
Peso Agua (gr)	2.71	2.75	2.82	0.57	0.61
Peso de la Capsula (gr)	6.36	6.52	6.54	4.42	4.36
Peso Suelo Seco (gr)	9.37	9.77	10.28	3.21	3.39
Contenido de Humedad (%)	28.87	28.15	27.43	17.76	17.99

				CU	IRVA GE	RANULON	METRICA								
		. Z 00 -	9 9 8	% 8 40	2 3		2	N o 4	8/8	3/4"	1 1/2"				
		z z	: z	Z	: z		Z	z	rð	3/4		<u>"</u>	į,		
	•		_	_				_	•			_		100	
														- 90	В
				-						_					Ö
														- 80	Ÿ.
														- 70	PORCENTAJE
														- 60	
														- 60	은
														- 50	ACUMULADO
										_					₽
												_		- 40	8
														- 30	QUE
												_		- 20	PASA (%)
														- 10	À
															%
														- 0	
		0,074	0,297	0.426		ABERTURA I	S MALLA (mm	4,760	9,525	19,050	38.100	50,800	76,200		
FINOS =	99.9%		AREN	۸	_	0.1%			DIE	DRA		0.0%			
LINO2 =	99.9%		AREN	A	=	U. 1 70			PIE	DΠΑ	=	0.0%			

DESCRIPCION

LÍMITE PLÁSTICO, %

ÍND. PLASTICIDAD, %

HUMEDAD NATURAL %

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

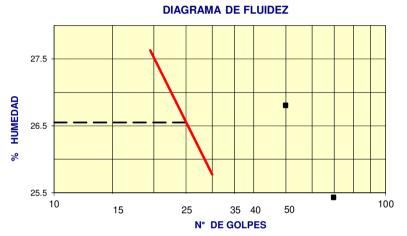
CARACTERIZACION DE SUELOS

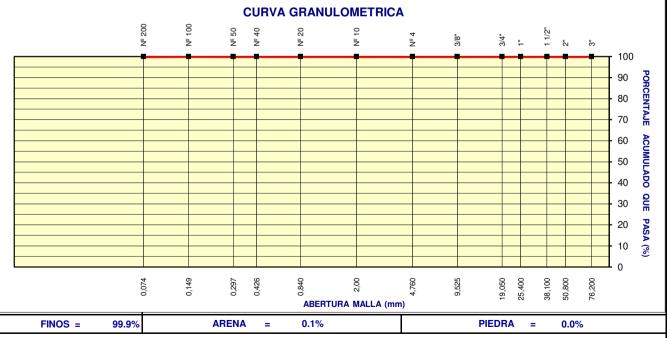
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> ING. RESP. ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO


CALICATA C - 1 PROF. (m) 0.20 - 1.50 TECNICO :


MUESTRA POLYCOM 0.300 kg/m3 feb.-21 FECHA :

MUESTRA POLYCOM 0.300 kg/m3									
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)								
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	1				
3"	76.200		-	100.0	F				
2"	50.800	0.0	-	100.0	F				
11/2"	38.100	0.0	-	100.0	F				
1"	25.400	0.0	-	100.0	F				
3/4"	19.050	0.0	1	100.0	(
3/8"	9.525	0.0	-	100.0	ſ				
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	1	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	1	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200		499.7	99.9	0.0					
TOTAL		500.0							
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION					
, ,									

TOTAL	500.0	500.0						
RESULTADOS DE E	NSAYOS	CLASIFICACION						
LÍMITE LÍQUIDO, %	26.55	SUCS	AASHTO					
LÍMITE PLÁSTICO, %	17.02	NTP 339.134 (99)	NTP 339.135 (99)					
ÍND. PLASTICIDAD, %	9.53	CL	A-4 (8)					
HUMEDAD NATURAL %	-	OL.	A-4 (0)					

DESCRIPCION	LI	MITE LIQUIE	LIMITE F	LIMITE PLASTICO			
Ensayo No.	1	2	3	1	2		
Capsula No.	32	28	17	19	36		
Numero de Golpes	20	24	28				
Peso Capsula + Suelo Humedo(gr)	18.92	19.51	20.11	8.78	8.72		
Peso Capsula + Suelos Seco (gr)	16.21	16.77	17.30	8.14	8.09		
Peso Agua (gr)	2.71	2.74	2.81	0.64	0.63		
Peso de la Capsula (gr)	6.36	6.52	6.54	4.37	4.40		
Peso Suelo Seco (gr)	9.85	10.25	10.76	3.77	3.69		
Contenido de Humedad (%)	27.52	26.73	26.07	16.98	17.07		

DESCRIPCION

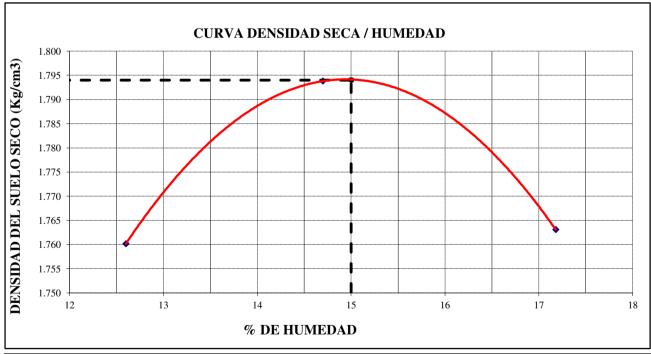
SUELO INORGANICO ARCILLOSO DE MEDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

6.1.2. Proctor Modificado sin Polímero – Con Polímero calicata C-1

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 09-Ene-21

DISTRITO DE BELEN C - 1 UBICACIÓN MUESTRA: POLYCOM: 0.00 kg/m3 MATERIAL: A-7-6 (22)

Número de capas	5.0	00	5.0	00	5.	.00			
Número de Golpes	2	5	2	5	25				
Peso suelo humedo + molde	58	55	5926		5934				
Peso del molde	39	92	3992		3992				
Peso suelo humedo	18	63	19	1934		1942			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	1.9	82	2.057		2.0	066			
Capsula N°	2	5	12	16	1	10			
Peso suelo humedo + cap.	154.00	165.80	177.70	161.80	166.10	158.00			
Peso suelo seco + cap.	141.80	151.70	161.00	146.40	148.30	141.30			
Peso del agua	12.20	14.10	16.70	15.40	17.80	16.70			
Peso de la capsula	43.20	41.80	47.60	41.50	44.10	44.60			
Peso suelo seco .	98.60	109.90	113.40	104.90	104.20	96.70			
% de humedad	12.37	12.83	14.73	14.68	17.08	17.27	•		
Promedio de humedad	d 12.60		14.70		17.18				
Densidad suelo seco	1.7	60	1.7	1.794 1.763					

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	40.10
MAXIMA DENSIDAD SECA (kg/cm3)	1.794	CLASIFICACIÓN AASHTO	A-7-6 (22)	ÍNDICE DE PLASTIC. (%):	20.83
ÓPTIMO CONTENIDO DE HUMEDAD (%)	15.00	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

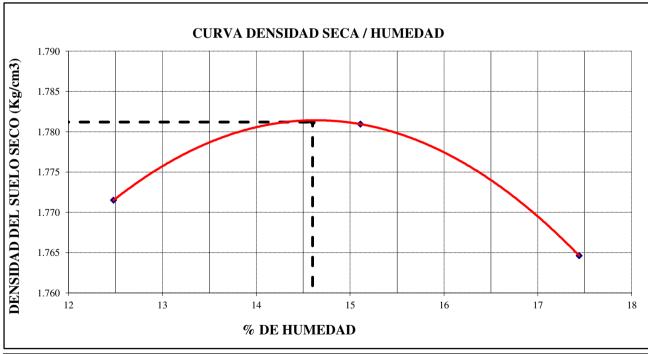
OBSERVACIONES :

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 22-Ene-21

DISTRITO DE BELEN MUESTRA: C - 1 UBICACIÓN POLYCOM: 0.10 kg/m3 MATERIAL: A-6 (11)

Número de capas	5.0	00	5.	00	5.	00			
Número de Golpes	2	5	2	25		25			
Peso suelo humedo + molde	58	65	59	5919		5940			
Peso del molde	39	92	39	92	3992				
Peso suelo humedo	18	73	19	27	1948				
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	1.9	93	2.0)50	2.072				
Capsula N°	13	19	23	31	45	6			
Peso suelo humedo + cap.	178.80	171.70	168.70	159.80	172.00	165.00			
Peso suelo seco + cap.	164.60	158.00	152.20	144.10	153.90	148.50			
Peso del agua	14.20	13.70	16.50	15.70	18.10 16.50				
Peso de la capsula	51.20	47.80	42.00	41.10	49.90	54.10			
Peso suelo seco .	113.40	110.20	110.20	103.00	104.00	94.40			
% de humedad	12.52 12.43		14.97	15.24	17.40	17.48			
Promedio de humedad	12.	48	15	.11	17	.44			
Densidad suelo seco	1.7	72	1.7	1.781 1.765					

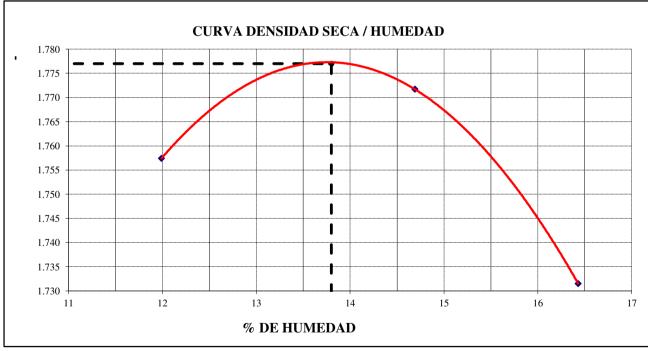
MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	29.95
MAXIMA DENSIDAD SECA (kg/cm3)	1.781	CLASIFICACIÓN AASHTO	A-6 (11)	ÍNDICE DE PLASTIC. (%) :	18.07
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.60	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES :

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> 04-Feb-21 Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA:

DISTRITO DE BELEN C - 1 UBICACIÓN MUESTRA: POLYCOM: 0.20 kg/m3 MATERIAL: A-4 (9)

Número de capas	5.0	00	5.	00	5.	00			
Número de Golpes	2	5	2	25		25			
Peso suelo humedo + molde	58	42	5902		5887				
Peso del molde	39	92	39	3992		3992			
Peso suelo humedo	18	50	19	1910		1895			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	1.9	68	2.0)32	2.0	016			
Capsula N°	7	5	4	6	8	9			
Peso suelo humedo + cap.	156.70	137.90	154.40	158.60	138.60	166.00			
Peso suelo seco + cap.	144.20	127.80	139.60	143.00	124.80	148.00			
Peso del agua	12.50	10.10	14.80	15.60	13.80	18.00			
Peso de la capsula	40.70	42.90	38.40	37.30	38.50	41.30			
Peso suelo seco .	103.50	84.90	101.20	105.70	86.30	106.70			
% de humedad	12.08	11.90	14.62 14.76		15.99	16.87			
Promedio de humedad	11.99		14	.69	16	.43			
Densidad suelo seco	1.7	57	1.772 1.732						

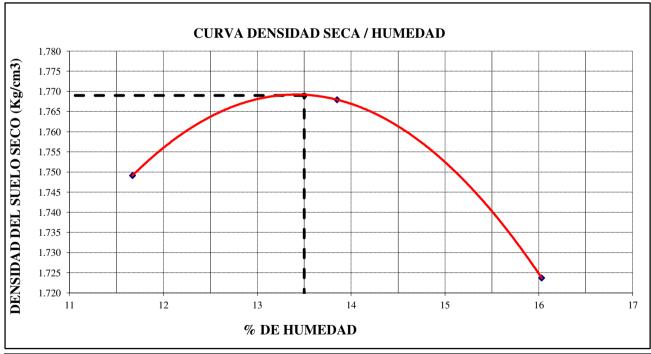
MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	27.80
MAXIMA DENSIDAD SECA (kg/cm3)	1.777	CLASIFICACIÓN AASHTO	A-4 (9)	ÍNDICE DE PLASTIC. (%) :	9.92
ÓPTIMO CONTENIDO DE HUMEDAD (%)	13.80	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES :

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 18-Feb-21

C - 1 UBICACIÓN DISTRITO DE BELEN MUESTRA: POLYCOM: 0.30 kg/m3 MATERIAL: A-4 (8)

Número de capas	5.0	00	5.	00	5.	.00			
Número de Golpes	2	5	2	25		25			
Peso suelo humedo + molde	58	28	58	5884		5872			
Peso del molde	39	92	39	3992		3992			
Peso suelo humedo	18	36	18	1892		1880			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	1.9	53	2.0	2.013		000			
Capsula N°	7	5	4	6	8	9			
Peso suelo humedo + cap.	150.60	150.70	190.80	170.60	166.40	178.10			
Peso suelo seco + cap.	138.60	139.00	172.30	154.70	148.80	148.80 159.20			
Peso del agua	12.00	11.70	18.50	15.90	17.60	18.90			
Peso de la capsula	37.20	37.30	39.70	39.00	38.70	41.60			
Peso suelo seco.	101.40	101.70	132.60	115.70	110.10	117.60			
% de humedad	11.83 11.50 13.95 13.74 15.99 1		16.07						
Promedio de humedad	11.	67	13.	.85	16	5.03			
Densidad suelo seco	1.7	49	1.7	1.768 1.724					

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	26.55
MAXIMA DENSIDAD SECA (kg/cm3)	1.769	CLASIFICACIÓN AASHTO	A-4 (8)	ÍNDICE DE PLASTIC. (%) :	9.53
ÓPTIMO CONTENIDO DE HUMEDAD (%)	13.50	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES :

TÉCNICO LABORATORISTA ING. RESPONSABLE DE LABORATORIO

6.1.3. Capacidad de Soporte sin Polímero – Con Polímero calicata C-1

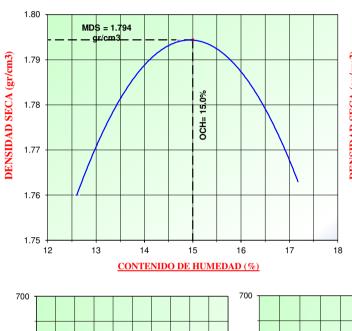
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

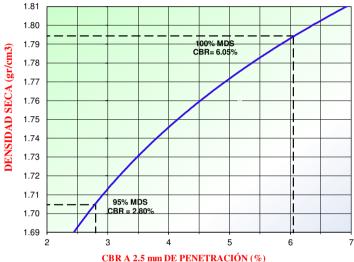
Y CONCRETO

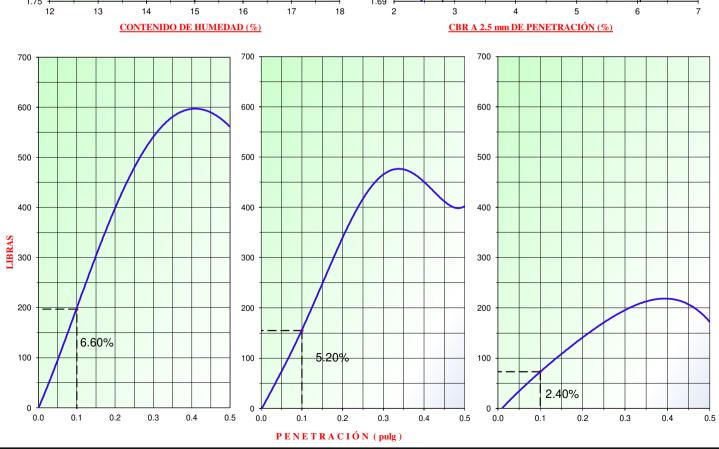
RELACIÓN DE SOPORTE (ASTM D-1883)

							11	ELAGIO	N DE L	OI OIL		TOIM	г р-т	<u>000)</u>						
PROYECTO : E	STABIL	.IZACIÓN	DE SUE	LOS FIN	OS MEDI	ANTE EL	USO DE	L POLÍMERO PO	LYCOM EN S	UBRASANTES	PARA CAN	MINOS DE	BAJA TRA	NSITABILIDA	D EN LA CIU	JDAD DE IQ	UITOS, 2020	0		
AUTORES : B	ach. CO	ONTOGU	RIS POM	IA, KARL	O'S MIJA	VL.	Bach. P	ASMIÑO SHAHUA	NO, MARCO	ANTONIO			INGEN	IERO RESP.:	INGº MIGU	EL ROBALII	NO OSORIO			
UBICACIÓN : D	ISTRIT	O DE BEI	LEN				ENSAY	O N°: 1					TÉCNIC	CO :						
MUESTRA : P	olycom	0.00 kg/	m³				MATER	IAL : C-1					FECHA	HA DE INICIO: 10/01/21 FECHA DE TÉRMINO: 21/01/)1/21	
RELACIÓN HUME	DAD-D	ENSIDAL) (ASTM	D-1557)						C	.B.R.					PEN	NETRAC:	IÓN		
VOLUMEN DEL MOLI	DE :	939.98	30 cm3	N	MÉTODO D	E COMPA	.CTACIÓN	': "A"	VOL. MOLDE : INDICADO N° DE CAPAS : 5		: 5	CAP. DEL ANILLO: 2.5 Ton. FAC		FACTOR D	DEL ANILLO: 6000 *		LEC.DIAL	+ 22.889		
N° DE MOLDE		1	.2	2	21	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(250	Golpes)"	5 (10	Golpes)
N° GOLPES			25		25		5		N° DE GOLPES	1	56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚMEDO) gr.	58	355	59	926	59	34		VOLUMEN DE	MOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE	gr.	399	2.0	399	92.0	399	2.0		P. MOLDE + S.	HÚMEDO gr.	12514	12736	10927	0.025	10	48.0	9	39.1	4	-5.3
PESO SUELO HÚMEDO	gr.	186	3.0	193	34.0	194	2.0		PESO MOLDE	gr.	7981	8418	6772	0.050	16	101.4	11	56.9	9	39.1
N° TARRO		5	2	4	3	6	1		PESO SUELO I	HÚMEDO gr.	4533	4318	4155	0.075	22	154.7	17	110.2	11	56.9
P. TARRO + S. HÚMEDO	gr.	154.00	165.80	177.70	161.80	166.10	158.00		N° TARRO		Q	P	V	0.100	26	190.2	24	172.4	14	83.6
P. TARRO + S. SECO	gr.	141.80	151.70	161.00	146.40	148.30	141.30		P. TARRO + S.		177.62	182.34	179.62	0.150	39	305.6	34	261.2	16	101.4
PESO DE AGUA	gr.	12.20	14.10	16.70	15.40	17.80	16.70		P. TARRO + S.		159.65	163.95	161.50	0.200	48	385.4	40	314.5	20	136.9
PESO DE TARRO	gr.	43.20	41.80	47.60	41.50	44.10	44.60		PESO DE AGUA		17.97	18.39	18.12	0.250	59	483.0	52	420.9	24	172.4
PESO SUELO SECO	gr.	98.60	109.90	113.40	104.90	104.20	96.70	 	PESO DE TARI		40.25	42.15	40.54	0.300	67	553.9	58	474.1	27	199.1
% DE HUMEDAD	%	12.37	12.83	14.73	14.68	17.08	17.27		PESO SUELO S		119.40	121.80	120.96	0.400	71	589.4	55	447.5	29	216.8
% DE HÚM. PROMEDIO		12.			.70	17.				E HUMEDAD gr.	15.05	15.10	14.98	0.500	68	562.8	50	403.2	24	172.4
DENSIDAD HÚMEDA g DENSIDAD SECA gr	r./cm3.		982 760		057 794	1.7	066		DENSIDAD HU	MEDA gr/cm3.	2.088	2.027	1.947 1.693							
DENSIDAD SECA gr	/cms.	1.7		BSORCIO		1.7	03		Ü		1.815	1.761	1.093			DE	SULTAD	0.8		
N° MOLDE			A		16	2	1	12	EXPANSIÓN FECHA HORA LEC. DIAL LEC. DIAL			LEC DIAL	MÁYIMA DE	NSIDAD SEC		SULIAD	US	1.794		
PESO SUELO HÚM. + PLA	TO + MO	IDF (or)			748		990	11201	17-Ene-21	19:00	0.00	0.00	0.00	MÁXIMA DENSIDAD SECA gr/cm3 ÓPTIMO CONTENIDO DE HUMEDAD %			15.0			
PESO DEL PLATO + MOL		EBE (g.)			981	84		6772	18-Ene-21	21:00	0.00	0.00	0.00	CBR AL 100 9						i.1
PESO SUELO HÚMEDO E	-) (gr)			767		72	4429	19-Ene-21	18:00				CBR AL 95						1.8
PESO SUELO HÚMEDO S					533	43		4155	20-Ene-21	19:00				RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSOR	BIDA (g	ii)		2:	34	2:	54	274	21-Ene-21	14:00	4.03	4.48	4.93	L.L. :	40.10%	I.P. :	20.83%	MAT. < N°	200 :	99.94%
PESO DEL SUELO SECO	(gr)			39	940	37	52	3614			0.400/	0.050/	4.000/	SUCS:	CL	AASHTO:	A-7-6 (22)	GRAV. ESP	ECIÍFIC. :	-
ABSORCIÓN DE AGUA	(%)			5.9	9 %	6.8	3 %	7.6 %	% DE E	XPANSIÓN	3.40%	3.85%	4.26%	EMBEBIDO:	-	ABSORC.:	5.9%	HUM. PENE	TRAC. :	20.9%
Observaciones:								•												
Observaciones.																				
R	ealizado	por:									Revisado	por:								

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	ING ² MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.00 kg/m3
FECHA :	21/01/2021

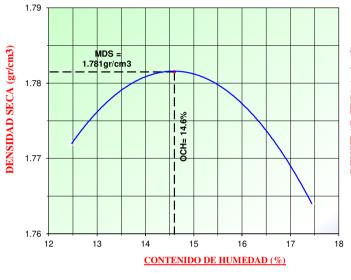
MÉTODO DE COMPACTACIÓN (ASTM D-1557)										
MÁXIMA DENSIDAD SECA (gr/cm3)										
ÓPTIMO CONTENIDO DE HUMEDAD (%)										
CBR AL 100% DE LA M.D.S. (%)										
CBR AL 95% DE LA M.D.S. (%)										
SUCS:	CL	LL: 40.1%	IP:	20.83%	PESO ESPECÍFICO:	-				
AASHTO:	A-7-6 (22)	EMBEBIDO :		-	EXPANSIÓN % :	3.40%				
ABSORCIÓN:	5.9%		HUME	20.9%						

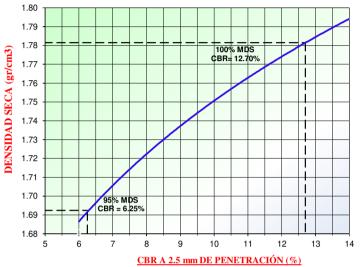
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

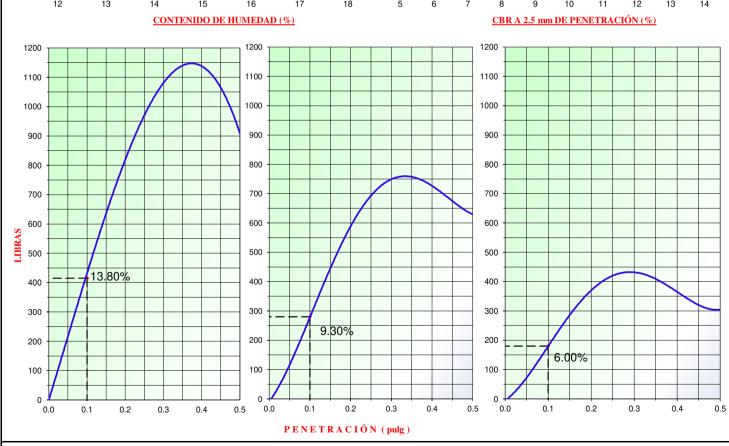
Y CONCRETO

PROVESTO	FCT	ADILI	ZACIÓN	DE CUE	LOC FIN	OC MEDI	ANTE EL		ELACIO			`			,	DENIACU	IDAD DE IO	LUTOS 2020	`		
AUTORES : Bach. CONTOGURIS POMA, KARLO'S MIJAIL Bach. PASMIÑO SHAHUANO, MARCO ANTONIO												INGENIERO RESP.: INGº MIGUEL ROBALINO OSORIO									
UBICACIÓN : DISTRITO DE BELEN ENSAYO Nº : 2												TÉCNIC									
MUESTRA : Polycom 0.10 kg/m3 MATERIAL : C - 1												FECHA	HA DE INICIO: 23/01/21 FECHA DE TÉRMINO: 03/02/21								
RELACIÓN HUMEDAD-DENSIDAD (ASTM D-1557)								C.B.R.					P E N E T R A C I Ó N								
VOLUMEN DEL M	OLDE		939.98	0 cm3	N	IÉTODO D	E COMPA	CTACIÓN	: "A"	" VOL. MOLDE: INDICADO			DE CAPAS	: 5	CAP. DEL ANII	LLO: 2.5 Ton.	FACTOR D	EL ANILLO:	6000 *	LEC.DIAL	+ 22.889
N° DE MOLDE			12	2	2	1	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(25G	olpes)''	5 (10	Golpes)
N° GOLPES			2:	-	2		2			N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚM	EDO	gr.	580	65	59	19	59	-		VOLUMEN DE MOLDE cc.		2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE	1	gr.	3992	2.0	399	2.0	399	2.0		P. MOLDE + S. HÚMEDO gr.		12432	12700	10887	0.025	16	101.4	7	21.4	7	21.4
PESO SUELO HÚME	DO	gr.	187	3.0	192	7.0	194	8.0		PESO MOLDE	gr.	7981	8418	6772	0.050	27	199.1	15	92.5	11	56.9
N° TARRO			5	2	4	3	6	1		PESO SUELO H	ÚMEDO gr.	4451	4282	4115	0.075	39	305.6	31	234.6	20	136.9
P. TARRO + S. HÚMI	EDO	gr.	178.80	171.70	168.70	159.80	172.00	165.00		N° TARRO		M	U	L	0.100	54	438.7	42	332.2	27	199.1
P. TARRO + S. SECO) ş	ŗ.	164.60	158.00	152.20	144.10	153.90	148.50		P. TARRO + S. H		182.60	179.20	184.30	0.150	77	642.5	47	376.6	35	270.1
PESO DE AGUA	g		14.20	13.70	16.50	15.70	18.10	16.50		P. TARRO + S. SECO gr.		164.20	161.50	165.00	0.200	92	775.3	69	571.6	46	367.7
PESO DE TARRO	g	r.	51.20	47.80	42.00	41.10	49.90	54.10		PESO DE AGUA	gr.	18.40	17.70	19.30	0.250	116	987.7	84	704.5	51	412.1
PESO SUELO SECO	1	gr.	113.40	110.20	110.20	103.00	104.00	94.40		PESO DE TARR	Ü	39.80	40.00	33.80	0.300	137	1173.2	93	784.2	55	447.5
% DE HUMEDAD		%	12.52	12.43	14.97	15.24	17.40	17.48		PESO SUELO SI		124.40	121.50	131.20	0.400	123	1049.5	84	704.5	45	358.8
% DE HÚM. PROME		%	12.4		15.		17.			CONTENIDO DE	-	14.79	14.57	14.71	0.500	110	934.6	76	633.7	39	305.6
DENSIDAD HÚMED.	-	_	1.9			05	2.0			DENSIDAD HÚMEDA gr/cm3.		2.050	2.01	1.928							
DENSIDAD SECA	gr/cm	3.	1.7		1.7		1.7	64		DENSIDAD SECA gr/cm3. 1.786 1.754				1.681							
				A	BSORCIO							ANSIÓN		LEC. DIAL				SULTAD	OS		
N° MOLDE						6	2		12	FECHA HORA LEC. DIAL LEC. DIAL					MÁXIMA DENSIDAD SECA gr/cm3 1.781						
PESO SUELO HÚM. +			DE (gr)			593		378	11089	30-Ene-21	19:00 21:00	0.00	0.00	0.00						4.6	
PESO DEL PLATO + N					79		84	-	6772	31-Ene-21	-	-	-	CBR AL 100 % DE LA MÁX. DENSIDAD SECA % 12.7 CBR AL 95 % DE LA MÁX. DENSIDAD SECA % 6.3							
PESO SUELO HÚMEI			(8)			12	44		4317	01-Feb-21	18:00	-	-	-			AX. DENSIDA		ı		5.3
PESO SUELO HÚMEI					44		42		4115	02-Feb-21	19:00	-		-	RET ACUM.	3/4" :		3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (gr) 161 178								202	03-Feb-21 17:00		3.65	3.79	4.18	L.L. :	29.95%	I.P. :	11.88%	MAT. < N°		99.94%	
				37		3587	% DE EX	PANSIÓN	3.08%	3.26%	3.61%	SUCS :	CL	AASHTO:	A-6 (11)	GRAV. ESP		-			
ABSORCIÓN DE AGU	JA (%)				4.2	2.%	4.8	%	5.6 %					ļ	EMBEBIDO:	-	ABSORC. :	4.2%	HUM. PENE	TRAC.:	18.8%
Observacione	s:	_																			
		-																			
		-																			
	Real	izado	por:	_								Revisado	oor:								
			F 21.1	_								21.22.30									

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM-1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
	OUDAD DE JOUTOG 2000
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.10 kg/m3
FECHA :	03/02/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557)								
MÁXIMA DENSI	DAD SECA	(gr/cm3)				1.781		
ÓPTIMO CONTENIDO DE HUMEDAD (%)								
CBR AL 100% DE LA M.D.S. (%)								
CBR AL 95% DE LA M.D.S. (%)								
SUCS:	CL	LL: 30.0%	IP:	11.88%	PESO ESPECÍFICO:	-		
AASHTO:	A-6 (11)	EMBEBIDO :		-	EXPANSIÓN % :	3.08%		
ABSORCIÓN:	4	.2%	HUM	EDAD DE	PENETRACIÓN :	18.8%		

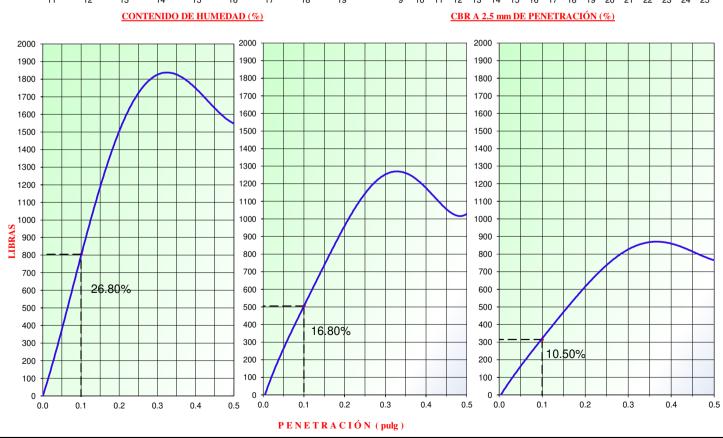
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

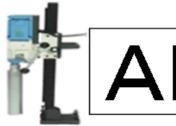
Y CONCRETO

AUTORES : Bach. CC UBICACIÓN : DISTRITO MUESTRA : Polycom	NTOGUF DE BEL 0.20 kg/r	EN m3 HUMEDA 0 cm3	A, KARL	O'S MIJA	IL	Bach. PA	L POLÍMERO PO ASMIÑO SHAHUA D N°: 3									•			
UBICACIÓN : DISTRITO MUESTRA : Polycom REI VOLUMEN DEL MOLDE : N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	O DE BEL 0.20 kg/r ACIÓN H 939.986 12	EN m3 HUMEDA 0 cm3	AD-DENS	SIDAD (A		ENSAYO	N°: 3	ito, maitoo i	11101110										
MUESTRA : Polycom REI VOLUMEN DEL MOLDE : N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	0.20 kg/r ACIÓN F 939.980 12	n3 HUMEDA 0 cm3	M									TÉCNIC	NIERO RESP.: ING [®] MIGUEL ROBALINO OSORIO						
REI VOLUMEN DEL MOLDE : N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	ACIÓN F 939.980 12	HUMEDA 0 cm3	M			, =	AL : C-1						A DE INICIO :	05/0	02/21	FECHA DE	TÉRMINO :	16/	02/21
VOLUMEN DEL MOLDE : N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	939.98 0 12 25	0 cm3	M		RELACIÓN HUMEDAD-DENSIDAD (ASTM D-1557) C.B.R. PENETRACIÓN								I DE HUGIO :		-		_		
N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	12 25	2		TETODO D	E COMPA		: "A"	VOL MOLDI	E: INDICADO		DE CAPAS :	. 5	CAP. DEL ANII	LO: 2.5 Ton	FACTOR DI		6000 *	LEC.DIAL	+ 22.889
N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.	25		2	11	1 COM A		. A	N° DE MOLDE	L. INDICADO	16	21	12	N° MOLDE		Golpes)"		olpes)"		Golpes)
P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr.			2		2			N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
PESO MOLDE gr.				002	58			VOLUMEN DE M	IOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
DECO CHELO HÚMEDO	3992		399		399			P. MOLDE + S. H	IÚMEDO gr.	12402	12630	10866	0.025	24	172.4	17	110.2	11	56.9
PESO SUELO HUMEDO gr.	1850	0.0	191	0.0	189	5.0		PESO MOLDE	gr.	7981	8418	6772	0.050	53	429.8	26	190.2	21	145.8
N° TARRO	5	2	4	3	6	1		PESO SUELO HI	ÚMEDO gr.	4421	4212	4094	0.075	71	589.4	48	385.4	33	252.3
P. TARRO + S. HÚMEDO gr.	156.70	137.90	154.40	158.60	138.60	166.00		N° TARRO		Q	В	M	0.100	99	837.3	73	607.1	44	350.0
P. TARRO + S. SECO gr.	144.20	127.80	139.60	143.00	124.80	148.00		P. TARRO + S. H	ÚMEDO gr.	165.30	174.30	169.90	0.150	132	1129.0	88	739.9	58	474.1
PESO DE AGUA gr.	12.50	10.10	14.80	15.60	13.80	18.00		P. TARRO + S. S	ECO gr.	150.30	158.30	154.40	0.200	167	1438.0	107	908.1	70	580.5
PESO DE TARRO gr.	40.70	42.90	38.40	37.30	38.50	41.30		PESO DE AGUA	gr.	15.00	16.00	15.50	0.250	199	1719.9	129	1102.5	89	748.8
PESO SUELO SECO gr.	103.50	84.90	101.20	105.70	86.30	106.70		PESO DE TARRO	O gr.	41.20	43.50	42.40	0.300	224	1939.9	154	1323.3	99	837.3
% DE HUMEDAD %	12.08	11.90	14.62	14.76	15.99	16.87		PESO SUELO SE	ECO gr.	109.10	114.80	112.00	0.400	195	1684.7	135	1155.5	101	855.0
% DE HÚM. PROMEDIO %	11.9	99	14.	.69	16.	43		CONTENIDO DE	HUMEDAD gr.	13.75	13.94	13.84	0.500	181	1561.4	121	1031.9	91	766.5
DENSIDAD HÚMEDA gr./cm3. 1.968 2.032 2.01				16		DENSIDAD HÚM	IEDA gr/cm3.	2.036	1.977	1.918									
DENSIDAD SECA gr/cm3.	1.7:			772	1.7	32		DENSIDAD SEC.	A gr/cm3.	1.790	1.735	1.685							
		AI	BSORCIÓ	ÓN					EXP.	ANSIÓN					RE	SULTAD	O S		
N° MOLDE				.6	2		12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL	MÁXIMA DE						777
PESO SUELO HÚM. + PLATO + MOI	.DE (gr)			555	128		11054	12-Feb-21	19:00	0.00	0.00	0.00	ÓPTIMO CO						3.8
PESO DEL PLATO + MOLDE (gr)			79		84		6772	13-Feb-21	21:00	-	-	-	CBR AL 100 9						4.0
PESO SUELO HÚMEDO EMBEBIDO	(6)			74	43		4282	14-Feb-21	18:00	-	-	-	CBR AL 95		IÁX. DENSII		%		0.9
PESO SUELO HÚMEDO SIN EMBEE			44		42		4094	15-Feb-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (g)			53	17		188	16-Feb-21	17:00	2.89	3.11	3.36	L.L. :	27.8%	I.P. :	9.92%	MAT. < N°		99.94%
PESO DEL SUELO SECO (gr)			38		36		3596	% DE EX	PANSIÓN	2.44%	2.67%	2.90%	SUCS:	CL	AASHTO:	A-4 (9)	GRAV. ESPI		-
ABSORCIÓN DE AGUA (%)			3.9) %	4.8	%	5.2 %						EMBEBIDO:	-	ABSORC. :	3.9%	HUM. PENE	TRAC. :	17.7%
Observaciones:																			
Realizado										Revisado									

LABORATORIO DE MECANICA DE SUELOS

ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO


RELACIÓN DE SOPORTE CBR (ASTM -1883)


PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP:	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.20 kg/m3
FECHA :	16/02/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557)								
MÁXIMA DENSI	DAD SECA	(gr/cm3)				1.777		
ÓPTIMO CONTENIDO DE HUMEDAD (%)								
CBR AL 100% DE LA M.D.S. (%)								
CBR AL 95% DE LA M.D.S. (%)								
SUCS:	CL	LL: 27.8%	IP:	9.92%	PESO ESPECÍFICO:	-		
AASHTO :	A-4 (9)	EMBEBIDO :		-	EXPANSIÓN % :	2.44%		
ABSORCIÓN:	3	HUMI	17.7%					

Realizado por:

LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

Y CONCRETO

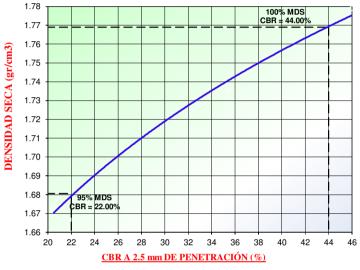
	RELACIÓN DE SOPORTE (ASTM D-1883)																			
PROYECTO : ESTABIL	.IZACIÓN	DE SUE	LOS FIN	OS MEDI	ANTE EL	USO DE	L POLÍMEI	RO PO	LYCOM EN SU	JBRASANTES	PARA CAN	IINOS DE	BAJA TRA	NSITABILIDAI	D EN LA CIL	JDAD DE IQ	UITOS, 2020)		
AUTORES : Bach. CO	ONTOGU	RIS POM	IA, KARL	O'S MIJA	JL.	Bach. PA	ich. PASMIÑO SHAHUANO, MARCO ANTONIO INGENIERO RESP.: INGº MIGUEL ROBALINO OSORIO													
UBICACIÓN : DISTRITO	O DE BEI	LEN				ENSAYO N°: 4 TÉCI							TÉCNICO :							
MUESTRA : Polycom 0.30 kg/m3					MATERIAL : C-1					FECH/	A DE INICIO :	19/0	02/21	FECHA DE	TÉRMINO :	TÉRMINO: 02/03/21				
REI	LACIÓN	HUMED.	AD-DENS	SIDAD (A	STM D-15	1557) C.B.R.					PENETRACIÓN									
VOLUMEN DEL MOLDE : 939.980 cm3 MÉTODO DE COMPA			CTACIÓN	: "	'A''	VOL. MOLD	E: INDICADO	N°	DE CAPAS	: 5	CAP. DEL ANI	LLO: 2.5 Ton.	FACTOR D	EL ANILLO :	6000 *	LEC.DIAL	+ 22.889			
N° DE MOLDE	1	2	2	21	1	6			N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(250	Golpes)"	5 (10	Golpes)
N° GOLPES		25		25	2				N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚMEDO gr.	58	28	58	384	58	72			VOLUMEN DE N	MOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE gr.	399	2.0		92.0	399				P. MOLDE + S. I	HÚMEDO gr.	12371	12613	10826	0.025	31	234.6	31	234.6	23	163.5
PESO SUELO HÚMEDO gr.	183		189	92.0	188	0.0			PESO MOLDE	gr.	7981	8418	6772	0.050	84	704.5	67	553.9	41	323.3
N° TARRO	5	2	4	3	6	1			PESO SUELO H	ÚMEDO gr.	4390	4195	4054	0.075	129	1102.5	104	881.5	56	456.4
P. TARRO + S. HÚMEDO gr.	150.60	150.70	190.80	170.60	166.40	178.10			N° TARRO		X	Y	L	0.100	186	1605.4	131	1120.2	71	589.4
P. TARRO + S. SECO gr.	138.60	139.00	172.30	154.70	148.80	159.20			P. TARRO + S. F		186.30	188.90	178.80	0.150	227	1966.3	168	1446.8	113	961.1
PESO DE AGUA gr.	12.00 37.20	11.70 37.30	18.50 39.70	15.90 39.00	17.60 38.70	18.90 41.60			P. TARRO + S. S PESO DE AGUA	ECO gr.	168.60	171.10 17.80	162.30 16.50	0.200	255 300	2212.3	200 248	1728.7	147	1261.5
PESO DE TARRO gr. PESO SUELO SECO gr.	101.40	101.70	132.60	115.70	110.10	117.60			PESO DE TARR		17.70 38.70	39.10	40.80	0.250 0.300	358	2606.9 3114.2	248	2150.8 2396.6	189 175	1631.9 1508.5
% DE HUMEDAD %	11.83	11.50	13.95	13.74	15.99	16.07			PESO SUELO SI		129.90	132.00	121.50	0.400	347	3018.1	286	2484.2	168	1446.8
% DE HÚM. PROMEDIO %	11.03			.85	16.				CONTENIDO DE		13.63	13.48	13.58	0.500	336	2922.0	268	2326.4	142	1217.4
DENSIDAD HÚMEDA gr./cm3.		953		013	2.0				DENSIDAD HÚN	MEDA gr/cm3.	2.022	1.969	1.899	0.500	220	2,22.0	200	2320	1.2	121711
DENSIDAD SECA gr/cm3.	1.7	749	1.7	768	1.7	'24			DENSIDAD SEC	A gr/cm3.	1.779	1.735	1.672							
		A	BSORCIO	ÓN						EXP	ANSIÓN			RESULTADOS						
N° MOLDE			1	16	2	1	12		FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL	MÁXIMA DEI	NSIDAD SEC	CA gr/cm3			1.	769
PESO SUELO HÚM. + PLATO + MO	LDE (gr)		12:	512	127	776	1100)2	26-Feb-21	19:00	0.00	0.00	0.00	ÓPTIMO CON	ITENIDO DE	HUMEDAD	%		. 10	3.5
PESO DEL PLATO + MOLDE (gr)				981	84	18	6772	2	27-Feb-21	21:00	-	-	-	CBR AL 100 %	% DE LA MÂ	ÁX. DENSIDA	AD SECA %		4	4.0
PESO SUELO HÚMEDO EMBEBIDO) (gr)			531	43		4230		28-Feb-21	18:00	-	-	-	CBR AL 95 9		ÁX. DENSIDA	AD SECA %		23	2.0
PESO SUELO HÚMEDO SIN EMBER	BER (gr)			390	41		4054		01-Mar-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (g	r)			41	16		176		02-Mar-21	17:00	2.45	2.78	3.11	L.L. :	26.55%	I.P. :	9.53%	MAT. < N°		99.94%
PESO DEL SUELO SECO (gr)				363	36		3569		% DE EX	KPANSIÓN	2.07%	2.39%	2.69%	SUCS:	CL	AASHTO:	A-4 (8)	GRAV. ESPI		-
ABSORCIÓN DE AGUA (%)			3.6	5 %	4.4	. %	4.9 9	%						EMBEBIDO:	-	ABSORC. :	3.6%	HUM. PENE	TRAC. :	17.1%
Observaciones:																				
																			-	

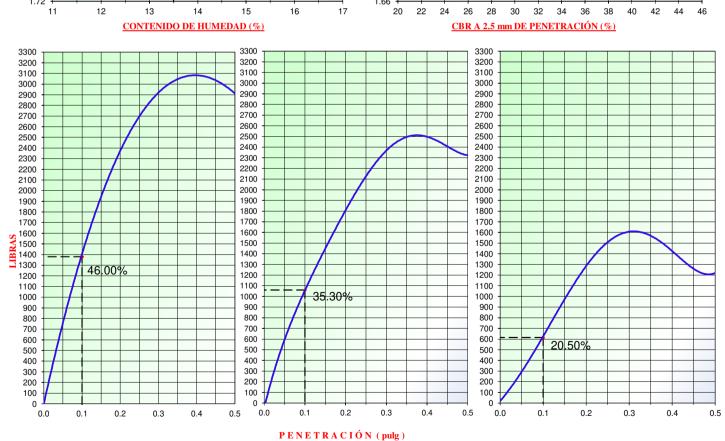
Revisado por:

......

LABORATORIO DE MECANICA DE SUELOS

DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES
	PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.30 kg/m3
FECHA :	02/03/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557) "A MÁXIMA DENSIDAD SECA (gr/cm3) 1.7 ÓPTIMO CONTENIDO DE HUMEDAD (%) 13. CBR AL 100% DE LA M.D.S. (%) 44. CBR AL 95% DE LA M.D.S. (%) 22. SUCS: CL LL: 26.6% IP: 9.53% PESO ESPECÍFICO:	
ÓPTIMO CONTENIDO DE HUMEDAD (%) 13. CBR AL 100% DE LA M.D.S. (%) 44. CBR AL 95% DE LA M.D.S. (%) 22.	'
CBR AL 100% DE LA M.D.S. (%) 44. CBR AL 95% DE LA M.D.S. (%) 22.	9
CBR AL 95% DE LA M.D.S. (%) 22.	0
	0
SLICS: CI LL: 26 69/ ID: 0.539/ DESC ESPECÍFICO:	0
30C3. CL LL. 20.0% IF. 9.55% FL30 L3FL011100.	
AASHTO: A-4 (8) EMBEBIDO: - EXPANSIÓN % : 2.0	%
ABSORCIÓN: 3.6% HUMEDAD DE PENETRACIÓN : 17.	%

6.1.4. Clasificación de suelos Sin Polímero – Con Polímero calicata C-2

LABORATORIO DE MECANICA DE SUELOS

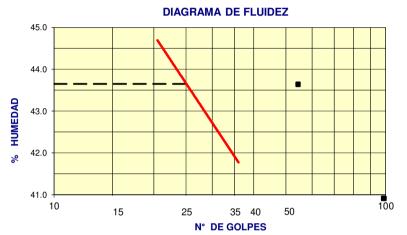
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

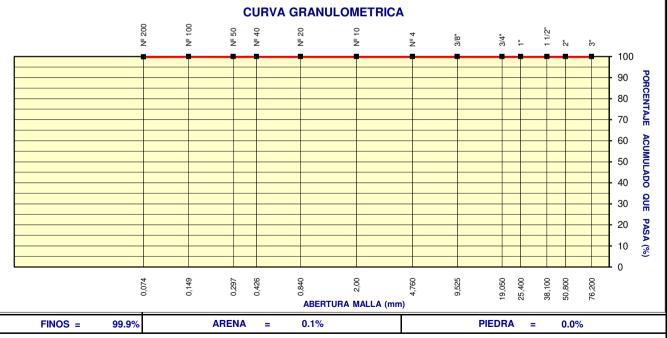
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> ING. RESP.: ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA PROG: 0+150 PROF. (m) 0.20 - 1.50 TECNICO:


NATUDAI mar.-21 FECHA:

MUESTRA		NATURAL							
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)								
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	1				
3"	76.200		-	100.0	F				
2"	50.800	0.0	-	100.0	F				
11/2"	38.100	0.0	-	100.0	F				
1"	25.400	0.0	-	100.0	F				
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0					
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	-	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	-	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.3	0.1	99.9					
-200		499.6	99.9	0.0					
TOTAL		500.0							
RESULTA	RESULTADOS DE ENSAYOS CLASIFICACION								
LÍMITE LÍQUIC	00. %	43.65	SUCS	AASHTO					

DESCRIPCION	LI	MITE LIQUIE	00	LIMITE PLASTICO		
Ensayo No.	1	2	3	1	2	
Capsula No.	1	3	7	18	13	
Numero de Golpes	21	29	34	-	-	
Peso Capsula + Suelo Humedo(gr)	14.76	14.50	15.33	8.87	10.39	
Peso Capsula + Suelos Seco (gr)	12.10	12.08	12.61	8.09	9.37	
Peso Agua (gr)	2.33	2.42	2.58	0.78	1.02	
Peso de la Capsula (gr)	6.36	6.45	6.54	4.29	4.39	
Peso Suelo Seco (gr)	5.23	5.63	6.14	3.80	4.98	
Contenido de Humedad (%)	44.54	42.98	42.01	20.53	20.48	

	IOIAL	500.0				
	RESULTADOS DE E	NSAYOS	CLASIFICACION			
	LÍMITE LÍQUIDO, %	43.65	SUCS	AASHTO		
	LÍMITE PLÁSTICO, %	20.50	NTP 339.134 (99)	NTP 339.135 (99)		
	ÍND. PLASTICIDAD, %	23.15	CL	A-7-6 (25)		
Ī	HUMEDAD NATURAL %	28.21	CL	A-7-6 (23)		

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE MEDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

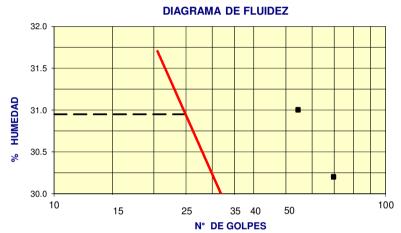
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

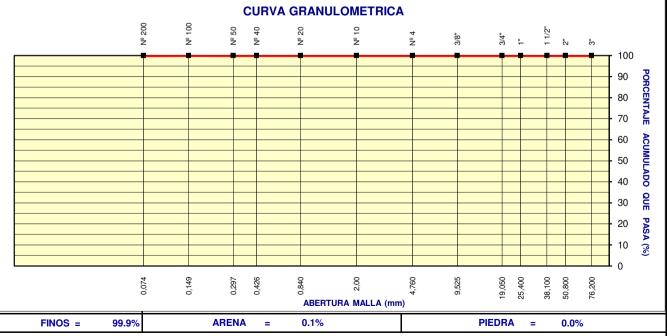
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES Bach. CONTOGURIS POMA, KARLO'S MIJAIL


> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO ING. RESP. ING. M. ROBALINO O.

CALICATA PROF. (m) 0.20 - 1.50 TECNICO:


MULICATION POLYCOM 0 100 kg/m2 mar.-21 FECHA:

MUESTRA POLYCOM 0.100 kg/m3									
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)								
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)					
3"	76.200		-	100.0					
2"	50.800	0.0	-	100.0					
11/2"	38.100	0.0	-	100.0					
1"	25.400	0.0	-	100.0					
3/4"	19.050	0.0	-	100.0					
3/8"	9.525	0.0	-	100.0					
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	-	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	-	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200		499.7	99.9	0.0					
TOTAL		500.0							
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION					
LÍMITE LÍQUID	00 %	30.95	SUCS	AASHTO					

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO					
Ensayo No.	1	2	3	1	2			
Capsula No.	6	10	15	18	13			
Numero de Golpes	21	24	30					
Peso Capsula + Suelo Humedo(gr)	18.39	18.99	19.63	7.97	7.94			
Peso Capsula + Suelos Seco (gr)	15.50	16.02	16.59	7.43	7.39			
Peso Agua (gr)	2.89	2.97	3.04	0.54	0.55			
Peso de la Capsula (gr)	6.36	6.48	6.54	4.31	4.36			
Peso Suelo Seco (gr)	9.14	9.54	10.05	3.12	3.03			
Contenido de Humedad (%)	31.59	31.13	30.22	17.31	18.15			

RESULTADOS DE E	CLASIFI	CACION		
LÍMITE LÍQUIDO, %	30.95	SUCS	AASHTO	
LÍMITE PLÁSTICO, %	17.73	NTP 339.134 (99)	NTP 339.135 (99)	
ÍND. PLASTICIDAD, %	13.22	CL	A-6 (13)	
HUMEDAD NATURAL %	-	OL.	A-0 (13)	
<u> </u>	·			

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

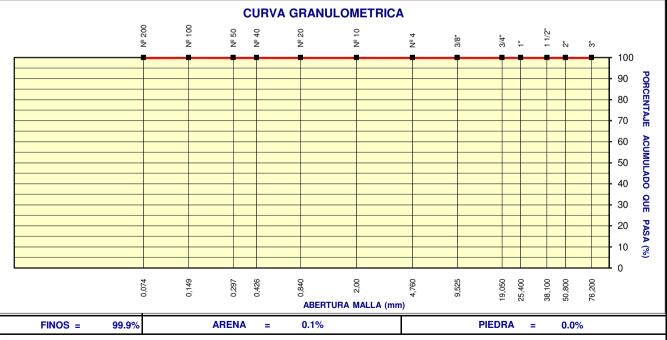
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES Bach. CONTOGURIS POMA, KARLO'S MIJAIL

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO ING. RESP. ING. M. ROBALINO O.

CALICATA PROF. (m) 0.20 - 1.50 TECNICO :


abr.-21 FECHA:

MUESTRA	POLYCOM 0.200 kg/m3									
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)									
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)						
3"	76.200		1	100.0						
2"	50.800	0.0	-	100.0	I					
11/2"	38.100	0.0	-	100.0						
1"	25.400	0.0	-	100.0	ĺ					
3/4"	19.050	0.0	-	100.0	Ī					
3/8"	9.525	0.0	-	100.0	ſ					
N° 4	4.760	0.0	-	100.0						
N° 10	2.000	0.0	-	100.0						
N° 20	0.840	0.0	-	100.0						
N° 40	0.426	0.0	-	100.0						
N° 50	0.297	0.0	-	100.0						
N° 100	0.149	0.1	0.0	100.0						
N° 200	0.074	0.2	0.0	99.9						
-200		499.7	99.9	0.0						
TOTAL		500.0								
RESULTA	ADOS DE E	NSAYOS	CLASIF	ICACION						
LÍMITE LÍQUIE	00, %	29.55	SUCS	AASHTO						

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO		
Ensayo No.	1	2	3	1	2
Capsula No.	3	11	18	11	24
Numero de Golpes	20	26	30		
Peso Capsula + Suelo Humedo(gr)	18.00	18.60	19.22	7.50	7.00
Peso Capsula + Suelos Seco (gr)	15.29	15.85	16.38	7.01	6.60
Peso Agua (gr)	2.71	2.75	2.84	0.49	0.40
Peso de la Capsula (gr)	6.36	6.52	6.54	4.37	4.40
Peso Suelo Seco (gr)	8.93	9.33	9.84	2.64	2.20
Contenido de Humedad (%)	30.35	29.47	28.89	18.56	18.18

RESULTADOS DE E	RESULTADOS DE ENSAYOS							
LÍMITE LÍQUIDO, %	29.55	SUCS	AASHTO					
LÍMITE PLÁSTICO, %	18.37	NTP 339.134 (99)	NTP 339.135 (99)					
ÍND. PLASTICIDAD, %	11.18	CL	A-6 (11)					
HUMEDAD NATURAL %	-		A-0 (11)					

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

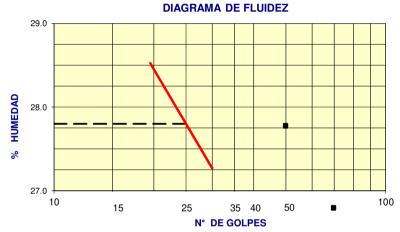
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

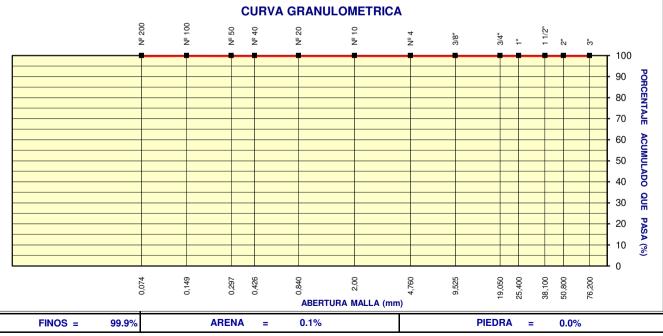
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> ING. RESP. ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA C - 2 PROF. (m) 0.20 - 1.50 TECNICO:


MUESTRA POLYCOM 0.300 kg/m3 abr.-21 FECHA:

MUESTRA	POLYCOM 0.300 kg/m3								
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)								
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	1				
3"	76.200		-	100.0	F				
2"	50.800	0.0	-	100.0	F				
11/2"	38.100	0.0	-	100.0	F				
1"	25.400	0.0	-	100.0	F				
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0	Ī				
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	-	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	-	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200		499.7	99.9	0.0					
TOTAL		500.0							
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION					
LÍMITE LÍOUIC	00 %	27.00	CLICC	AACUTO					

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO		
Ensayo No.	1	2	3	1	2
Capsula No.	5	8	9	6	14
Numero de Golpes	20	24	28		
Peso Capsula + Suelo Humedo(gr)	17.59	18.21	18.84	8.46	8.67
Peso Capsula + Suelos Seco (gr)	15.10	15.66	16.19	7.81	8.01
Peso Agua (gr)	2.49	2.55	2.65	0.65	0.66
Peso de la Capsula (gr)	6.36	6.52	6.54	4.37	4.40
Peso Suelo Seco (gr)	8.74	9.14	9.65	3.44	3.61
Contenido de Humedad (%)	28.46	27.90	27.48	18.90	18.28

TOTAL	500.0)					
RESULTADOS DE E	NSAYOS	CLASIF	ICACION				
LÍMITE LÍQUIDO, %	27.80	SUCS	AASHTO				
LÍMITE PLÁSTICO, %	18.59	NTP 339.134 (99)	NTP 339.135 (99)				
ÍND. PLASTICIDAD, %	9.21	CL	A-4 (8)				
HUMEDAD NATURAL %	-	OL.	A-4 (0)				

DESCRIPCION

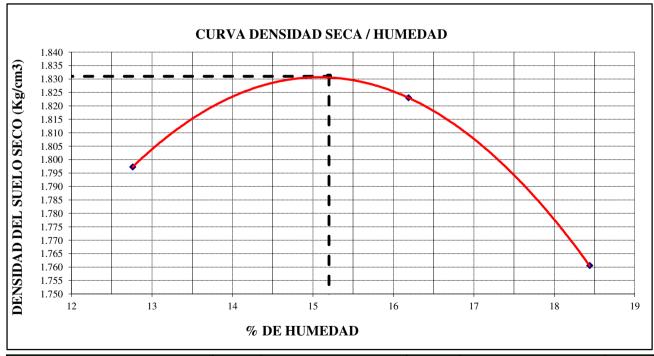
SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

6.1.5. Proctor Modificado sin Polímero – Con Polímero calicata C-2

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 10-Mar-21

C - 2 UBICACIÓN DISTRITO DE BELEN MUESTRA: POLYCOM: 0.000 kg/m3 MATERIAL: A-7-6 (25)

Número de capas	5.0	00	5.	00	5.	.00		
Número de Golpes	2	5	2	5	2	25		
Peso suelo humedo + molde	58	97	59	83	59	952		
Peso del molde	39	92	39	92	39	992		
Peso suelo humedo	19	05	19	91	19	960		
Volumen del molde	939	.98	939	0.98	939	9.98		
Densidad suelo humedo	2.0	27	2.1	.18	2.0	085		
Capsula N°	7	5	4	6	8	9		
Peso suelo humedo + cap.	223.80	229.50	229.80	235.40	206.83	194.60		
Peso suelo seco + cap.	202.70	208.20	203.47	208.70	181.29	171.00		
Peso del agua	21.10	21.30	26.33	26.70	25.54	23.60		
Peso de la capsula	37.14	41.50	41.35	43.20	42.91	42.91		
Peso suelo seco.	165.56	166.70	162.12	165.50	138.38	128.09		
% de humedad	12.74	12.78	16.24	16.13	18.46	18.42		
Promedio de humedad	12.	76	16	.19	18	.44		
Densidad suelo seco	1.7	97	1.8	323	1.	761		

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	43.65
MAXIMA DENSIDAD SECA (kg/cm3)	1.831	CLASIFICACIÓN AASHTO	A-7-6 (25)	ÍNDICE DE PLASTIC. (%) :	23.15
ÓPTIMO CONTENIDO DE HUMEDAD (%)	15.20	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.92
ODOEDVA OLONEO					

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

25-Mar-21

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO : ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA

CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES : Bach. CONTOGURIS POMA, KARLO'S MIJAIL

Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA:

UBICACIÓN: DISTRITO DE BELENMUESTRA:C - 2POLYCOM: 0.100 kg/m3MATERIAL:A-6 (13)

Número de capas	5.0	00	5.0	00	5.	.00		
Número de Golpes	2	5	2	5	2	25		
Peso suelo humedo + molde	58	92	59	56	59	968		
Peso del molde	39	92	39	92	39	992		
Peso suelo humedo	19	00	19	64	19	976		
Volumen del molde	939	.98	939	0.98	939	9.98		
Densidad suelo humedo	2.0	21	2.0	189	2.	102		
Capsula N°	7	5	4	6	8	9		
Peso suelo humedo + cap.	149.60	149.60	162.30	162.30	155.40	155.40		
Peso suelo seco + cap.	137.90	137.90	146.50	146.50	138.20	138.20		
Peso del agua	11.70	11.70	15.80	15.80	17.20	17.20		
Peso de la capsula	41.50	41.50	42.70	42.70	42.91	43.50		
Peso suelo seco .	96.40	96.40	103.80	103.80	95.29	94.70		
% de humedad	12.14	12.14	15.22	15.22	18.05	18.16		
Promedio de humedad	12.	.14	15.	.22	18	3.11		
Densidad suelo seco	1.8	02	1.8	313	1.	780		

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	35.75
MAXIMA DENSIDAD SECA (kg/cm3)	1.815	CLASIFICACIÓN AASHTO	A-6 (13)	ÍNDICE DE PLASTIC. (%) :	17.67
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.50	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

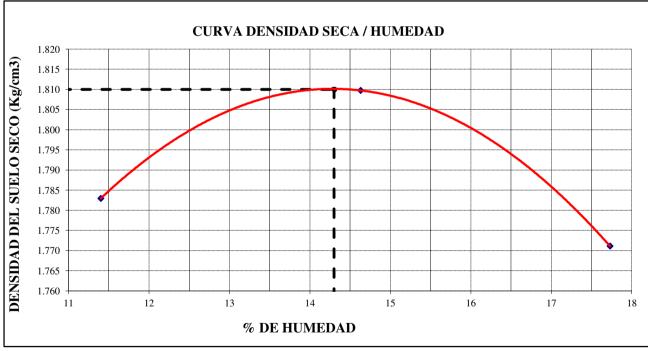
OBSERVACIONES :

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 08-Abr-21

DISTRITO DE BELEN C - 2 UBICACIÓN MUESTRA: POLYCOM: 0.200 kg/m3 MATERIAL: A-6 (11)

Número de capas	5.0	00	5.	00	5.	00		
Número de Golpes	2	5	2	5	2	25		
Peso suelo humedo + molde	58	59	59	42	59	952		
Peso del molde	39	92	39	92	39	992		
Peso suelo humedo	18	67	19	50	19	960		
Volumen del molde	939	.98	939	9.98	939	9.98		
Densidad suelo humedo	1.9	86	2.0)75	2.0	085		
Capsula N°	7	5	4	6	8	9		
Peso suelo humedo + cap.	156.10	137.40	154.50	158.60	140.20	166.80		
Peso suelo seco + cap.	144.20	127.80	139.60	139.60 143.20		148.00		
Peso del agua	11.90 9.60		14.90	14.90 15.40		18.80		
Peso de la capsula	40.70	42.90	38.40	37.30	38.50	41.30		
Peso suelo seco .	103.50 84.90		101.20	105.90	86.30	106.70		
% de humedad	11.50 11.31		14.72 14.54		17.84 17.62			
Promedio de humedad	11.	40	14	.63	17	.73		
Densidad suelo seco	1.7	83	1.8	310	1.7	771		

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	29.55
MAXIMA DENSIDAD SECA (kg/cm3)	1.810	CLASIFICACIÓN AASHTO	A-6 (11)	ÍNDICE DE PLASTIC. (%) :	11.18
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.30	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

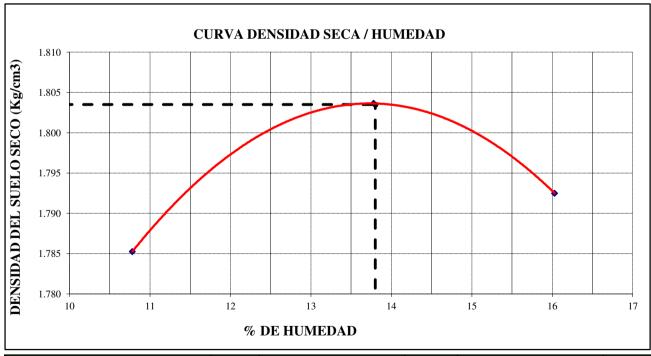
OBSERVACIONES:

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA

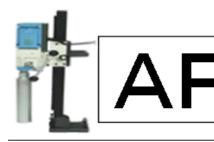

CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 22-Abr-21

DISTRITO DE BELEN MUESTRA: C - 2 UBICACIÓN POLYCOM: 0.300 kg/m3 MATERIAL: A-4 (8)

Número de capas	5.0	00	5.0	00	5.	.00			
Número de Golpes	2	5	2	5	2	25			
Peso suelo humedo + molde	58	51	59	21	59	947			
Peso del molde	39	92	39	92	39	992			
Peso suelo humedo	18	59	19	29	19	955			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	1.9	78	2.052		2.0	080			
Capsula N°	7 5		4	6	8	9			
Peso suelo humedo + cap.	150.30	150.20	190.50	170.70	166.40	178.10			
Peso suelo seco + cap.	139.20	139.30	172.30	172.30 154.70		159.20			
Peso del agua	11.10	10.90	18.20	18.20 16.00		18.90			
Peso de la capsula	37.20	37.30	39.70 39.00		38.70	41.60			
Peso suelo seco .	102.00 102.00		132.60	115.70	110.10	117.60			
% de humedad	10.88 10.69		13.73	13.73 13.83		15.99 16.07			
Promedio de humedad	10.	78	13.	.78	16	5.03			
Densidad suelo seco	1.7	85	1.8	804	1.	792			



MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	27.80
MAXIMA DENSIDAD SECA (kg/cm3)	1.804	CLASIFICACIÓN AASHTO	A-4 (8)	ÍNDICE DE PLASTIC. (%) :	9.21
ÓPTIMO CONTENIDO DE HUMEDAD (%)	13.80	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES:

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

6.1.6. Capacidad de Soporte sin Polímero – Con Polímero calicata C-2

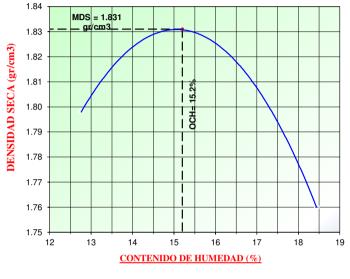
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

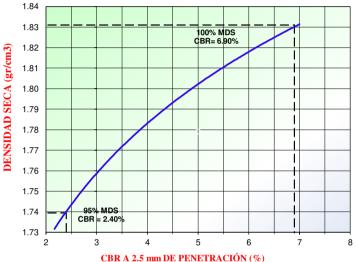
Y CONCRETO

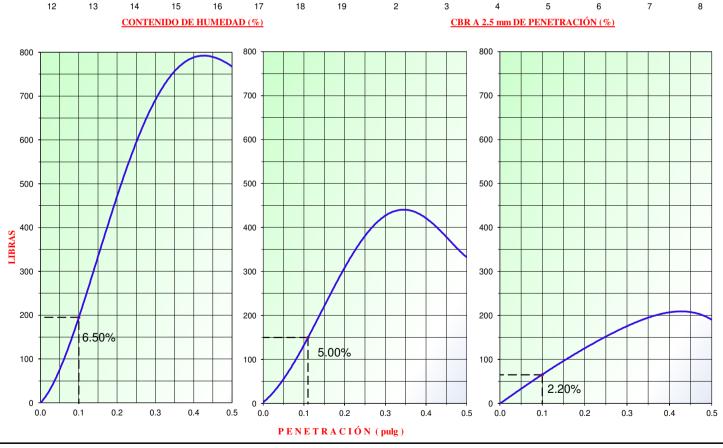
RELACIÓN DE SOPORTE (ASTM D-1883)

Proper					A, KARL	O'S MIJA					ANO, MARCO	ANTONIO				IERO RESP.:	INGº MIGU	EL ROBALI	NO OSORIO			
Color Colo																		20101				20/01
N° DEMOLDE 939 980 cm3								MAIERI	AL : (C - 2					FECHA	DE INICIO :	11/0			_	22/	03/21
N PEMOLDE 12 21 16 N PEMOLDE 16 21 12 N MOLDE 3.7%6 Galpen' 425Galpen' 5.12 Galpen' 5.1				<u> </u>		<u>, </u>																
N GOLPES PAGIDE STATE		.DE :							: "	'A"		DE: INDICADO										+ 22.889
PRODUCE S. HÚMEDO gr. 5897 5983 5952 VOLUMEN DE MOLDE cc. 2171 2131 2134 0.0 0 0 0.																			,	1		
PESO MOLDE gr. 3992.0 3992.0 3992.0 3992.0 3992.0 1995.0 1991.0 1996.0 P. MOLDE S. 100.0 P. MOLDE S. 100.0		0				-												` '				` ′
PESO SUELO HÚMEDO gr. 1905.0 1991.0 1960.0 PESO MOLDE gr. 7981 8418 6772 0.050 12 65.8 11 56.9 9 39.		- 8																			Ů	12.5
N-TARRO												· ·									-	39.1
F. TARRO + S. HÚMEDO gr. 223.80 229.80 229.80 225.40 206.83 194.60		g.,							Т					-								48.0
P. TARRO + S. SECO gr. 20.70 208.20 203.47 208.70 181.20 171.00 P. TARRO + S. HÚMEDO gr. 169.80 166.40 168.43 0.150 43 341.1 31 234.6 15 92. PESO DE TARRO gr. 37.14 41.50 41.35 43.20 42.91 42.91 PESO DE TARRO gr. 17.32 16.70 18.03 0.250 71 589.4 47 376.6 22 154 PESO SUELO SECO gr. 165.56 166.70 162.12 165.50 183.83 128.09 PESO DE TARRO gr. 39.83 40.41 33.80 0.250 71 589.4 47 376.6 22 154 PESO SUELO BECO gr. 165.56 166.70 162.12 165.50 183.83 128.09 PESO DE TARRO gr. 39.83 40.41 33.80 0.250 71 589.4 47 376.6 22 154 PESO SUELO BECO gr. 165.56 166.70 162.12 165.50 183.83 128.09 PESO DE TARRO gr. 39.83 40.41 33.80 0.250 71 589.4 47 376.6 22 154 PESO SUELO BECO gr. 162.56 180.20 112.65 180.20 112		O gr.						194.60			N° TARRO											65.8
PESO DE AGUA gr. 21.00 21.00 25	P. TARRO + S. SECO	gr.	202.70				181.29	171.00			P. TARRO + S.	HÚMEDO gr.	_ `	166.40	168.43	0.150	43	341.1	31	234.6	15	92.5
PESO SUELO SECO gr. 165.56 166.70 162.12 165.50 138.38 128.09 PESO DE TARRO gr. 39.83 40.41 33.80 0.300 82 686.8 53 429.8 24 172 % DE HUMEDAD % 12.74 12.78 16.24 16.13 18.46 18.42 PESO SUELO SECO gr. 112.65 109.29 116.60 0.400 94 793.0 52 420.9 28 207 % DE HÚM. PROMEDIO % 12.76 16.19 18.44 CONTENIDO DE HUMEDAD gr. 15.38 15.28 15.46 0.500 91 766.5 42 332.2 26 190 DENSIDAD HÚMEDA gr/cm3. 2.027 2.118 2.085 DENSIDAD SECA gr/cm3. 1.798 1.823 1.760 DENSIDAD SECA gr/cm3. 1.843 1.779 1.737 RESULTAD OS N° MOLDE SUBLO HÚM. PLATO + MOLDE (gr) 12806 13025 11326 18-Mar-21 19:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	PESO DE AGUA	gr.	21.10	21.30	26.33	26.70	25.54	23.60			P. TARRO + S.	SECO gr.	152.48	149.70	150.40	0.200	58	474.1	39	305.6	19	128.0
# DE HUMEDAD	PESO DE TARRO	gr.	37.14	41.50	41.35	43.20	42.91	42.91			PESO DE AGUA	A gr.	17.32	16.70	18.03	0.250	71	589.4	47	376.6	22	154.7
# DE HÚM. PROMEDIO % 12.76 16.19 18.44 CONTENIDO DE HUMEDAD gr. 15.38 15.28 15.46 0.500 91 766.5 42 332.2 26 190 DENSIDAD HÚMEDA gr./cm3. 2.027 2.118 2.085 DENSIDAD HÚMEDA gr./cm3. 2.127 2.051 2.006 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	PESO SUELO SECO	gr.	165.56	166.70	162.12	165.50	138.38	128.09			PESO DE TARI	RO gr.	39.83	40.41	33.80	0.300	82	686.8	53	429.8	24	172.4
DENSIDAD HÚMEDA gr./cm3. 2.027 2.118 2.085 DENSIDAD HÚMEDA gr./cm3. 2.127 2.051 2.006	% DE HUMEDAD	%	12.74	12.78	16.24	16.13	18.46	18.42			PESO SUELO S	ECO gr.	112.65	109.29	116.60	0.400	94	793.0	52	420.9	28	207.9
DENSIDAD SECA gr/cm3. 1.798 1.823 1.760 DENSIDAD SECA gr/cm3. 1.843 1.779 1.737 S S S S S S S S S													26	190.2								
ABSORCIÓN N° MOLDE 16 21 12 FECHA HORA LEC. DIAL MÁXIMA DENSIDAD SECA gr/cm3 12806 13025 11326 18-Mar-21 19:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	DENSIDAD HÚMEDA	gr./cm3.																				
N° MOLDE 16 21 12 FECHA HORA LEC. DIAL LEC. DIAL LEC. DIAL MÁXIMA DENSIDAD SECA gr/cm3 1.831 PESO SUELO HÚM. + PLATO + MOLDE (gr) 12806 13025 11326 18-Mar-21 19:00 0.00 0.00 0.00 0.00 ÓPTIMO CONTENIDO DE HUMEDAD $\%$ 15.2 PESO DEL PLATO + MOLDE (gr) 7981 8418 6772 19-Mar-21 21:00 CBR AL 100 $\%$ DE LA MÁX. DENSIDAD SECA $\%$ 6.9 PESO SUELO HÚMEDO SIN EMBEBIDO (gr) 4825 4607 4554 20-Mar-21 18:00 CBR AL 95 $\%$ DE LA MÁX. DENSIDAD SECA $\%$ 2.4 PESO SUELO HÚMEDO SIN EMBEBER (gr) 4617 4369 4282 21-Mar-21 19:00 RESO DEL AGUA ABSORBIDA (gr) 208 238 272 22-Mar-21 14:00 3.89 4.21 4.63 L.L.: 43.65 $\%$ I.P.: 23.15 $\%$ MAT. < N° 200 : 99.9 PESO DEL SUELO SECO (gr) 4002 3790 3709 $\%$ DE EXPANSIÓN 3.29 $\%$ 3.29 $\%$ 3.62 $\%$ 4.00 $\%$ EMBEBIDO: - ABSORC.: 5.2 $\%$ HUM. PENETAC.: 20.4 PENEDIDO SECA $\%$ 10.00 PENEDIDO SECA $\%$ 10.00 PEMBEBIDO: - ABSORC.: 5.2 $\%$ HUM. PENETAC.: 20.4	DENSIDAD SECA	r/cm3.	1.7				1.7	60			DENSIDAD SEC			1.779	1.737							
PESO SUELO HÚM. + PLATO + MOLDE (gr) 12806 13025 11326 18-Mar-21 19:00 0.00 0.00 0.00 ÓPTIMO CONTENIDO DE HUMEDAD % 15.2 PESO DEL PLATO + MOLDE (gr) 7981 8418 6772 19-Mar-21 21:00 CBR AL 100 % DE LA MÁX. DENSIDAD SECA % 6.9 PESO SUELO HÚMEDO EMBEBIDO (gr) 4825 4607 4554 20-Mar-21 18:00 CBR AL 95 % DE LA MÁX. DENSIDAD SECA % 2.4 PESO SUELO HÚMEDO SIN EMBEBER (gr) 4617 4369 4282 21-Mar-21 19:00 RET ACUM. 3/4": - 3/8": - N° 4: - PESO DEL AGUA ABSORBIDA (gr) 208 238 272 22-Mar-21 14:00 3.89 4.21 4.63 L.L.: 43.65% I.P.: 23.15% MAT. < N° 200: 99.9 PESO DEL SUELO SECO (gr) 4002 3790 3709 % DE EXPANSIÓN 3.29% 3.62% 4.00% SUCS: CL AASHTO: A-7-6(25) GRAV. ESPECIÍFIC.: - EMBEBIDO: - ABSORC.: 5.2% HUM. PENETRAC.: 20.4	No MOLDE			A			1 0	1	10		TD GY	1				Maria Pro	VOID A D OF		SULTAD	OS		021
PESO DEL PLATO + MOLDE (gr) 7981 8418 6772 19-Mar-21 21:00 CBR AL 100 % DE LA MÁX. DENSIDAD SECA % 6.9 PESO SUELO HÚMEDO EMBEBIDO (gr) 4825 4607 4554 20-Mar-21 18:00 CBR AL 95 % DE LA MÁX. DENSIDAD SECA % 2.4 PESO SUELO HÚMEDO SIN EMBEBER (gr) 4617 4369 4282 21-Mar-21 19:00 RET ACUM. 3/4": $abracksin $		4TO - 140	I.DE. ()																. CT			
PESO SUELO HÚMEDO EMBEBIDO (gr) 4825 4607 4554 20-Mar-21 18:00 CBR AL 95 % DE LA MÁX. DENSIDAD SECA % 2.4 PESO SUELO HÚMEDO SIN EMBEBER (gr) 4617 4369 4282 21-Mar-21 19:00 RET ACUM. $3/4$ ": - $3/8$ ": - N° 4: - PESO DEL AGUA ABSORBIDA (gr) 208 238 272 22-Mar-21 14:00 3.89 4.21 4.63 L.L.: 43.65% I.P.: 23.15% MAT. < N° 200 : 99.9 PESO DEL SUELO SECO (gr) 4002 3790 3709 N° DE EXPANSIÓN 3.29% 3.62% 4.00% SUCS: CL AASHTO: A-7-6(25) GRAV. ESPECÍFIC.: - ABSORCIÓN DE AGUA (%) 5.2 % 6.3 % 7.3 %			LDE (gr)										0.00	0.00	0.00							
PESO SUELO HÚMEDO SIN EMBEBER (gr) 4617 4369 4282 21-Mar-21 19:00) (or)																			
PESO DEL AGUA ABSORBIDA (gr) 208 238 272 22-Mar-21 14:00 3.89 4.21 4.63 L.L.: 43.65% I.P.: 23.15% MAT. $<$ N°200 : 99.9 PESO DEL SUELO SECO (gr) 4002 3790 3709 $%$ DE EXPANSIÓN 3.29% 3.62% 4.00% SUCS : CL AASHTO: A-7-6(25) GRAV. ESPECIÍFIC. : - ABSORCIÓN DE AGUA (%) 5.2 % 6.3 % 7.3 % DE EXPANSIÓN 3.29% 3.62% 4.00% EMBEBIDO: - ABSORC. : 5.2% HUM. PENETRAC. : 20.4			-															-		_		_
PESO DEL SUELO SECO (gr) 4002 3790 3709 $\%$ DE EXPANSIÓN 3.29% 3.62% 4.00% SUCS: CL AASHTO: A-7-6(25) GRAV. ESPECIÍFIC.: - ABSORCIÓN DE AGUA (%) 5.2 % 6.3 % 7.3 % DE EXPANSIÓN 3.29% 3.62% 4.00% EMBEBIDO: - ABSORC.: 5.2% HUM. PENETRAC.: 20.4													3.89	4.21	4.63			I.P. :		MAT. < N°		99.92%
ABSORCIÓN DE AGUA (%) 5.2 % 6.3 % 7.3 % DE EXPANSION 3.29% 3.62% 4.00% EMBEBIDO: - ABSORC.: 5.2% HUM. PENETRAC.: 20.4																						-
Observaciones:	ABSORCIÓN DE AGUA	(%)			5.2	2 %	6.3	%	7.3	%	% DE E	XPANSION	3.29%	3.62%	4.00%		i e	ł	` '	HUM. PENE	ETRAC. :	20.4%
Observaciones.	Observaciones							<u> </u>							<u> </u>				•			
	obser vaciones.																					
	1																					
	•																					
	l																					

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.00 kg/m3
FECHA :	22/03/2021

MÉTODO DE C	OMPACTA	CIÓN (ASTN	Л D-15	557)		"A"					
MÁXIMA DENSIDAD SECA (gr/cm3)											
ÓPTIMO CONT	ENIDO DE	HUMEDAD (%)			15.20					
CBR AL 100% [DE LA M.D.	S. (%)				6.90					
CBR AL 95% [DE LA M.D.	S. (%)				2.40					
SUCS:	CL	LL: 43.7%	IP:	23.15%	PESO ESPECÍFICO:	-					
AASHTO:	A-7-6(25)	EMBEBIDO :		-	EXPANSIÓN % :	3.29%					
ABSORCIÓN: 5.2% HUMEDAD DE PENETRACIÓN :											

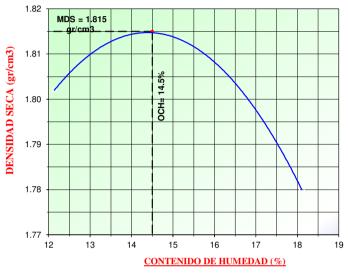
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

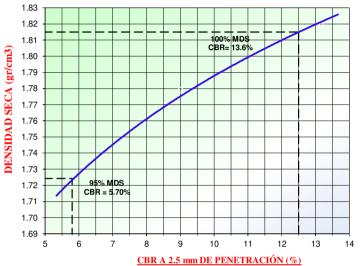
Y CONCRETO

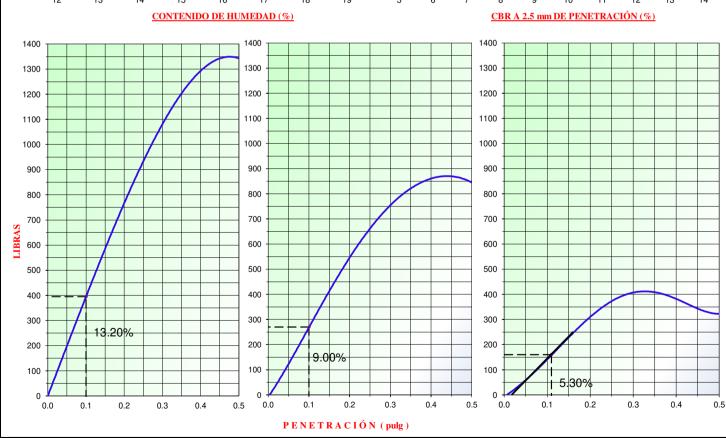
DELACIÓN DE CODODTE (ACTM D 1009)

						<u> </u>	<u>.ELAGIU.</u>	NDES	OPUR!	LE (A	ASIM	<u>1 D-1</u>	<u>883)</u>						
PROYECTO : ESTABIL	_IZACIÓN	DE SUE	LOS FIN	OS MEDI	ANTE EL	USO DE	L POLÍMERO POI	YCOM EN S	UBRASANTES I	PARA CAN	IINOS DE	BAJA TRA	NSITABILIDAI	D EN LA CIL	JDAD DE IQ	UITOS, 2020)		
AUTORES : Bach. Co	ONTOGU	RIS POM	A, KARL	O'S MIJA	JL.	Bach. P	ASMIÑO SHAHUA	NO, MARCO	ANTONIO			INGEN	IERO RESP.:	INGº MIGU	EL ROBALIN	NO OSORIO			
UBICACIÓN : DISTRIT	O DE BEI	LEN				ENSAY	O N° : 2.00					TÉCNI	co :						
MUESTRA : Polycom	າ 0.10 kg/	m3				MATER	IAL : C-2				FECH/	A DE INICIO : 26/03/21 FECHA DE TÉRMINO : 06/04/21							
RE	LACIÓN	HUMED	AD-DENS	SIDAD (A	STM D-15	557)			C	.B.R.					PEN	VETRACI	IÓN		
VOLUMEN DEL MOLDE :	939.98	80 cm3	N	IÉTODO D	E COMPA	.CTACIÓN	': "A"	VOL. MOLD	E: INDICADO	N°	DE CAPAS	: 5	CAP. DEL ANILLO: 2.5 Ton. FACTOR DEL ANILLO: 6000 * LEC.DIAI					LEC.DIAL	+ 22.889
N° DE MOLDE	1	2	2	21	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(25G	olpes)"	5 (12	Golpes)
N° GOLPES	2	.5	2	25	2	5		N° DE GOLPES		56	25	12	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚMEDO gr.	58	92	59	56	59	68		VOLUMEN DE N	MOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE gr.	399	2.0	399	2.0	399	2.0		P. MOLDE + S.	HÚMEDO gr.	12511	12762	10969	0.025	12	65.8	10	48.0	6	12.5
PESO SUELO HÚMEDO gr.	190	0.0	196	4.0	197	6.0		PESO MOLDE	gr.	7981	8418	6772	0.050	22	154.7	16	101.4	11	56.9
N° TARRO	5	2	4	3	6	1		PESO SUELO H	IÚMEDO gr.	4530	4344	4197	0.075	40	314.5	27	199.1	15	92.5
P. TARRO + S. HÚMEDO gr.	149.60	149.60	162.30	162.30	155.40	155.40		N° TARRO		X	U	L	0.100	51	412.1	38	296.7	22	154.7
P. TARRO + S. SECO gr.	137.90	137.90	146.50	146.50	138.20	138.20		P. TARRO + S. I	HÚMEDO gr.	170.80	162.80	171.80	0.150	76	633.7	50	403.2	31	234.6
PESO DE AGUA gr.	11.70	11.70	15.80	15.80	17.20	17.20		P. TARRO + S. S	SECO gr.	154.00	147.20	154.00	0.200	88	739.9	66	545.1	39	305.6
PESO DE TARRO gr.	41.50	41.50	42.70	42.70	42.91	43.50		PESO DE AGUA	A gr.	16.80	15.60	17.80	0.250	106	899.2	77	642.5	44	350.0
PESO SUELO SECO gr.	96.40	96.40	103.80	103.80	95.29	94.70		PESO DE TARR	tO gr.	39.80	40.40	33.80	0.300	129	1102.5	92	775.3	53	429.8
% DE HUMEDAD %	12.14	12.14	15.22	15.22	18.05	18.16		PESO SUELO S	ECO gr.	114.20	106.80	120.20	0.400	151	1296.8	101	855.0	47	376.6
% DE HÚM. PROMEDIO %	OMEDIO % 12.14 15.22 18.11								E HUMEDAD gr.	14.71	14.61	14.81	0.500	156	1340.9	100	846.1	41	323.3
DENSIDAD HÚMEDA gr./cm3.		DENSIDAD HÚ	MEDA gr/cm3.	2.087	2.039	1.966													
DENSIDAD SECA gr/cm3.	DENSIDAD SECA gr/cm3. 1.802 1.813 1.780										1.779	1.712							
		A	BSORCIO	ÓN					EXP	ANSIÓN					R E	SULTAD	O S		
N° MOLDE				.6	2		12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL	MÁXIMA DEI	NSIDAD SEC	CA gr/cm3				315
PESO SUELO HÚM. + PLATO + MO	LDE (gr)			668		928	11157	02-Abr-21	19:00	0.00	0.00	0.00	ÓPTIMO CON						4.5
PESO DEL PLATO + MOLDE (gr)			79		84		6772	03-Abr-21	21:00	-	-	-	CBR AL 100 9						2.5
PESO SUELO HÚMEDO EMBEBIDO			46		45		4385	04-Abr-21	18:00	-	-	-	CBR AL 95 9		ÁX. DENSIDA				.8
PESO SUELO HÚMEDO SIN EMBE	BER (gr)			30	43		4197	05-Abr-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (g	gr)			57		56	188	06-Abr-21	17:00	3.66	3.75	4.05	L.L. :	30.00%	I.P. :	12.27%	MAT. < N°	200 :	99.94%
PESO DEL SUELO SECO (gr)				149	37		3656	% DE EX	XPANSIÓN	3.09%	3.22%	3.50%	SUCS:	CL	AASHTO:	A-6 (12)	GRAV. ESPI		-
ABSORCIÓN DE AGUA (%)			4.0) %	4.4	1 %	5.1 %						EMBEBIDO:	-	ABSORC.:	4.0%	HUM. PENE	TRAC.:	18.5%
Observaciones:																			
Realizado	o por:									Revisado	por:								

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM-1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL
	USO DEL POLÍMERO POLYCOM EN SUBRASANTES
	PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
AUTORES :	Bach, CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
LIBICACIÓN ·	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.10 kg/m3
FECHA :	06/04/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557)							
MÁXIMA DENSI	DAD SECA	(gr/cm3)				1.815	
ÓPTIMO CONTENIDO DE HUMEDAD (%)							
CBR AL 100% DE LA M.D.S. (%)						12.50	
CBR AL 95% DE LA M.D.S. (%)							
SUCS:	CL	LL: 30.0%	IP:	12.27%	PESO ESPECÍFICO:	-	
AASHTO:	A-6 (12)	EMBEBIDO :		-	EXPANSIÓN % :	3.09%	
ABSORCIÓN:	4	.0%	HUM	EDAD DE	PENETRACIÓN :	18.5%	

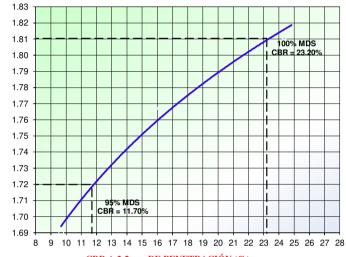
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

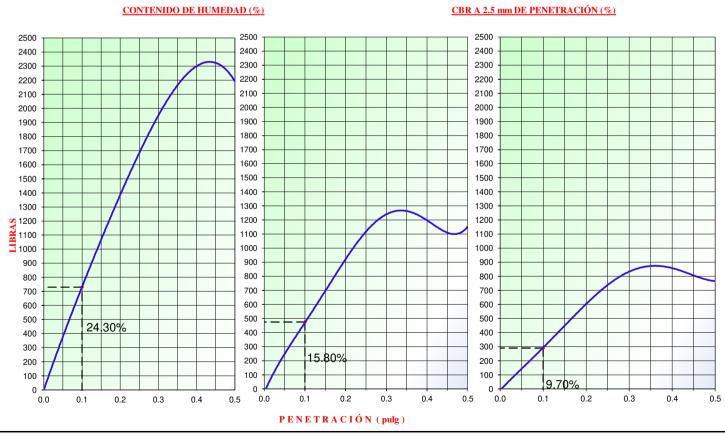
Y CONCRETO

PROYECTO : ES	STABIL	IZACIÓN	DE SUE	LOS FIN	OS MEDI	ANTE EL	USO DE	L POLÍMERO POI	LYCOM EN S	UBRASANTES	PARA CAN	IINOS DE	BAJA TRA	ANSITABILIDAI	EN LA CIU	JDAD DE IQ	UITOS, 2020)		
AUTORES : Ba	ach. CO	ONTOGU	RIS POM	A, KARL	O'S MIJA	NL.	Bach. P	ASMIÑO SHAHUA	NO, MARCO	ANTONIO			INGEN	ENIERO RESP.: INGº MIGUEL ROBALINO OSORIO						
UBICACIÓN : DI	ISTRIT	O DE BEI	LEN				ENSAY	O N° : 3.00					TÉCNI	FÉCNICO :						
MUESTRA : Po	olycom	1 0.20 kg/	m3				MATER	AL : C-2					FECH	A DE INICIO :	09/0	04/21	FECHA DE	TÉRMINO:	20/0)4/21
	REI	LACIÓN	HUMED	AD-DENS	SIDAD (A	STM D-15	557)		C.B.R.			PENETRACIÓN								
VOLUMEN DEL MOLD	DE :	939.98	30 cm3	N	ИÉТОDО D	E COMPA	CTACIÓN	: "A"	VOL. MOLI	DE: INDICADO	N°	DE CAPAS :	: 5	CAP. DEL ANI	LLO: 2.5 Ton.	FACTOR D	EL ANILLO :	6000 *	LEC.DIAL	+ 22.889
N° DE MOLDE		1	2	2	21	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(250	olpes)"	5 (12	Golpes)
N° GOLPES		2	25	2	25	2	5		N° DE GOLPES	1	56	25	12	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚMEDO	gr.	58	59	59	942	59	52		VOLUMEN DE	MOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE	gr.	399	2.0	399	92.0	399	2.0		P. MOLDE + S.	HÚMEDO gr.	12470	12720	10895	0.025	21	145.8	15	92.5	11	56.9
PESO SUELO HÚMEDO	gr.	186	7.0	195	50.0	196	0.0		PESO MOLDE	gr.	7981	8418	6772	0.050	43	341.1	27	199.1	19	128.0
N° TARRO		5	2	4	3	6	1		PESO SUELO H	IÚMEDO gr.	4489	4302	4123	0.075	64	527.3	47	376.6	30	225.7
P. TARRO + S. HÚMEDO	gr.	156.10	137.40	154.50	158.60	140.20	166.80		N° TARRO		W	Y	R	0.100	95	801.9	66	545.1	40	314.5
P. TARRO + S. SECO	gr.	144.20	127.80	139.60	143.20	124.80	148.00		P. TARRO + S.	HÚMEDO gr.	178.40	165.20	185.70	0.150	127	1084.9	80	669.1	55	447.5
PESO DE AGUA	gr.	11.90	9.60	14.90	15.40	15.40	18.80		P. TARRO + S.	SECO gr.	160.90	149.60	166.70	0.200	162	1393.9	108	916.9	70	580.5
PESO DE TARRO	gr.	40.70	42.90	38.40	37.30	38.50	41.30		PESO DE AGUA	A gr.	17.50	15.60	19.00	0.250	193	1667.1	125	1067.2	89	748.8
PESO SUELO SECO	gr.	103.50	84.90	101.20	105.90	86.30	106.70		PESO DE TARI	RO gr.	37.50	40.41	33.80	0.300	222	1922.3	151	1296.8	99	837.3
% DE HUMEDAD	%	11.50	11.31	14.72	14.54	17.84	17.62		PESO SUELO S	ECO gr.	123.40	109.19	132.90	0.400	268	2326.4	138	1182.0	101	855.0
% DE HÚM. PROMEDIO	%	11.	.40	14	.63	17.	73		CONTENIDO D	E HUMEDAD gr.	14.18	14.29	14.30	0.500	252	2185.9	135	1155.5	91	766.5
DENSIDAD HÚMEDA gr	r./cm3.	1.9	986	2.0	075	2.0	85		DENSIDAD HÚ	MEDA gr/cm3.	2.068	2.019	1.932							
DENSIDAD SECA gr/	/cm3.	1.7	783	1.8	810	1.7	71		DENSIDAD SEC	CA gr/cm3.	1.811	1.767	1.69							
			A	BSORCIO	ÓN					EXP	ANSIÓN					R E	SULTAD	O S		
N° MOLDE					16	2		12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL	MÁXIMA DENSIDAD SECA gr/cm3 1.810						
PESO SUELO HÚM. + PLA	TO + MO	LDE (gr)			615		380	11088	16-Abr-21	19:00	0.00	0.00	0.00		ÓPTIMO CONTENIDO DE HUMEDAD % 14.3					
PESO DEL PLATO + MOLI					981	84		6772	17-Abr-21	21:00	-	-	-	CBR AL 100 % DE LA MÁX. DENSIDAD SECA % 23.2						
PESO SUELO HÚMEDO EN	MBEBIDO	O (gr)			534	44		4316	18-Abr-21	18:00	-	-	-	CBR AL 95		IÁX. DENSII		7 ₀		1.7
PESO SUELO HÚMEDO SI	N EMBEI	BER (gr)			189	43		4123	19-Abr-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORE	,,,	gr)			45		50	193	20-Abr-21	17:00	2.98	3.45	3.69	L.L. :	29.6%	I.P. :	11.18%	MAT. < N°		99.94%
PESO DEL SUELO SECO	(gr)				932	37		3607	% DE E	XPANSIÓN	2.52%	2.97%	3.19%	SUCS:	CL	AASHTO:	A-6 (11)	GRAV. ESPI		-
ABSORCIÓN DE AGUA	(%)			3.7	7 %	4.3	%	5.4 %	,					EMBEBIDO:	-	ABSORC.:	3.7%	HUM. PENE	TRAC.:	18.0%
Observaciones:																				
		-																		
Re	ealizado	o por:									Revisado	oor:								

LABORATORIO DE MECANICA DE SUELOS

ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM-1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE JOLITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP:	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.20 kg/m3
FECHA :	20/04/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557)							
MÁXIMA DENSIDAD SECA (gr/cm3)	1.810						
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.30						
CBR AL 100% DE LA M.D.S. (%)							
CBR AL 95% DE LA M.D.S. (%)							
SUCS: CL LL: 29.6% IP: 11.18% PESO ESPECÍFICO:	-						
AASHTO: A-6 (11) EMBEBIDO: - EXPANSIÓN % :	2.52%						
ABSORCIÓN: 3.7% HUMEDAD DE PENETRACIÓN :	18.0%						

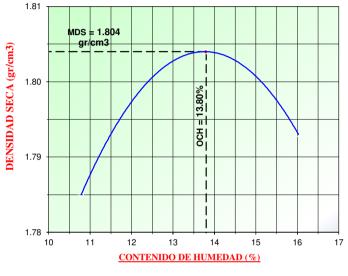
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

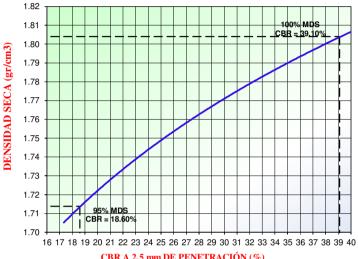
Y CONCRETO

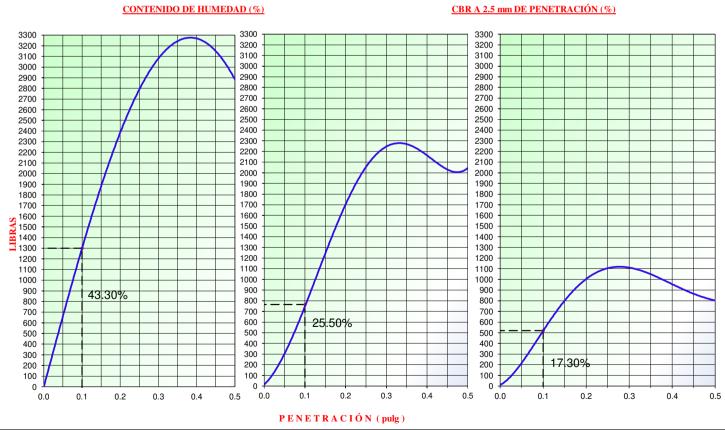
.......

VOLUMEN DEL MOLDE : 9. N° DE MOLDE N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr. PESO SUELO HÚMEDO gr. N° TARRO 5.	30 kg/m3	AD-DENSIDAD (A MÉTODO) 21 25 5921	MATER ASTM D-1557) DE COMPACTACIÓN 16 25	AL : C-2			.B.R.	DE CARAS.		DE INICIO :	23/0			TÉRMINO :	04/0)5/21
RELACI VOLUMEN DEL MOLDE : 9. N° DE MOLDE R° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr. PESO SUELO HÚMEDO gr. N° TARRO 5.	25 5851 3992.0	MÉTODO 1 21 25	ASTM D-1557) DE COMPACTACIÓN 16	<u> </u>				DE CARAS.			23/0				04/0	J5/21
VOLUMEN DEL MOLDE : 9. V° DE MOLDE V° GOLPES V. MOLDE + S. HÚMEDO gr. VESO SUELO HÚMEDO gr. V° TARRO 5.	939.980 cm3 12 25 5851 3992.0	MÉTODO 1 21 25	DE COMPACTACIÓN 16	: "A"				DE CADAS.	-			PEN	ETRACI	ION		
1º DE MOLDE 1º GOLPES 2. MOLDE + S. HÚMEDO gr. EESO MOLDE gr. EESO SUELO HÚMEDO gr. 1º TARRO 5	12 25 5851 3992.0	21 25	16	: "A"		E: INDICADO	** ** ** ** ** ** ** ** ** ** ** ** **			PENETRACIÓN CAP. DEL ANILLO: 2.5 Ton. FACTOR DEL ANILLO: 6000 * LEC.DIAL + 22.889						
N° GOLPES P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr. PESO SUELO HÚMEDO gr. N° TARRO 5	25 5851 3992.0	25												6000 *		+ 22.889
P. MOLDE + S. HÚMEDO gr. PESO MOLDE gr. PESO SUELO HÚMEDO gr. 1º TARRO 5	5851 3992.0		7.3		N° DE GOLDES		16	21	12	N° MOLDE	3 ("56"	• •		olpes)"		Golpes)
PESO MOLDE gr. PESO SUELO HÚMEDO gr. 1º TARRO 5	3992.0	3921	5947		N° DE GOLPES VOLUMEN DE M	IOI DE	56	25	12	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb
PESO SUELO HÚMEDO gr.		3992.0	3947		P. MOLDE + S. H	_	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
N° TARRO 5		1929.0	1955.0		PESO MOLDE		12448 7981	12694 8418	10893 6772	0.025 0.050	28 79	207.9	23 38	163.5 296.7	17 30	110.2
	5 2	4 3	6 1	1	PESO SUELO HU	gr. ÚMEDO gr.	4467	4276	4121	0.030	121	1031.9	62	509.6	42	225.7 332.2
. TARRO I S. HEMEDO gr. 130	50.30 150.20	190.50 170.70	166.40 178.10		N° TARRO	gii.	В	4276 F	T	0.073	159	1367.4	85	713.4	65	536.2
P. TARRO + S. SECO gr. 139	39.20 139.30	172.30 154.70	148.80 159.20		P. TARRO + S. H	ÚMEDO gr.	175.10	154.90	180.20	0.150	215	1860.7	148	1270.3	94	793.0
	1.10 10.90	18.20 16.00	17.60 18.90		P. TARRO + S. SI	U	158.90	141.30	163.50	0.200	269	2335.2	200	1728.7	117	996.5
	37.20 37.30	39.70 39.00	38.70 41.60		PESO DE AGUA	gr.	16.20	13.60	16.70	0.250	318	2764.5	231	2001.4	133	1137.9
PESO SUELO SECO gr. 102	2.00 102.00	132.60 115.70	110.10 117.60		PESO DE TARRO	O gr.	40.20	42.50	41.60	0.300	362	3149.2	262	2273.7	127	1084.9
% DE HUMEDAD % 10.	0.88 10.69	13.73 13.83	15.99 16.07		PESO SUELO SE	CCO gr.	118.70	98.80	121.90	0.400	373	3245.2	249	2159.6	113	961.1
% DE HÚM. PROMEDIO %	10.78	13.78	16.03	•	CONTENIDO DE	HUMEDAD gr.	13.65	13.77	13.70	0.500	332	2887.0	236	2045.4	95	801.9
DENSIDAD HÚMEDA gr./cm3.	1.978	2.052	2.08		DENSIDAD HÚM	IEDA gr/cm3.	2.058	2.007	1.931							
DENSIDAD SECA gr/cm3.	1.785	1.804	1.793		DENSIDAD SEC	A gr/cm3.	1.811	1.764	1.698							
	AI	BSORCIÓN				EXP.	ANSIÓN					RE	SULTAD	O S		
N° MOLDE		16	21	12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL						804	
PESO SUELO HÚM. + PLATO + MOLDE	(gr)	12576	12864	11081	30-Abr-21	19:00	0.00	0.00	0.00	ÓPTIMO CONTENIDO DE HUMEDAD %					3.8	
PESO DEL PLATO + MOLDE (gr)		7981	8418	6772	01-May-21	21:00	-	-	-	CBR AL 100 % DE LA MÁX. DENSIDAD SECA %					9.1	
PESO SUELO HÚMEDO EMBEBIDO (gr)		4595	4446	4309	02-May-21	18:00	-	-	-	CBR AL 95 %		X. DENSIDA		T		8.6
PESO SUELO HÚMEDO SIN EMBEBER	(gr)	4467	4276	4121	03-May-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8":	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (gr)		128	170	188	04-May-21	17:00	2.59	2.89	3.31	L.L. :	27.80%	I.P. :	9.21%	MAT. < N°		99.94%
PESO DEL SUELO SECO (gr)		3930	3758 4.5 %	3624 5.2 %	% DE EX	PANSIÓN	2.19%	2.48%	2.86%	SUCS :	CL	AASHTO:	A-4 (8)	GRAV. ESPI		- 17.10/
ABSORCIÓN DE AGUA (%)		3.3 %	4.5 %	5.2 %						EMBEBIDO:	-	ABSORC. :	3.3%	HUM. PENE	TRAC. :	17.1%

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES
	PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	ING ² MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.30 kg/m3
FECHA :	04/05/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557) "A MÁXIMA DENSIDAD SECA (gr/cm3) 1.80 ÓPTIMO CONTENIDO DE HUMEDAD (%) 13.4 CBR AL 100% DE LA M.D.S. (%) 39. CBR AL 95% DE LA M.D.S. (%) 18.0	4
ÓPTIMO CONTENIDO DE HUMEDAD (%) 13.4 CBR AL 100% DE LA M.D.S. (%) 39.	4
CBR AL 100% DE LA M.D.S. (%) 39.	
× /	0
CBR AL 95% DE LA M.D.S. (%) 18.6	O
	5
SUCS: CL LL: 27.8% IP: 9.21% PESO ESPECÍFICO: -	
AASHTO: A-4 (8) EMBEBIDO: - EXPANSIÓN % : 2.19	%
ABSORCIÓN: 3.3% HUMEDAD DE PENETRACIÓN : 17.	

6.1.7. Clasificación de suelos Sin Polímero – Con Polímero calicata C-3

LABORATORIO DE MECANICA DE SUELOS

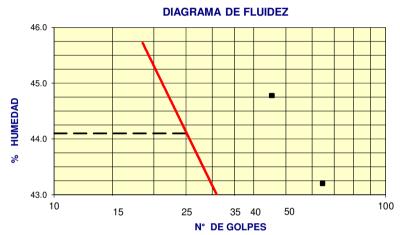
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

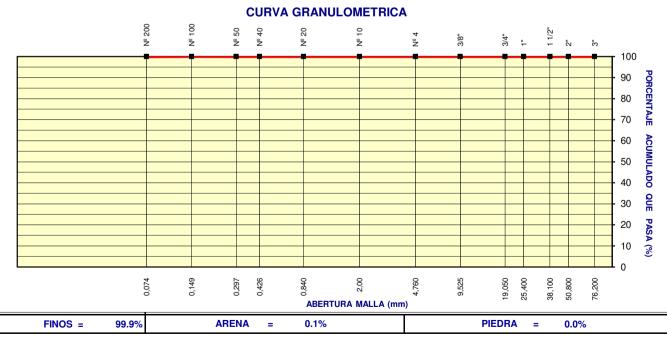
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> ING. RESP.: ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO

CALICATA PROG: PROF. (m) 0.20 - 1.50 TECNICO:


MILECTOA NATUDAL FECHA : may.-21

MUESTRA		NATURAL			
MALLAS SERIE AMERICANA		GRANULO NTP 339			E
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	ſ
3"	76.200		-	100.0	F
2"	50.800	0.0	-	100.0	F
11/2"	38.100	0.0	-	100.0	F
1"	25.400	0.0	-	100.0	F
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0	
N° 4	4.760	0.0	-	100.0	
N° 10	2.000	0.0	-	100.0	
N° 20	0.840	0.0	-	100.0	
N° 40	0.426	0.0	1	100.0	
N° 50	0.297	0.0	-	100.0	
N° 100	0.149	0.1	0.0	100.0	
N° 200	0.074	0.2	0.0	99.9	
-200		499.7	99.9	0.0	
TOTAL		500.0			
RESULT	ADOS DE E	NSAYOS	CLASIF	ICACION	
LÍMITE LÍQUID	00 %	44 10	SUCS	AASHTO	

DESCRIPCION	LI	MITE LIQUIE	00	LIMITE F	PLASTICO
Ensayo No.	1	2	3	1	2
Capsula No.	10	17	3	12	1
Numero de Golpes	19	23	29	-	-
Peso Capsula + Suelo Humedo(gr)	18.61	18.47	18.22	10.12	10.23
Peso Capsula + Suelos Seco (gr)	15.01	14.76	14.40	9.08	9.18
Peso Agua (gr)	3.60	3.71	3.82	1.04	1.05
Peso de la Capsula (gr)	6.42	6.45	6.38	4.29	4.30
Peso Suelo Seco (gr)	7.91	8.31	8.82	4.79	4.88
Contenido de Humedad (%)	45.54	44.65	43.31	21.71	21.52

TOTAL	500.0		
RESULTADOS DE E	NSAYOS	CLASIF	CACION
LÍMITE LÍQUIDO, %	44.10	SUCS	AASHTO
LÍMITE PLÁSTICO, %	21.61	NTP 339.134 (99)	NTP 339.135 (99)
ÍND. PLASTICIDAD, %	22.49	CL	A-7-6 (25)
HUMEDAD NATURAL %	29.79	OL	A-7-0 (23)

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE MEDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

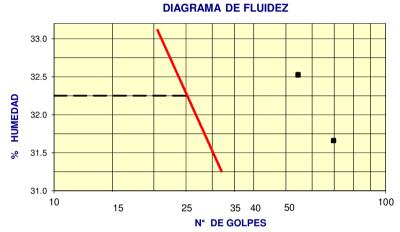
_ _ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

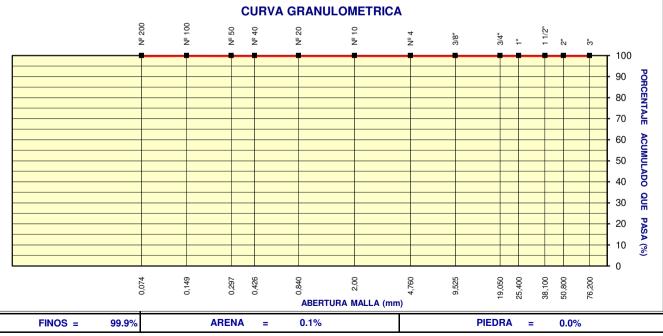
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO ING. RESP. ING. M. ROBALINO O.

CALICATA PROF. (m) 0.20 - 1.50 TECNICO:


MILECTOA POLYCOM 0 100 kg/m2 FECHA: may.-21

MUESTRA		POLYCOM	0.100 kg/m3	3	
MALLAS SERIE AMERICANA		GRANULO NTP 339		,	E
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	ſ
3"	76.200		-	100.0	F
2"	50.800	0.0	-	100.0	F
11/2"	38.100	0.0	-	100.0	F
1"	25.400	0.0	-	100.0	F
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0	
N° 4	4.760	0.0	-	100.0	
N° 10	2.000	0.0	-	100.0	
N° 20	0.840	0.0	-	100.0	
N° 40	0.426	0.0	-	100.0	
N° 50	0.297	0.0	-	100.0	
N° 100	0.149	0.1	0.0	100.0	
N° 200	0.074	0.2	0.0	99.9	
-200		499.7	99.9	0.0	
TOTAL		500.0			
RESULT	ADOS DE E	NSAYOS	CLASIFI	CACION	
LÍMITE LÍQUID	00 %	32 25	SUCS	AASHTO	

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO										
Ensayo No.	1	2	3	1	2								
Capsula No.	6	10	15	18	13								
Numero de Golpes	21	24	30										
Peso Capsula + Suelo Humedo(gr)	18.52	19.12	19.76	7.97	7.94								
Peso Capsula + Suelos Seco (gr)	15.50	16.02	16.59	7.41	7.39								
Peso Agua (gr)	3.02	3.10	3.17	0.56	0.55								
Peso de la Capsula (gr)	6.36	6.48	6.54	4.31	4.36								
Peso Suelo Seco (gr)	9.14	9.54	10.05	3.10	3.03								
Contenido de Humedad (%)	32.99	32.49	31.51	18.06	18.15								

TOTAL	500.0		
RESULTADOS DE E	CLASIF	ICACION	
LÍMITE LÍQUIDO, %	32.25	SUCS	AASHTO
LÍMITE PLÁSTICO, %	18.11	NTP 339.134 (99)	NTP 339.135 (99)
ÍND. PLASTICIDAD, %	14.14	CL	A-6 (14)
HUMEDAD NATURAL %	-	OL.	A-0 (14)

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

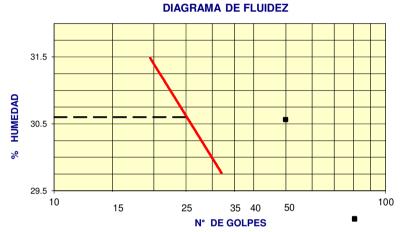
_ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

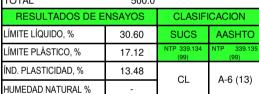
CARACTERIZACION DE SUELOS

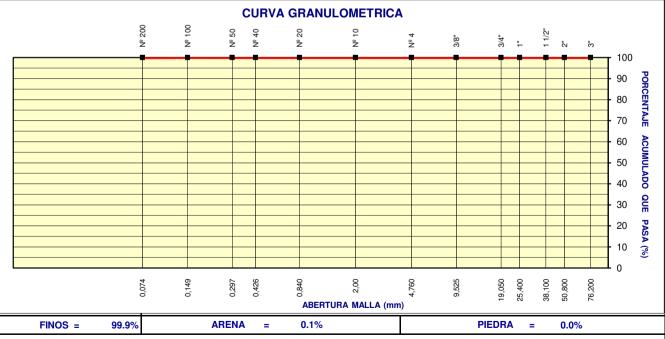
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**


> ING. RESP. ING. M. ROBALINO O. Bach. PASMIÑO SHAHUANO, MARCO ANTONIO


CALICATA C - 3 PROF. (m) 0.20 - 1.50 TECNICO :


MUESTRA POLYCOM 0.200 kg/m3 jun.-21 FECHA

MUESTRA		POLYCOM	0.200 kg/m	3					
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)								
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)	ľ				
3"	76.200		-	100.0	F				
2"	50.800	0.0	-	100.0	F				
11/2"	38.100	0.0	-	100.0	F				
1"	25.400	0.0	-	100.0	F				
3/4"	19.050	0.0	-	100.0	(
3/8"	9.525	0.0	-	100.0	Ī				
N° 4	4.760	0.0	-	100.0					
N° 10	2.000	0.0	-	100.0					
N° 20	0.840	0.0	-	100.0					
N° 40	0.426	0.0	-	100.0					
N° 50	0.297	0.0	-	100.0					
N° 100	0.149	0.1	0.0	100.0					
N° 200	0.074	0.2	0.0	99.9					
-200	499.7 99.9 0.0								
TOTAL		500.0							
RESULTA	ADOS DE E	NSAYOS	CLASIFI	CACION					
LÍMITE LÍOUIE	0/	20.60	CLICC	AACUTO					

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO		
Ensayo No.	1	2	3	1	2
Capsula No.	3	11	18	11	24
Numero de Golpes	20	26	30		
Peso Capsula + Suelo Humedo(gr)	18.01	18.62	19.25	7.46	7.74
Peso Capsula + Suelos Seco (gr)	15.23	15.79	16.32	7.01	7.25
Peso Agua (gr)	2.78	2.83	2.93	0.45	0.49
Peso de la Capsula (gr)	6.36	6.52	6.54	4.37	4.40
Peso Suelo Seco (gr)	8.87	9.27	9.78	2.64	2.85
Contenido de Humedad (%)	31.38	30.53	29.96	17.05	17.19

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE MEDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

Realizado por: Revisado por:

LABORATORIO DE MECANICA DE SUELOS

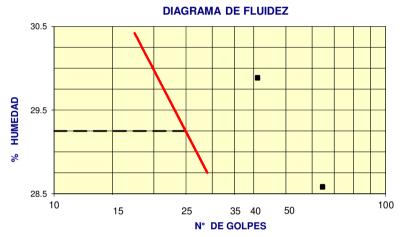
_ _ _ _ _ _ _ _ _ DS, GIMENTAGIONES, PAVIMENTOS Y GONGRETO ESTUDIOS DE SUELOS,

CARACTERIZACION DE SUELOS

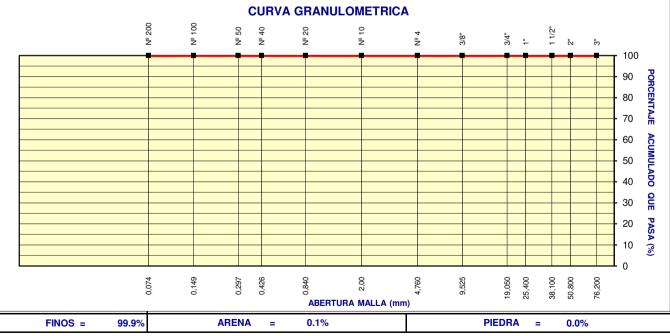
ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE **PROYECTO**

BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

AUTORES Bach. CONTOGURIS POMA, KARLO'S MIJAIL


> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO ING. RESP. ING. M. ROBALINO O.

CALICATA PROF. (m) 0.20 - 1.60 TECNICO:


POLYCOM 0.200 kg/m2 MILECTOA jul.-21 FECHA:

MUESTRA	JESTRA POLYCOM 0.300 kg/m3									
MALLAS SERIE AMERICANA	GRANULOMETRÍA NTP 339.128 (99)									
MA S AME	ABERTURA (mm)	PESOS (g)	RET (%)	PASA (%)						
3"	76.200		-	100.0						
2"	50.800	0.0	-	100.0						
11/2"	38.100	0.0	-	100.0						
1"	25.400	0.0	-	100.0						
3/4"	19.050	0.0	-	100.0						
3/8"	9.525	0.0	-	100.0						
N° 4	4.760	0.0	-	100.0						
N° 10	2.000	0.0	-	100.0						
N° 20	0.840	0.0	-	100.0						
N° 40	0.426	0.0	-	100.0						
N° 50	0.297	0.0	-	100.0						
N° 100	0.149	0.1	0.0	100.0						
N° 200	0.074	0.2	0.0	99.9						
-200		499.7	99.9	0.0						
TOTAL		500.0								
RESULTA	ADOS DE E	NSAYOS	CLASIFI	CACION						
LÍMITE LÍQUID	00 %	29 25	SUCS	AASHTO						

DESCRIPCION	LI	MITE LIQUIE	LIMITE PLASTICO		
Ensayo No.	1	2	3	1	2
Capsula No.	5	8	9	6	14
Numero de Golpes	18	23	27		
Peso Capsula + Suelo Humedo(gr)	17.70	18.31	18.93	8.46	8.67
Peso Capsula + Suelos Seco (gr)	15.06	15.62	16.15	7.81	8.01
Peso Agua (gr)	2.64	2.69	2.78	0.65	0.66
Peso de la Capsula (gr)	6.36	6.52	6.54	4.37	4.40
Peso Suelo Seco (gr)	8.70	9.10	9.61	3.44	3.61
Contenido de Humedad (%)	30.31	29.56	28.96	18.90	18.28

RESULTADOS DE E	CLASIFICACION								
LÍMITE LÍQUIDO, %	29.25	SUCS	AASHTO						
LÍMITE PLÁSTICO, %	18.59	NTP 339.134 (99)	NTP 339.135 (99)						
ÍND. PLASTICIDAD, %	10.66	CL	A-6 (10)						
HUMEDAD NATURAL %	-		A-6 (10)						

DESCRIPCION

SUELO INORGANICO ARCILLOSO DE EMDIANA PLASCTICDAD DE COLOR BEIGE CON PINTAS MARRON CLARO, CONFORMADO POR ARENAS (0.1%) Y FINOS (99.9%).

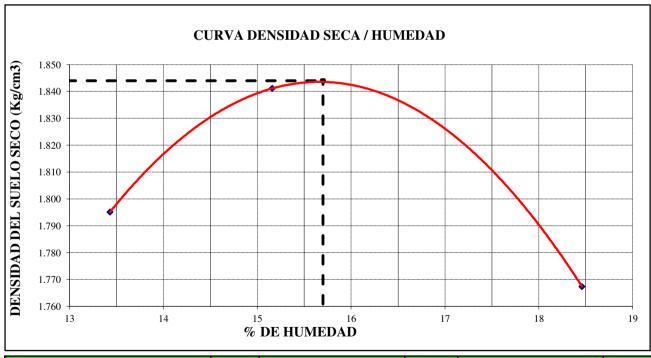
Realizado por: Revisado por:

6.1.8. Proctor Modificado sin Polímero – Con Polímero calicata C-3

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 10-May-21

C - 3 UBICACIÓN DISTRITO DE BELEN MUESTRA: POLYCOM: 0.00 kg/m3 MATERIAL: A-7-6 (25)

Número de capas	5.0	00	5.	00	5.	.00			
Número de Golpes	2	5	2	5	2	25			
Peso suelo humedo + molde	59	06	59	85	59	960			
Peso del molde	39	92	39	92	39	992			
Peso suelo humedo	19	14	19	93	19	968			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	2.0	36	2.1	.20	2.0	094			
Capsula N°	2	5	12	16	1	10			
Peso suelo humedo + cap.	164.70	168.40	182.00	178.50	176.70	188.10			
Peso suelo seco + cap.	149.70	153.20	163.70	161.10	156.00	165.00			
Peso del agua	15.00	15.20	18.30	17.40	20.70	23.10			
Peso de la capsula	36.90	41.20	44.00	45.40	43.30	40.50			
Peso suelo seco .	112.80	112.00	119.70	115.70	112.70	124.50			
% de humedad	13.30	13.57	15.29	15.04	18.37	18.55	•		
Promedio de humedad	13.	43	15.	.16	18	3.46			
Densidad suelo seco	1.7	95	1.8	841	1.	767			

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	44.10
MAXIMA DENSIDAD SECA (kg/cm3)	1.844	CLASIFICACIÓN AASHTO	A-7-6 (25)	ÍNDICE DE PLASTIC. (%) :	22.49
ÓPTIMO CONTENIDO DE HUMEDAD (%)	15.70	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.92

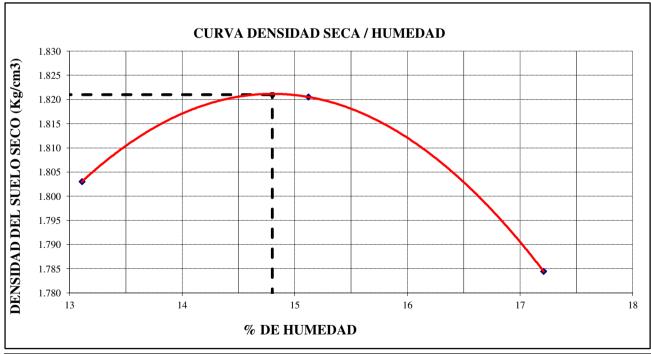
OBSERVACIONES:

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 28-May-21

DISTRITO DE BELEN C - 3 UBICACIÓN MUESTRA: POLYCOM: 0.10 kg/m3 MATERIAL: A-6 (14)

Número de capas	5.0	00	5.	00	5.	.00			
Número de Golpes	2	25		25		25			
Peso suelo humedo + molde	59	09	59	62	59	958			
Peso del molde	39	92	39	92	39	992			
Peso suelo humedo	19	17	19	70	19	966			
Volumen del molde	939	.98	939	0.98	939	9.98			
Densidad suelo humedo	2.0	39	2.0	96	2.0	092			
Capsula N°	13	19	23	31	45	6			
Peso suelo humedo + cap.	183.60	178.80	180.00	185.90	175.00	178.60			
Peso suelo seco + cap.	168.00	163.00	162.30	167.00	156.00	159.30			
Peso del agua	15.60	15.80	17.70	18.90	19.00	19.30			
Peso de la capsula	48.60	42.90	44.50	42.80	46.60	46.10			
Peso suelo seco .	119.40	120.10	117.80	124.20	109.40	113.20			
% de humedad	13.07	13.16	15.03	15.22	17.37	17.05			
Promedio de humedad	13.	.11	15.	.12	17	.21			
Densidad suelo seco	1.8	03	1.8	321	1.	784			

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	32.25
MAXIMA DENSIDAD SECA (kg/cm3)	1.821	CLASIFICACIÓN AASHTO	A-6 (14)	ÍNDICE DE PLASTIC. (%) :	14.14
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.80	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES:

TÉCNICO LABORATORISTA	ING. RESIDENTE DE OBRA	ING. RESPONSABLE DE LABORATORIO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA


CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 15-Jun-21

UBICACIÓN DISTRITO DE BELEN MUESTRA: C - 3 POLYCOM: 0.20 kg/m3 MATERIAL: A-6 (13)

Número de capas	5.0	00	5.	00	5.	.00		
Número de Golpes	2	5	2	5	2	25		
Peso suelo humedo + molde	58	71	5936		5948			
Peso del molde	39	92	3992		3992			
Peso suelo humedo	18	79	1944		1956			
Volumen del molde	939	.98	939	9.98	939	9.98		
Densidad suelo humedo	1.9	1.999 2.068 2.081						
Capsula N°	7	5	4	6	8	9		
Peso suelo humedo + cap.	164.90	158.80	169.40	177.10	156.90	165.60		
Peso suelo seco + cap.	152.10	147.20	153.40	159.90	139.80	147.60		
Peso del agua	12.80	11.60	16.00	17.20	17.10	18.00		
Peso de la capsula	44.10	47.50	46.50	44.80	45.40	47.10		
Peso suelo seco.	108.00	99.70	106.90	115.10	94.40	100.50		
% de humedad	11.85	11.63	14.97	14.94	18.11	17.91		
Promedio de humedad	11.	74	14.96		18.01			
Densidad suelo seco	1.7	1.789		1.799		763		

MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	30.60
MAXIMA DENSIDAD SECA (kg/cm3)	1.801	CLASIFICACIÓN AASHTO	A-6 (13)	ÍNDICE DE PLASTIC. (%) :	13.48
ÓPTIMO CONTENIDO DE HUMEDAD (%)	14.00	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

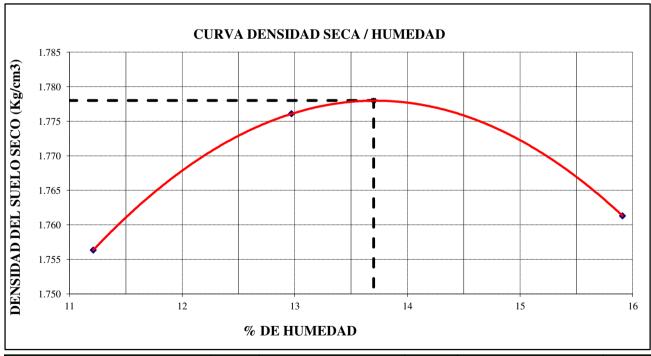
OBSERVACIONES :

TÉCNICO LABORATORISTA ING. RESIDENTE DE OBRA ING. RESPONSABLE DE LABORATORIO

DE SUELOS ESTUDIOS DE SUELOS, CIMENTAGIONES, PAVIMENTOS Y CONCRETO

PROCTOR MODIFICADO NTP 339.141(ASTM D1557)

PROYECTO ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA

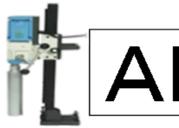

CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020

Bach. CONTOGURIS POMA, KARLO'S MIJAIL **AUTORES**

> Bach. PASMIÑO SHAHUANO, MARCO ANTONIO FECHA: 02-Jul-21

DISTRITO DE BELEN C - 3 UBICACIÓN MUESTRA: POLYCOM: 0.30 kg/m3 MATERIAL: A-6 (10)

Número de capas	5.0	00	5.	00	5.	00		
Número de Golpes	2	5	25		2	25		
Peso suelo humedo + molde	58	28	5878		5911			
Peso del molde	39	92	3992		39	992		
Peso suelo humedo	18	36	1886		19	919		
Volumen del molde	939	.98	939.98		939.98			
Densidad suelo humedo	1.9	53	2.006		2.042			
Capsula N°	7	5	4	6	8	9		
Peso suelo humedo + cap.	164.40	166.30	184.70	180.40	185.60	181.10		
Peso suelo seco + cap.	152.00	153.70	168.50	164.90	166.00	162.60		
Peso del agua	12.40	12.60	16.20	15.50	19.60 18.5			
Peso de la capsula	40.60	42.10	42.90	46.00	44.00	45.20		
Peso suelo seco .	111.40	111.60	125.60	118.90	122.00	117.40		
% de humedad	11.13	11.29	12.90 13.04		16.07	15.76		
Promedio de humedad	11.	21	12.97		15.91			
Densidad suelo seco	1.7	56	1.7	776	1.	761		



MÉTODO DE COMPACACIÓN (ASTM D-1557)	"A"	CLASIFICACIÓN SUCS	CL	LÍMITE LÍQUIDO (%) :	29.25
MAXIMA DENSIDAD SECA (kg/cm3)	1.778	CLASIFICACIÓN AASHTO	A-6 (10)	ÍNDICE DE PLASTIC. (%) :	10.66
ÓPTIMO CONTENIDO DE HUMEDAD (%)	13.70	PESO ESPECÍF. PIEDRA	-	PASA MALLA № 200 (%) :	99.94

OBSERVACIONES :

TÉCNICO LABORATORISTA ING. RESPONSABLE DE LABORATORIO

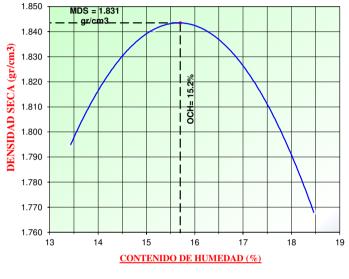
6.1.9. Capacidad de Soporte sin Polímero – Con Polímero calicata C-

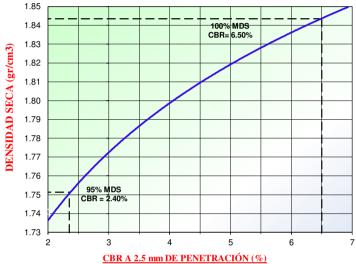
DE SUELOS
ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO

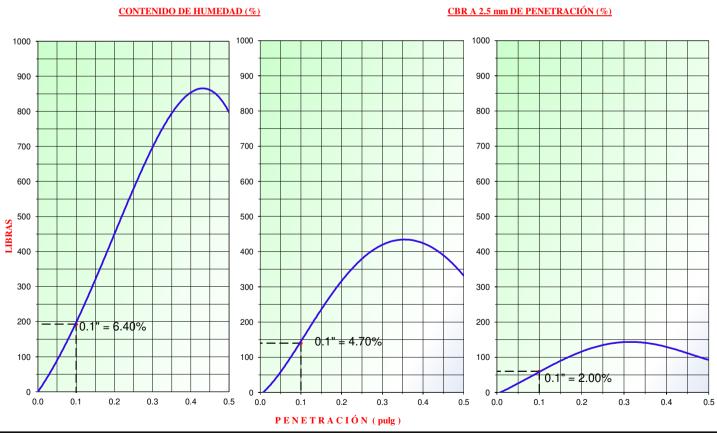
	PROYECTO: ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020																														
PROYECTO:	ESTABI	LIZACIÓN	DE SUE	LOS FIN	OS MEDI	IANTE EL	USO DE	L POLÍMERO PO	LYCOM EN SU	IBRASANTES	PARA CAN	IINOS DE	BAJA TRA	NSITABILIDA	D EN LA CII	JDAD DE IQ	UITOS, 2020)													
AUTORES :	Bach. C	ONTOGU	RIS POM	IA, KARL	O'S MIJA	AIL.	Bach. P	ASMIÑO SHAHU <i>A</i>	ANO, MARCO A	ANTONIO			INGEN	INGENIERO RESP.: INGº MIGUEL ROBALINO OSORIO																	
UBICACIÓN :	DISTRIT	O DE BE	LEN					O N°: 1					TÉCNICO :																		
MUESTRA : Polycom 0.00 kg/m ³ MATERIAL : C - 3											FECH/	A DE INICIO : 11/05/21 FECHA DE TÉRMINO : 22/05/21																			
RELACIÓN HUMEDAD-DENSIDAD (ASTM D-1557)										PENETRACIÓN																					
VOLUMEN DEL MO	LDE :	939.98	30 cm3	N	ИÉTODO D	Е СОМРА	CTACIÓN : "A" VOL. MOLDE : INDICADO N° DE C						: 5	CAP. DEL ANILLO: 2.5 Ton. FACTOR DEL ANILLO: 6000 * LI					LEC.DIAL	+ 22.889											
N° DE MOLDE		1	2	2	21	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(250	iolpes)"	5 (10	Golpes)											
N° GOLPES			25		25		25		N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)											
P. MOLDE + S. HÚME	OO gr.	59	006	59	985	59	60		VOLUMEN DE M	IOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0											
PESO MOLDE	gr.	399	2.0	399	92.0	399	2.0		P. MOLDE + S. H	IÚMEDO gr.	12649	12847	11069	0.025	9	39.1	6	12.5	5	3.6											
PESO SUELO HÚMED	O gr.	191	4.0	199	93.0	196	8.0		PESO MOLDE	gr.	7981	8418	6772	0.050	13	74.7	10	48.0	7	21.4											
N° TARRO		5	2	4	3	6	1		PESO SUELO HU	ÚMEDO gr.	4668	4429	4297	0.075	18	119.1	16	101.4	9	39.1											
P. TARRO + S. HÚMEI		164.70	168.40	182.00	178.50	176.70	188.10		N° TARRO	,	Q	P	V	0.100	26	190.2	23	163.5	13	74.7											
P. TARRO + S. SECO	gr.	149.70	153.20	163.70	161.10	156.00	165.00		P. TARRO + S. H		175.70	172.90	178.60	0.150	47	376.6	31	234.6	14	83.6											
PESO DE AGUA	gr.	15.00	15.20	18.30	17.40	20.70	23.10		P. TARRO + S. SECO gr.		157.10	154.80	159.00	0.200	55	447.5	39	305.6	17	110.2											
PESO DE TARRO	gr.	36.90	41.20	44.00	45.40	43.30	40.50		PESO DE AGUA	gr.	18.60	18.10	19.60	0.250	68	562.8	47	376.6	20	136.9											
PESO SUELO SECO	gr.	112.80	112.00	119.70	115.70	112.70	124.50		PESO DE TARRO		39.83	40.41	33.80	0.300	81	677.9	53	429.8	21	145.8											
% DE HUMEDAD	%	13.30	13.57	15.29	15.04	18.37	18.55		PESO SUELO SECO gr. CONTENIDO DE HUMEDAD gr.		117.27	114.39	125.20	0.400	103	872.7	52	420.9	19	128.0											
% DE HÚM. PROMED		13.			.16	18.					15.86	15.82	15.65	0.500	94	793.0	42	332.2	15	92.5											
DENSIDAD HÚMEDA DENSIDAD SECA	gr./cm3.)36 795		.12 841	2.0	768		DENSIDAD HÚM DENSIDAD SEC	-	2.150	2.079	2.013																		
DENSIDAD SECA	gr/cm3.	1.7		BSORCIO		1.7	708		DENSIDAD SEC.	Ü	1.856 ANSIÓN	1.795	1.741	RESULTADOS																	
N° MOLDE			A		16	2	1	12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL						844												
PESO SUELO HÚM. + P	LATO + MO	OLDE (or)			868		095	11358	18-May-21	19:00	0.00	0.00	0.00				<i>o</i> ₀			15.7											
PESO DEL PLATO + MO		EDE (gr)		.	981	84		6772	19-May-21	21:00	0.00	0.00	0.00						5.5												
PESO SUELO HÚMEDO		O (gr)			387	46		4586	20-May-21	18:00				CBR AL 100 % DE LA MAX. DENSIDAD SECA % CBR AL 95 % DE LA MÁX. DENSIDAD SECA %						2.4											
PESO SUELO HÚMEDO					568	44		4297	21-May-21	19:00				RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-											
PESO DEL AGUA ABSO	RBIDA (gr)		2	19	24	48	289	22-May-21	14:00	4.05	4.55	4.87	L.L. :	44.10%	I.P. :	22.49%	MAT. < N°	200 :	99.90%											
PESO DEL SUELO SEC	O (gr)			40)29	38	324	3716	<u> </u>					SUCS :	CL	AASHTO:	A-7-6 (25)	GRAV. ESP		-											
ABSORCIÓN DE AGUA	(%)			5.4	4 %	6.5	5 %	7.8 %	% DE EX	PANSIÓN	3.42%	3.91%	4.21%	EMBEBIDO:	-	ABSORC. :	5.4%	HUM. PENE	TRAC.:	21.1%											
Observaciones	,								•									•		<u> </u>											
Observaciones	•																														
		-																													
	Realizad	o por:									Revisado	por:																			
																				Realizado por: Revisado por:											

CONTRATISTAS Y
CONSULTORES S. R. L

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.00 kg/m3
FECHA :	22/05/2021

MÉTODO DE C	OMPACTA	CIÓN (ASTN	Л D-15	557)		"A"
MÁXIMA DENS	IDAD SECA	(gr/cm3)				1.844
ÓPTIMO CONT	ENIDO DE	HUMEDAD (%)			15.70
CBR AL 100% [DE LA M.D.	S. (%)				6.50
CBR AL 95% [DE LA M.D.	S. (%)				2.35
SUCS:	CL	LL: 44.1%	IP:	22.49%	PESO ESPECÍFICO:	-
AASHTO:	A-7-6 (25)	EMBEBIDO :		-	EXPANSIÓN % :	3.42%
ABSORCIÓN:	5.4%		HUME	EDAD DE	PENETRACIÓN :	21.1%

LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

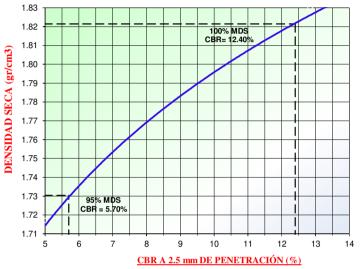
Y CONCRETO

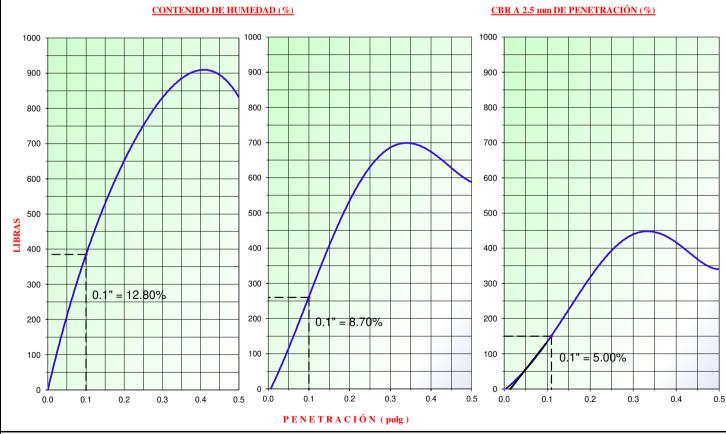
9/06/21 L + 22.889 0 Golpes)								
L + 22.889								
L + 22.889								
L + 22.889								
0 Colnes)								
o Goipes)								
CARGA(lb)								
0.0								
21.4								
48.0								
83.6								
154.7								
225.7								
314.5								
376.6 456.4								
430.4								
341.1								
341.1								
+								
1.821								
14.8								
12.4								
5.7								
-								
99.94%								
-								
18.8%								
ļ								
-								
ļ								
ļ								
Revisado por:								

CONTRATISTAS Y
CONSULTORES S. R. L.

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM-1883)

l F	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
AUTORES : E	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
E	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN : [DISTRITO DE BELEN
ING. RESP : I	INGº MIGUEL ROBALINO OSORIO
MUESTRA : F	Polycom 0.10 kg/m3
FECHA : (09/06/2021

MÉTODO DE C	OMPACTA	CIÓN (ASTN	/I D-1557	')		"A"		
MÁXIMA DENSIDAD SECA (gr/cm3)								
ÓPTIMO CONT	ENIDO DE	HUMEDAD (%)			14.80		
CBR AL 100% D	6 DE LA M.D.S. (%)							
CBR AL 95% D	DE LA M.D.	S. (%)				5.70		
SUCS:	CL	LL: 32.3%	IP: 14	.14%	PESO ESPECÍFICO:	-		
AASHTO :	A-6 (14)	EMBEBIDO :	-		EXPANSIÓN % :	3.05%		
ABSORCIÓN:	4	.0%	HUMED.	AD DE	PENETRACIÓN :	18.8%		

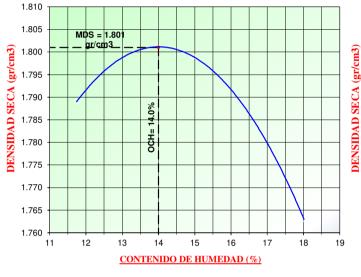
LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

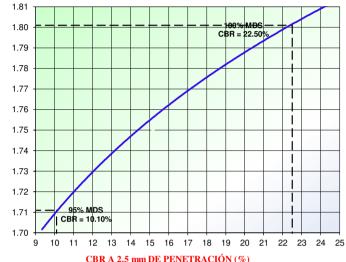
Y CONCRETO

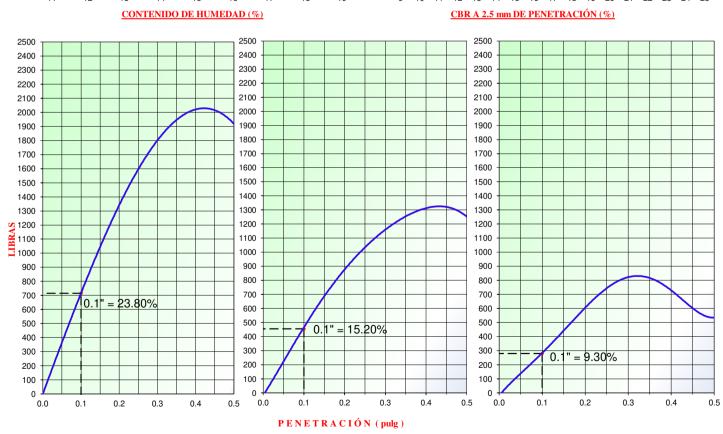
	CTADU	ΙΖΑΟΙΌΝ	DE QUE	1 00 FIN	00 MEDI	ANTE EL		ELACIO			`				. FN I A OII	IDAD DE IO	LUTOC 0000				
											PARA CAN	IINOS DE	BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020								
		ONTOGUI		IA, KARL	O'S MIJA	NL .		ASMIÑO SHAHUA	ANO, MARCO	ANTONIO				NIERO RESP.: INGº MIGUEL ROBALINO OSORIO							
	_	O DE BEL) N° : 3					TÉCNI	co :							
MUESTRA : F	olycom	0.20 kg/i	m3				MATERI	AL : C-3					FECH/	DE INICIO :	16/0	06/21	FECHA DE	TÉRMINO :	27/0	06/21	
	RE	LACIÓN I	HUMED	AD-DENS	SIDAD (A	STM D-1	557)			C	C.B.R.					PEN	NETRAC	I Ó N			
VOLUMEN DEL MOL	DE :	939.98	0 cm3	N	ИÉTODO D	E COMPA	CTACIÓN	: "A"	VOL. MOLD	E: INDICADO	N°	DE CAPAS :	: 5	CAP. DEL ANII	LO: 2.5 Ton.	FACTOR D	EL ANILLO:	6000 *	LEC.DIAL	+ 22.889	
N° DE MOLDE		1	2	2	21	1	6		N° DE MOLDE		16	21	12	N° MOLDE	3 ("56"	Golpes)"	4(250	iolpes)"	5 (10	Golpes)	
N° GOLPES		2		2	25	2			N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	
P. MOLDE + S. HÚMED	O gr.	58	71	59	936	59	48		VOLUMEN DE N	AOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0	
PESO MOLDE	gr.	399	2.0	399	92.0	399	2.0		P. MOLDE + S.	HÚMEDO gr.	12468	12679	10922	0.025	20	136.9	14	83.6	9	39.1	
PESO SUELO HÚMEDO	gr.	187	9.0	194	14.0	195	6.0		PESO MOLDE	gr.	7981	8418	6772	0.050	41	323.3	25	181.3	17	110.2	
N° TARRO		5	2	4	3	6	1		PESO SUELO H	ÚMEDO gr.	4487	4261	4150	0.075	66	545.1	44	350.0	29	216.8	
P. TARRO + S. HÚMEDO) gr.	164.90	158.80	169.40	177.10	156.90	165.60		N° TARRO	-	W	Y	R	0.100	93	784.2	65	536.2	43	341.1	
P. TARRO + S. SECO	gr.	152.10	147.20	153.40	159.90	139.80	147.60		P. TARRO + S. I	HÚMEDO gr.	156.50	168.70	171.90	0.150	119	1014.2	80	669.1	52	420.9	
PESO DE AGUA	gr.	12.80	11.60	16.00	17.20	17.10	18.00		P. TARRO + S. S	SECO gr.	141.90	152.80	156.10	0.200	158	1358.6	99	837.3	70	580.5	
PESO DE TARRO	gr.	44.10	47.50	46.50	44.80	45.40	47.10		PESO DE AGUA	gr.	14.60	15.90	15.80	0.250	187	1614.2	123	1049.5	89	748.8	
PESO SUELO SECO	gr.	108.00	99.70	106.90	115.10	94.40	100.50		PESO DE TARR	O gr.	38.80	41.20	44.00	0.300	203	1755.1	137	1173.2	99	837.3	
% DE HUMEDAD	%	11.85	11.63	14.97	14.94	18.11	17.91		PESO SUELO S	ECO gr.	103.10	111.60	112.10	0.400	236	2045.4	152	1305.6	86	722.2	
% DE HÚM. PROMEDIO) %	11.			.96	18.			CONTENIDO DI	E HUMEDAD gr.	14.16	14.25	14.09	0.500	221	1913.5	146	1252.7	65	536.2	
DENSIDAD HÚMEDA	gr./cm3.	1.9			068	2.0			DENSIDAD HÚ	MEDA gr/cm3.	2.067	2	1.944								
DENSIDAD SECA g	r/cm3.	1.7			799	1.7	63				1.811	1.751	1.704								
			A.	BSORCIO						EXP	ANSIÓN						SULTAD	O S			
N° MOLDE					16	2		12	FECHA	LEC. DIAL	LEC. DIAL	-	MÁXIMA DENSIDAD SECA gr/cm3 ÓPTIMO CONTENIDO DE HUMEDAD %				1.801				
PESO SUELO HÚM. + PL		LDE (gr)			615	128		11097	23-Jun-21	19:00	0.00	0.00	0.00							4.0	
PESO DEL PLATO + MOI					981	84		6772	24-Jun-21	21:00	-	-	-	CBR AL 100						2.5	
PESO SUELO HÚMEDO I		. (6)			534	44	-	4325	25-Jun-21	18:00	-	-	-	CBR AL 95		IÁX. DENSII		%		0.1	
PESO SUELO HÚMEDO S		-			187	42		4150	26-Jun-21	19:00	-	-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-	
PESO DEL AGUA ABSOF		gr)			47		52	175	27-Jun-21	17:00	3.01	3.34	3.49	L.L. :	30.6%	I.P. :	13.48%	MAT. < N°		99.94%	
PESO DEL SUELO SECO					930	37		3637	% DE EX	KPANSIÓN	2.54%	2.87%	3.01%	SUCS:	CL	AASHTO:	A-6 (13)	GRAV. ESP		-	
ABSORCIÓN DE AGUA	(%)			3.7	7 %	4.3	%	4.8 %						EMBEBIDO:	-	ABSORC. :	3.7%	HUM. PENE	TRAC. :	17.7%	
Observaciones:																					
1																					
Į F	Realizado	por:									Revisado	oor:									

CONTRATISTAS Y CONSULTORES S. R. L

LABORATORIO DE MECANICA DE SUELOS


ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM-1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IOLITOS, 2020
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN:	DISTRITO DE BELEN
ING. RESP:	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.20 kg/m3
FECHA :	27/06/2021

MÉTODO DE C	OMPACTA	CIÓN (ASTN	Л D-15	557)		"A"
MÁXIMA DENS	IDAD SECA	(gr/cm3)				1.801
ÓPTIMO CONT	ENIDO DE	HUMEDAD (%)			14.00
CBR AL 100% I	DE LA M.D.	S. (%)				22.50
CBR AL 95% I	DE LA M.D.	S. (%)				10.10
SUCS:	CL	LL: 30.6%	IP:	13.48%	PESO ESPECÍFICO:	-
AASHTO:	A-6 (13)	EMBEBIDO :		-	EXPANSIÓN % :	2.54%
ABSORCIÓN:	3	3.7%	HUME	EDAD DE	PENETRACIÓN :	17.7%

LABORATORIO DE MECANICA DE SUELOS ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS

Y CONCRETO

RELACIÓN DE SOPORTE (ASTM D-1883)

PROYECTO	PROYECTO : ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA CIUDAD DE IQUITOS, 2020											
AUTORES	ORES: Bach. CONTOGURIS POMA, KARLO'S MIJAIL Bach. PASMIÑO SHAHUANO, MARCO ANTONIO INGENIERO RESP.: INGº MIGUEL ROBALINO OSORIO											
UBICACIÓN	: DISTRITO DE BELEN	ENSAYO N°: 4		TÉCNICO :								
MUESTRA	TRA : Polycom 0.30 kg/m3											
	RELACIÓN HUMEDAD-DENSIDAD (ASTM D-1557) C.B.R. PENETRACIÓN											

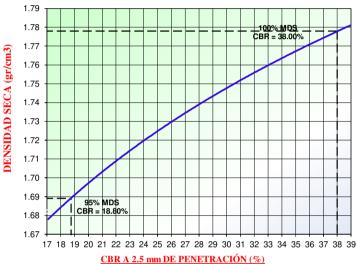
RE	LACIÓN	HUMEDA	AD-DENS	SIDAD (A	STM D-15	557)			C.B.R.					PENETRACIÓN					
VOLUMEN DEL MOLDE :	939.98	80 cm3	N	MÉTODO D	E COMPA	CTACIÓN	: "A"	VOL. MOLI	DE: INDICADO	N°	DE CAPAS	: 5	CAP. DEL ANI	LLO: 2.5 Ton.	FACTOR DE	EL ANILLO :	6000 *	LEC.DIAL	+ 22.889
N° DE MOLDE	1	2	2	21	1	6		N° DE MOLDE	N° DE MOLDE		21	12	N° MOLDE 3 ("56" Golpes)"		Golpes)"	4(25Golpes)"		5 (10	Golpes)
N° GOLPES	2	.5	2	25	2	5		N° DE GOLPES		56	25	10	PEN. (pulg)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)	LEC.DIAL	CARGA(lb)
P. MOLDE + S. HÚMEDO gr.	58	28	58	378	59	11		VOLUMEN DE	MOLDE cc.	2171	2131	2134	0.0	0	0.0	0	0.0	0	0.0
PESO MOLDE gr.	399	2.0	399	2.0	399	2.0		P. MOLDE + S.	HÚMEDO gr.	12412	12612	10856	0.025	25	181.3	24	172.4	19	128.0
PESO SUELO HÚMEDO gr.	183	6.0	188	36.0	191	9.0		PESO MOLDE	gr.	7981	8418	6772	0.050	76	633.7	53	429.8	31	234.6
N° TARRO	5	2	4	3	6	1		PESO SUELO E	IÚMEDO gr.	4431	4194	4084	0.075	114	970.0	85	713.4	48	385.4
P. TARRO + S. HÚMEDO gr.	164.40	166.30	184.70	180.40	185.60	181.10		N° TARRO		В	F	T	0.100	148	1270.3	102	863.8	65	536.2
P. TARRO + S. SECO gr.	152.00	153.70	168.50	164.90	166.00	162.60		P. TARRO + S.	HÚMEDO gr.	175.10	154.60	180.20	0.150	209	1808.0	155	1332.1	92	775.3
PESO DE AGUA gr.	12.40	12.60	16.20	15.50	19.60	18.50		P. TARRO + S.	SECO gr.	158.90	141.30	163.50	0.200	257	2229.8	186	1605.4	108	916.9
PESO DE TARRO gr.	40.60	42.10	42.90	46.00	44.00	45.20		PESO DE AGUA	A gr.	16.20	13.30	16.70	0.250	298	2589.4	227	1966.3	138	1182.0
PESO SUELO SECO gr.	111.40	111.60	125.60	118.90	122.00	117.40		PESO DE TARI	RO gr.	40.20	42.50	41.60	0.300	347	3018.1	274	2379.0	152	1305.6
% DE HUMEDAD %	11.13	11.29	12.90	13.04	16.07	15.76		PESO SUELO S	ECO gr.	118.70	98.80	121.90	0.400	365	3175.4	304	2642.0	159	1367.4
% DE HÚM. PROMEDIO %	11.	.21	12.	.97	15.	91		CONTENIDO D	E HUMEDAD gr.	13.65	13.46	13.70	0.500	358	3114.2	283	2457.9	149	1279.2
DENSIDAD HÚMEDA gr./cm3.	1.9	953	2.0	006	2.0)42		DENSIDAD HÚ	MEDA gr/cm3.	2.041	1.968	1.913							
DENSIDAD SECA gr/cm3.	1.7	756	1.7	776	1.7	62		DENSIDAD SEC	CA gr/cm3.	1.796	1.735	1.682							
		Al	BSORCIO	ÓN					EXP	ANSIÓN					RE	SULTAD	O S		
N° MOLDE			1	6	2	1	12	FECHA	HORA	LEC. DIAL	LEC. DIAL	LEC. DIAL	MÁXIMA DE	NSIDAD SEC	CA gr/cm3			1.	778
PESO SUELO HÚM. + PLATO + MO	LDE (gr)		12:	536	127	756	11016	10-Jul-21	19:00	0.00	0.00	0.00	ÓPTIMO CON	TENIDO DE	HUMEDAD	%		1	3.7
PESO DEL PLATO + MOLDE (gr)			79	981	84	18	6772	11-Jul-21	21:00	-	-	-	CBR AL 100 9	% DE LA MÂ	X. DENSIDA	AD SECA %		3	8.0
PESO SUELO HÚMEDO EMBEBIDO	O (gr)		45	555	43	38	4244	12-Jul-21	12-Jul-21 18:00		-	-	CBR AL 95 9	% DE LA MÂ	X. DENSIDA	AD SECA %		1	8.8
PESO SUELO HÚMEDO SIN EMBE	BER (gr)		44	131	41	94	4084	13-Jul-21	13-Jul-21 19:00		-	-	RET ACUM.	3/4" :	-	3/8" :	-	N° 4 :	-
PESO DEL AGUA ABSORBIDA (g	gr)		1:	24	14	14	160	14-Jul-21	17:00	2.45	2.78	3.11	L.L. :	29.25%	I.P. :	10.66%	MAT. < N°	200 :	99.94%
PESO DEL SUELO SECO (gr)			38	399	36	96	3592	% DE E	XPANSIÓN	2.07%	2.39%	2.69%	SUCS:	CL	AASHTO:	A-6 (10)	10) GRAV. ESPECIÍFIC. : -		-
ABSORCIÓN DE AGUA (%)			3.2	2 %	3.9	%	4.5 %	70 DE E.	AI ANSION	2.01 /0	2.03/0	2.03/0	EMBEBIDO:	-	ABSORC.:	3.2%	HUM. PENE	TRAC.:	16.9%

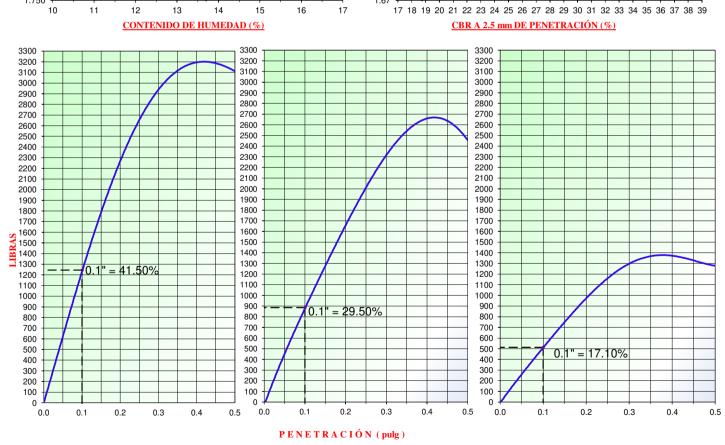
PESO DEL AGUA ABSORBIDA (gr)	124	144	160	14-Jul-21	17:00	2.45	2.78	3.11	L.L. :	29.25%	I.P. :	10.66%	MAT. < N°200 :	99.94%
PESO DEL SUELO SECO (gr)	3899	3696	3592	% DE EXF	DANICIÓN	2.07%	2.39%	2.69%	SUCS:	CL	AASHTO:	A-6 (10)	GRAV. ESPECIÍFIC. :	-
ABSORCIÓN DE AGUA (%)	3.2 %	3.9 %	4.5 %	% DE EAF	PANSION	2.07%	2.39%	2.09%	EMBEBIDO:	-	ABSORC.:	3.2%	HUM. PENETRAC.:	16.9%
Observaciones:														
Realizado por:						Revisado p	oor:							

CONTRATISTAS Y CONSULTORES S. R. L.

LABORATORIO DE MECANICA DE SUELOS

ESTUDIOS DE SUELOS, CIMENTACIONES, PAVIMENTOS Y CONCRETO




RELACIÓN DE SOPORTE CBR (ASTM -1883)

PROYECTO:	ESTABILIZACIÓN DE SUELOS FINOS MEDIANTE EL USO DEL POLÍMERO POLYCOM EN SUBRASANTES
	PARA CAMINOS DE BAJA TRANSITABILIDAD EN LA
AUTORES :	Bach. CONTOGURIS POMA, KARLO'S MIJAIL
	Bach. PASMIÑO SHAHUANO, MARCO ANTONIO
UBICACIÓN :	DISTRITO DE BELEN
ING. RESP :	INGº MIGUEL ROBALINO OSORIO
MUESTRA :	Polycom 0.30 kg/m3
FECHA :	14/07/2021

MÉTODO DE COMPACTACIÓN (ASTM D-1557)				"A"		
MÁXIMA DENSIDAD SECA (gr/cm3)					1.778	
ÓPTIMO CONTENIDO DE HUMEDAD (%)					13.70	
CBR AL 100% DE LA M.D.S. (%)				38.00		
CBR AL 95% DE LA M.D.S. (%)				18.75		
SUCS:	CL	LL: 29.3%	IP:	10.66%	PESO ESPECÍFICO:	-
AASHTO:	A-6 (10)	EMBEBIDO :		-	EXPANSIÓN % :	2.07%
ABSORCIÓN:	3.2%		HUMEDAD DE PENETRACIÓN :		16.9%	

6.2. Matriz de Consistencia

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPOTESIS PRINCIPAL	VARIABLES	DISEÑO METODOLOGICO
¿Cómo influye el uso de polímero Polycom en la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos, 2020?	Estabilizar los suelos finos mediante el uso del polímero Polycom en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos, 2020	Los suelos finos estabilizados con el Polímero Polycom pueden ser utilizados en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos 2020.		Tipo de investigación: Aplicada Diseño de investigación: Experimental
PROBLEMAS ESPECIFICOS	OBJETIVOS ESPECIFICOS	HIPOTESIS ESPECIFICOS		Áreas y Líneas de estudio:
¿Cuál es el alcance del uso del polímero Polycom en la estabilización de suelos finos en la ciudad de Iquitos?	Determinar el alcance del uso del polímero Polycom en la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos	El uso de polímero Polycom influye de manera considerable en la estabilización de suelos finos en la ciudad de Iquitos.	Variable Independiente:	Área: Ingeniería y Tecnología Línea: Ingeniería de los Materiales y construcción de
2) ¿Cuál es la ventaja en la estabilización de suelos finos con el polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de lquitos?		El uso de polímero Polycom proporciona grandes ventajas para la estabilización de suelos finos en subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos.	Polímero Polycom. Variable Dependiente: Suelos finos	Población y muestra - Suelos finos de la ciudad de lquitos Suelos finos estabilizados con Polycom en el AA. HH Tierra Prometida-Calle Jerusalén-
3) ¿Qué impactos ambientales ocasiona el uso del polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de lquitos?	3) Explicar los impactos ambientales que ocasiona el uso del polímero Polycom en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de lquitos.	3) El uso de polímero Polycom ocasiona impactos ambientales positivos en la construcción de subrasantes para caminos de baja transitabilidad en la ciudad de Iquitos		distrito de Belén Instrumentos: - Estación Total - Maquinaria - Software; Excel, Word - Equipo de laboratorio de suelos

6.3. Información Complementaria

6.3.1. Información General del Producto

RAUSTL Paving the way to Latin America

- Mejoramiento y Nivelación de Sub-rasante
- ✓ Remediación de Suelos **Dispersos**
- ✓ Estabilización de Pavimento
- ✓ Mejoramiento de Capa de Rodadura
- ✓ Control de Sedimentos y Erosión
- ✓ Mejoras las arcillas, Limos, Arena, Gravas y piedra triturada
- ✓ Control de Polvo

Para mayor información contactar: PERU y LATIN AMERICA

AUSTLATIN Ptv Ltd

Edgar Montesinos Cel. 991 302 559 RPM #991 302 559 RPC 961 765 623 Mob. +61 409 124 568 (Australia)

Em. emaustlatin@live.com.au

AUSTLATIN PERU

Pucallpa - Ucavali

Doylith Cauper Cel. 961 508 737 RPM #825271 Em. Doylith cj@hotmail.com

POLYMPERU SAC

Lima -

Gonzalo Gutierrez +51 1 3370051 Cel +51 990 263 614 Em. gongutsa@hotmail.com ggutierrez@polymperu.com

AUSTRALIA

Seals Group Pty Ltd

Jean Turley +61 7 5543 1053 Mob - 0414 185 493 Em. info@seal-group.com

Información General

Descripción y Componentes:

PolyCom es un producto Australiano que viene en una presentacion de polvo concentrado de acrylamida, surfactantes y ligantes que cuando se mezclan con el agua forman un líquido co-polímero. (Estabilizador de suelos liquido)

La función principal de este producto es impartir mayor resistencia al material a tratar, en condiciones tanto secas como húmedas. En combinación con buenas técnicas de construcción la inclusión de **PolyCom** permite conseguir mayores densidades en una amplia variedad de materiales con el beneficio añadido de proporcionar un alto grado de resistencia al agua y una mayor flexibilidad a la capa tratada.. Esta 'accion hidrofob ica ' ayuda a mantener la resistencia mejorada del pavimento en seco durante los ciclos mojados

La mejora de la resistencia de los pavimentos (CBR mejorado) se logra a través de la lubricación eficiente de las partículas y el aumento viscoso de agua/PolyCom que a su vez crea un mayor grado de densificación y por lo tanto la fricción interna dentro del material huésped tratado .Esto a su vez resulta en aumento del módulo (rigidez) en la capa estabilizada al secarse de nuevo.

Lo que PolyCom ofrece:

La estabilización con **PolyCom** dará un aumento de CBR, mayor flexibilidad, y un grado muy alto de resistencia al agua.

PolyCom resiste la fisuración en bloque, la fatiga y la contracción de agrietamiento.

Usos:

- ✓ Estabilización de pavimento usando maquinas motoniveladoras o estabilizadoras.
- ✓ Mejoramiento de la Capa de Rodadura en terreno natural y caminos de grava sin sellar
- ✓ Estabilización de sub-rasantes para aumentar la resistencia y prevenir el ablandamiento al agua
- ✓ Nivelación de capa sub-rasante durante la construcción de camino para evitar daños de tráfico y ablandamiento al agua
- Remediación de suelos sódicos para evitar las llamadas tuberías (piping /tunneling)
- Construcción de Caminos de Acceso y Zonas Estacionarias
- Impermeabilización de materiales de carretera

Instalación:

La instalación es simple, como escarificar, mezclar y compactar

La Instalación o aplicación con las máquinas de estabilización es fácil y simple. Esto se aplica con todos los tipos de material en todas las profun didades a estabilizar (No hay cambios de procedimiento estándar de Mezcla)

No se necesita tiempo adicional ni maquinarias especiales para estabilizar con **PolyCom**.

Requisitos de profundidad para la Estabilización:

Los requisitos pueden variar, por lo tanto esto se analizara trabajo por trabajo.

PolyCom stabilising aid

Especificaciones

Clasificación Técnica

Polyacrylamida soluble en agua / Liquido Estabilizador de suelo

Beneficios de uso

La estabilización con **PolyCom** ofrece mayor Resistencia (mayor CBR), mayor flexibilidad y un alto grado de Resistencia al agua, al material huésped. Las áreas estabilizadas se pueden volver a trabajar y el material tratado puede ser almacenado por periodos prolongados.

Ambiental

PolyCom está aprobado para su uso en las zonas de Captación de agua (Western Australia Departamento de Salud) y es el único producto estabilizador evaluado y certificado por 'ECOBuy' (centro de Gobierno para la compra por el medio ambiente) y el Gobierno I ocal de N SW de sostenibilidad.

Requerimiento de Planta

Ninguna planta o equipo especial es requerido. La instalación del producto es hecho competen temente con equipos estandarizados de estabi lización.

Clasificación de riesgos

Sustancia NO PELIGROSA.
Clasificación de peligro según los criterios de NORSC NO es-Mercancía Peligrosa.
Clasificación de mercancía peligrosa de acuerdo con el Código Australiano de Mercancias Peligrosas. (Infosafe No IPWGUI.)

Apariencia Fisica

Polvo Cristalino Azul/Verde

Manejo y Seguridad

Según Ficha Técnica

Embalaje

Dos Kilos por cada Botella plástica

Dosificación sugerida - seco o húmedo

20 partes por millón/ 50,000:1 / 0.0020% Una botella x 2Kg trata 50m3 de solido

copyright © 2010

Ahorro típico de agua

30%-50% durante proceso de construcción

Beneficios que se imparten al suelo tratado

Una mayor resistencia y flexibilidad - Alto grado de resistencia al agua - saneamiento y/o remediación de suelos dispersivos y arcillas reactivas - mejora la manejabilidad

Clasificación de Pavimento Estabilizado

Modificado

Pruebas

Protocolo Nacional de pruebas disponible a petición

Comparación de Emisión de Carbón

Producto de Estabilización tradicional – 1,500 Kg de CO2

es producido para manufacturar suficiente producto para estabilizar 100 tons de material de pavimento a una tasa estándar de 2%

PolyCom producto estabilizador - 5 Kg of C02

es producido para manufacturar suficiente producto para estabilizar 100 tons de material de pavimento a una tasa equivalente.

Nota:

PolyCom Stabilising Aid ha sido objeto de una auditoria completa e independiente de parte del Gobierno Australiano con muchos estudios de casos que han sido independientemente evaluados.

Para mayor información detallada contactar - admin@sea sgroup.com; emaustlatin@live.com.au

Suministro y Asistencia técnica

La Distribución del producto **PolyCom** en Australia es administrada por los grupos miembros locales.

Para mayor información contactar:

admin@sea lsgroup.com

Para abastecimiento global contactar:

admin@dmgcivil.com

Para Latín América contactar:

emaustlatin@live.com.au

SEALS Group - Specialist sub-contractor

Estabilización de Pavimento - Se estabilizo la base a 15cm y se selló con 2" de Asfalto. Se logró una buena estructura con una mayor resistencia y flexibilidad que no mostrara ahuellamientos ni baches por años por venir - Huánuco Perú.

Mejoramiento de Capa de Rodadura - una superficie más dura, apretada y resistente al desgaste que se puede volver a trabajar - Shire Road, Qld

Suelo Natural - Introduciendo durabilidad, haciendo que los caminos sean más usables y resistentes a la intemperie - Shire road, Qld

APPLICACION Y USOS 2013

Remediación de Suelos Dispersivos - Estabilizar sub rasantes altamente sódicas. Incrementa la fuerza y la resistencia al agua y reduce el desgaste y la erosión de la superficie a través de la floculación de partículas finas - Origin Energy

Tratamiento a nivel Afirmado – Suelo arcilloso de baja resistencia con lugares arenosos y gravosos, se logró garantizar una mejor calidad y mayor duración de la superficie, con menos daños de tráfico – Cajamarca Peru

Estabilización de suelos difíciles de manejar, suelos que generalmente se desechan se les mejora la viabilidad y proporcionan un suelo con mayor fuerza y estabilidad - Kissi Kenya

APPLICACION Y USOS 2013

Mejora de caminos de acceso - El mejoramiento de la capa de rodadura en los caminos mineros puede efectuarse utilizando los equipos disponibles del lugar y es fácil para reducir el polvo y los requerimientos de mantenimiento — Arcilla terciaria en la Mina Jellinbah.

Estabilización de Zonas Estacionarias - La estabilización de la capa de rodadura o de zonas de estacionamiento pueden ser completadas con equipos estándares para ahorrar costos - BMA Mina Crinum

Este re-capeo fue estabilizado con PolyCom stabilising aid y las hombreras no fueron tratadas - Inundación, Emerald, Qld

Oiycom

Aumenta la resistencia del Material

Crea Pavimentos Flexibles

Crea Pavimentos Resistentes al Agua

Se instala con maquinaria estándar de estabilización.

Esparcimiento en seco y húmedo

Aplicado con una cuadrilla de Motoniveladora.

Esparcimiento en seco y húmedo

Mínimo Costo de transporte

No hay Filtración

No es resbaladizo cuando esta mojado.

No es Corrosivo

Ambientalmente No Dañino

Cumple con la Salud y Seguridad

Se usa desde Arcillas hasta Gravas

Costo Efectivo

No se agrieta por contracción

No agrietamientos por fatiga

30% - 50% Ahorro de Agua

2 Kilos trata 50m³

"Se trata de mejorar y preservar la resistencia en seco del material disponible"

PROYECTOS RECIENTES 2013

Proyectos Completados Recientemente

Queensland Gas -14 km de caminos y áreas estacionarias y parqueadero – estabilización y control de polvo en la Planta de Gas de Windibri (134,000 m²)

Minera Minerva - Estabilización y Mejoramiento del Norte y Sur de caminos de extracción y áreas de trabajo (210,000 m²)

Origin Energy - Estabilización de sub-rasante (Arcilla re activa con alto contenido de Sodio) para fortalecer y proteger en contra del clima, y daño del tráfico y las llamadas tuberías -Talinga Gas Plant (610,000 m²)

Brisbane Airport Corporation – Mejoramiento de la pre carga del Aeropuerto y Control de Polvo

Origin Energy - Estabilización de sub-rasante (arcilla limosa), Camino de acceso y área de construcción para RO de plataforma y estanques (120,000 m²)

Access Boonal - Estabilización - Mejoramiento de la seguridad a través de la construcción de 27.2 Km de Berma (sin importar grava - 40,800 m²)

Minera Jellinbah – Mejorar existente camino de acceso utilizando la técnica de compactación profunda. Estabilización de superficie de rodadura (135,000 m²)

Municipios - Estabilización y mejoramiento de más de 500 Kms de camino sellado y afirmado. Sur de Queensland (3,500,000 m²)

Bohemia Downs Road – Mejoramiento de 35 Km de suelo natural (210,000 m²)

Minera Crinum - Estabilizar la zona principal de estacionamiento y área de trabajo (32,000 m²)

Thiess – Estabilización de sub-rasante para la extensión de la carretera Hunter (fortalecimiento y nivelación de material arcilloso)

Provias Nacional Huánuco-Se estabilizo la base a 15cm, se obtuvo una estructura bastante fuerte y resistente. (6,196 m²)

Connorvial Peru- Se estabilizo a nivel Afirmado, obteniéndose una superficie resistente tanto al trafico como al agua (4933 m²)

Consorcio Paucar, Estabilización y pavimentación de puntos críticos 13km Carretera Cerro de Pasco-Huánuco-Tingo María (117,000 m²) (trabajo en Curso)

Resumen reciente de Mayores Clientes

- > BMD Construction
- > CMC Construction
- > Brisbane Airport Corporation
- > Minera Minerva
- > MIPAC
- Origin Energy
- > Ostwald Bros
- > Sixteen Qld Shires
- Thiess (Hunter Expressway Alliance)
- Krestel Coal (Rio Tinto)
- Mina JMS
- Mitchell Environmental Builders
- Mina New Acland
- > Unimin
- Watpac
- Garwoods Earthmoving
- > Forestry Queensland
- > Thiess (Tulla Sydney Alliance)
- Environmental Protection Agency
- > Yarrabee Coal
- > Main Roads Queensland
- > Parks and Wildlife
- > Queensland Gas Company
- Minera Crinum (BMA)
- Diversified Engineering
- Jellinbah Coal
- > F.K. Gardner Construction
- BHP Minera Cannington
- Minera BMA Blackwater
- Provias Nacional Huanuco PERU
- Consorcio CONNORVIAL PERU
- Consorcio PAUCAR PERU

CONTACT DETAILS 2013

Para Mayor Información:

PERU y LATIN AMERICA:

AUSTLATIN Pty Ltd

Edgar Montesinos Cel. 991 302 559 RPM#991 302 559 RPC 961 765 623

Mob. +61 409 124 568 (Australia) Em. emaustlatin@live.com.au

POLYMPERU SAC

Lima

Gonzalo Gutierrez +51 13370051 Cel+51 990 263 614 Em. gongutsa@hotmail.com ggutierrez@polymperu.com

AUSTLATIN PERU

Pucallpa – Ucayali

Doylith Cauper Cel. 961 508 737 RPM #82 Em. Doylith_cj@hotmail.com RPM #825271

AUSTRALIA

Seals Group Pty Ltd

Phil Turley +61 7 5543 1053 Mob - 0414 185 493 Em. info@seals-group.com

Paving the way to Latin America

WWW.POLYMPERU.COM WWW.ROADMAKER.COM WWW.SEALSGROUP.COM

PolyCom Stabilising Aid Estabilizando su Futuro

6.3.2. Especificaciones Técnicas

Paving the way to Latin America

ESPECIFICACIONES TÉCNICAS

ITEM	DESCRIPCION	U.M.
1	POLIMERO EN POLVO SECO SOLUBLE EN AGUA (WDPP) X 2 KG	BOTELLA

I. DESCRIPCION

1.1. Características técnicas:

- ✓ Aplicable en suelos de muy baja calidad.
- ✓ Presenta un rendimiento de 50 m3 de suelo a tratar por cada botella de 2 kilos c/u.
- ✓ Aplicable para sub-rasantes, sub-base y base granular como también para caminos en afirmado
- ✓ Tiene un rango de usos para carreteras de penetración de bajo volumen de tránsito, carreteras nacionales de tráfico intenso, accesos de tránsito pesado y calles y avenidas
- ✓ Mejora los subsuelos de baja resistencia <4 CBR</p>
- ✓ Incrementa la densidad del suelo.
- ✓ Incrementa la capacidad de soporte del suelo.
- ✓ El suelo se densifica a un menor contenido de humedad.
- ✓ Incrementa la resistencia al agua
- ✓ Aumento de CBR.

1.2. Comportamiento

- ✓ Ligante Aniónico que produce una alta densidad y que se mantiene estable a través de ciclos húmedos y secos
- ✓ Reducción de la deterioración de la plataforma y la base de rodadura de los caminos.

1.3. Consistencia

✓ Polvo granulado concentrado.

1.4. Rango

✓ Rango de tipos de suelos naturales desde suelos compuestos por gravas limpias hasta suelos orgánicos altamente expansivos, buen desempeño con diferentes rangos de plasticidad. Suelos de tipo A1, A2, A3, A4, A5, A6 y A7

1.5. Características Ambientales

- √ Ecológico
- ✓ No tóxico
- ✓ Biodegradable.
- ✓ No inflamable.
- ✓ Es químicamente inerte
- ✓ Producto no peligroso

1.6. Propiedades a 25 °C

- ✓ PH = 6.9 (5000 : 1) no es acido no alcalino
- ✓ Gravedad Especifica = 0.8
- ✓ Olor = Olor Leve

II. VENTAJAS

- ✓ La estabilización con PolyCom ofrece mayor resistencia (mayor CBR),
- ✓ Una mayor resistencia y flexibilidad Alto grado de resistencia al agua saneamiento y/o remediación de suelos dispersivos y arcillas reactivas - mejora la manejabilidad de los suelos.
- ✓ El material tratado puede ser almacenado por periodos prolongados.
- ✓ Ninguna planta o equipo especial es requerido.
- ✓ La instalación del producto es hecho competentemente con equipos estandarizados de estabilización.
- ✓ Aumenta la densidad del terreno, evitando los vacíos dentro de la estructura estabilizada.
- ✓ Buen comportamiento estructural con los ligantes si se plantean recubrimientos con capas asfálticas.
- ✓ Mínimo costo de transporte
- ✓ Es reciclable una vez que la vida útil de la carretera estabilizada termina.
- ✓ 30%-50% ahorro de agua
- ✓ No existe agrietamiento por fatiga ni por ahuellamiento en la subrasante.

III. NORMATIVIDAD

- ✓ Cumple con las Normas Técnicas MTC E1109-2004 acerca de Estabilizadores Químicos de suelos.
- ✓ Presenta Certificado de no toxicidad del producto.
- ✓ Aumento de CBR que se logrará con el producto, se puede comprobar en Obra o laboratorio.
- ✓ El costo de traslado de los bienes generalmente son asumidos íntegramente por el proveedor a Almacén de Obra.
- ✓ Los bienes generalmente se entregán en el plazo de 02 día calendario después de obtener una Orden de Compra.

IV. FORMA DE ENTREGA:

La entrega de aditivo estabilizador de suelo es en Botellas de 2kg cada una, en buenas condiciones aptos para la realización de las partidas en la que se empleará.

El producto no presentara fallas de fabricación, en caso contrario, este será reemplazado, sin perjuicio o gastos adicionales al proyecto.

Lugar de Entrega: Donde el Cliente lo solicite.

<u>FINALIDAD DE LA COMPRA:</u> La adquisición de los bienes, son para cumplir con las metas propuestas por el cliente.

¿Requiere más información? Comuníquese a cualquiera de nuestros teléfonos

Servicio al Cliente Nacional

'Paving the way to Latin America'

Edgar Montesinos

991 302 559 RPM #991 302 559 RPC 961 765 623

emaustlatin@live.com.au

Doylith Cauper

961 508 737 RPM #825271

doylith cj@hotmail.com

Soporte Técnico y Asesoría

Gonzalo Gutiérrez Sandoval

Gerente General 51 1 3370051 990 263 614

ggutierrez@polymperu.com gongutsa@hotmail.com

Daniel Montesinos Salazar

Gerente Administrativo 271 5220 999 600 685 / 988 450 342

dmontesinos@polymperu.com dmontesinos1@hotmail.com

6.3.3. Hoja de datos de Seguridad del Material

Hoja de Datos de Seguridad del Material

Emitido por BIOCENTRAL

Infosafe N° LPWGU Fecha de expedición: Marzo 2011 LAB. LTD

Nombre del Producto: POLYCOM COMPACTIÓN AND STABILISATION AID

No clasificado como peligroso

1. IDENTIFICACION DEL MATERIAL Y EL PROVEEDOR

Nombre del producto POLYCOM COMPACTIÓN AND STABILISATION AID

Nombre de la Compañía **BIOCENTRAL LABORATORIES LTD** Dirección 22 Phillips Street Thebarthon

SA 5031 Australia

Teléfonos de emergencia Dentro de Australia 0415 824 608

Fuera de Australia +61 415 824 608

Tlf. / Fax Tlf. 08 8234 8886

Fax 08 8234 8889

Usos recomendados Aditivo para estabilización y compactación de suelos. El uso del producto

involucra significante dilución en agua (1000 - 6000: 1)

Información adicional POLYCOM está aprobado por el Departamento Australiano de Salud del

Oeste como un aditivo para compactación y supresor de polvo, dentro de

áreas de captación de agua para consumo humano.

Esta aprobación está sujeta a las siguientes condiciones: que POLYCOM sea

usado en concordancia con las instrucciones de los fabricantes.

2. IDENTIFICACION DE PELIGROS

Clasificación de peligros POLICOM no está clasificado como peligroso.

NO ES UNA SUSTANCIA PELIGROSA.

PRODUCTO NO PELIGROSO.

La clasificación de peligro va de acuerdo a los criterios de la Comisión Nacional

Australiana de Seguridad y Salud Laboral (NOHSC).

Clasificación de producto peligroso es de acuerdo a la Normatividad

Australiana de productos peligrosos.

3. COMPOSICION/INFORMACION SOBRE INGREDIENTES

Ingredientes CAS Proporción Símbolo de riesgo Frase **Nombre** de riesgo Ingredientes determinados 100%

como no peligrosos.

4. MEDIDAS DE PRIMEROS AUXILIOS	
Inhalación	Si el producto fuera inhalado, retirar a la persona afectada fuera del área contaminada. Mantenerla en descanso mientras se recupera. Si los síntomas persisten buscar atención médica.
Ingestión	No inducir al vómito. Lavar la boca con agua. Si aparecieran síntomas alarmantes, buscar atención médica.
Piel	Si hubiera contacto directo con el producto, lavar el área afectada con abundante agua y jabón. Si aparecieran síntomas alarmantes, buscar atención médica.
Ojos	Si el producto hiciera contacto con los ojos, mantener los párpados bien abiertos y lavar los ojos con abundante agua continua, por varios minutos hasta que los contaminantes sean retirados completamente. Si aparecieran síntomas alarmantes y persistieran, buscar atención médica.
Instalaciones para Primeros Auxilios	Solo se requiere servicios normales de lavabos o cuarto de baño.
Consejo al doctor	Tratamiento según los síntomas.
5. MEDIDAS CONTRA INCENDIOS	
Medida adecuada	Usar extinguidores adecuados para el ambiente circundante.
Riesgos de extinguidores para combustión	No combustible.
Riesgos específicos	Este producto es no combustible. Sin embargo, la calefacción puede producir expansión o descomposición acarreando la ruptura violenta de los contenedores.
Precauciones al combatir el fuego	Los bomberos deben utilizar aparatos respiratorios de aire comprimido o mascaras de oxigeno, operados en modo de presión positiva y equipo completo de protección para prevenir la exposición a vapores o gases. Los

atomizadores de agua pueden ser usados para refrescar los contenedores sujetos a calentamiento. Combatir el fuego desde lugares seguros. Este

producto debe ser protegido de desagües y de cursos de agua.

6. MEDIDAS ANTE DESCARGAS ACCIDENTALES

Procedimientos de emergencia

El producto se pone resbaladizo cuando está húmedo o mojado. Aumentar la ventilación. Evacuar al personal que no cuente con protección. Utilizar suficiente protección respiratoria y equipo completo de protección para prevenir exposiciones. Barrer el material evitando la generación de polvo o humedecer con agua el material derramado para evitar que el polvo sea arrastrado por el aire, seguidamente transferir el material a un contenedor apropiado. Lavar las superficies con agua y con jabón en cantidad necesaria. Colocar todos los desechos o residuos en contenedores plásticos debidamente rotulados y sellados para el posterior reciclaje o eliminación apropiada. Eliminar los desechos de acuerdo a las regulaciones locales y nacionales vigentes. Si la contaminación de alcantarillas o canales ocurriese, informar a las autoridades locales que administran el servicio de agua y de desechos, de acuerdo con las regulaciones locales.

7. MANIPULACION Y ALMACENAMIENTO

Precauciones para la manipulación segura

Usar el producto solamente en un área bien ventilada. Mantener los contenedores sellados cuando el producto no está en uso. Prevenir el desarrollo de polvo en el lugar de trabajo. Evitar la inhalación de polvo, y el contacto del producto con ojos y piel. Mantener altos estándares de higiene personal, lavándose las manos antes de los alimentos, de beber, de fumar o usar los servicios higiénicos.

Condiciones para el almacenamiento seguro

Almacenar el producto en un área fresca, seca, bien ventilada, alejada de la exposición directa a los rayos solares y la humedad. Almacenar en contenedores debidamente rotulados, resistentes a la corrosión. Mantener los contenedores firmemente cerrados. Almacenar lejos de productos químicos, agua u otros materiales incompatibles. Tener a mano apropiados extinguidores contra incendios cerca al área de almacenamiento. Asegurarse que las condiciones de almacenamiento cumplan con las regulaciones nacionales y locales aplicables.

8. CONTROL DE EXPOSICION / PROTECCION PERSONAL

Exposición de personal

No se han establecido estándares de exposición para este material, sin embargo, los estándares de la Comisión Nacional Australiana para la Seguridad y Salud Laboral (NOHSC) para polvos no especificados de otra manera es 10 mg/m³.

Límites biológicos

No se han asignado límites biológicos al producto.

Controles de ingeniería

Usualmente no se requiere. Aplicación industrial: proveer suficiente ventilación para mantener los niveles de partículas en el aire lo más bajas posible. Donde se genere el polvo, particularmente en sitios cerrados, y donde la ventilación es inadecuada, se requiere un sistema de ventilación de escape local (la ventilación de escape local se usa para alejar vapores o humos con el fin de prevenir exposiciones durante la rutina de trabajo, o para mantener los vapores por debajo de los límites de exposición).

Protección respiratoria

Usualmente no se requiere. Aplicación industrial: Si los controles de ingeniería no son efectivos para controlar la exposición a material acarreado por el viento, entonces debe usarse un respirador aprobado, con un filtro de polvo / partículas reemplazable. La referencia puede hacerse a los estándares de Australia y Nueva Zelanda AS/NZS 1715, Selección, uso y mantenimiento de aparatos para protección respiratoria; y la norma AS/NZS 1716, Equipos de protección respiratoria, para hacer cualquier cambio necesario para circunstancias individuales.

Protección de ojos

No se requiere usualmente. Aplicación industrial: deben usarse anteojos de seguridad con protectores laterales o gafas protectoras para químicos. La elección final de la apropiada protección de rostro y ojos variará de acuerdo a las circunstancias individuales. Los aparatos de protección de ojos deben cumplir con la norma de Australia y Nueva Zelanda AS/NZS 1337 -Protectores de ojos para aplicaciones industriales.

Protección de manos

Usar guantes de material impermeable como de PVC. La elección final de los guantes variará de acuerdo a las circunstancias personales, métodos de manipuleo del material o de acuerdo a la evaluación de riesgo adoptada. Una referencia puede ser hecha a AS/NZS 2161.1: Guantes de protección laboral -Selección, uso y mantenimiento.

Protección corporal

Usualmente no se requiere. Aplicación industrial: ropa de trabajo protectora adecuada, como por ejemplo overoles de algodón abotonados en cuello y muñecas es recomendado. Mandil resistente a químicos es recomendado cuando se manipula grandes cantidades del material.

9. PROPIEDADES FISICAS Y QUIMICAS

Apariencia Polvo azul/verde Olor Olor ligero Punto de fusión No disponible Punto de ebullición No aplicable Solubilidad en agua Mezclable 8.0

Gravedad específica

Valor del pH 6.9 a 25 °C (5000:1)

Presión de vapor No aplicable Densidad de vapor (Aire = 1) No aplicable Punto de inflamación No aplicable

Inflamabilidad No sólido combustible

Temperatura de auto-ignición No aplicable Límites inflamables - más bajos No aplicable Límites inflamables - más altos No aplicable

10. ESTABILIDAD Y REACTIVIDAD

Estabilidad química Estable bajo condiciones normales de almacenamiento, transporte y

manipuleo.

Condiciones a evitar Acumulación de polvo y temperaturas extremas.

Materiales incompatibles Agentes oxidantes. Descomposición peligrosa del producto No disponible.

Polimerización peligrosa No ocurrirá.

11. INFORMACION TOXICOLOGICA

Información toxicológica Información de toxicidad (producto similar)

> LD50 (Oral, rat): > 5050 mg/Kg LD50 (Dérmico, rat): > 2020 mg/Kg

Irritación ocular primaria - Ojos no lavados:

Categoría de toxicidad IV Marcador de irritación: 0.7 Prácticamente no irritante.

Irritación ocular primaria - Ojos lavados :

Categoría de toxicidad IV Marcador de irritación: 1.3 Prácticamente no irritante. Irritación dérmica primaria:

Marcador de irritación primaria: 0.2

Categoría de toxicidad IV.

Irritante leve.

Inhalación La inhalación de polvo del producto puede causar irritación de la nariz,

garganta y sistema respiratorio.

Ingestión La ingestión de este producto puede irritar el tracto gástrico causando

náuseas y vómito.

Piel El contacto con la piel puede causar irritación mecánica, ocasionando

enrojecimiento y picazón.

Ojos El contacto con los ojos puede causar irritación mecánica. Puede resultar en

abrasión leve.

Efectos crónicos La exposición crónica por inhalación puede agravar desordenes respiratorios y

> pulmonares pre-existentes, como la bronquitis, enfisema y asma. El inicio y su evolución están relacionados a concentraciones de polvo y la duración de la

exposición.

12. INFORMACION ECOLOGICA

Ecotoxicidad Este producto es una poliacrilamida aniónica, lo que significa que no tiene

toxicidad sistémica a organismos o microorganismos acuáticos.

Persistencia/Degradabilidad

Ambos, la acrilamida y el acrilato de sodio son inmediatamente degradables bajo condiciones aeróbicas sobre el 90 % a los 28 días. Aun en dosis operativas mayores a 50 mg/Lt, los monómeros residuales emanados en el medio ambiente nunca llegarán a concentraciones que puedan constituir un riesgo a la vida acuática. Su alta biodegradabilidad anula la posibilidad de acumulación en el medio ambiente natural.

Movilidad

No disponible.

Potencial bioacumulativo

La poliacrilamida aniónica, siendo totalmente soluble en agua e insoluble en solventes, tiene un muy bajo coeficiente de partición octanol/agua (P ow) y para todos los propósitos prácticos:

Log Pow = 0

Por consiguiente, el potencial para la poliacrilamida aniónica para

bioacumularse es CERO.

Protección del medio ambiente

Toxicidad aguda - Fish

Prevenir que el producto no ingrese a canales, alcantarillas y desagües.

(Poliacrilamida aniónica)

LC50/Brachydanio rerio/ 96 horas = 357 mg/L LC50/Brachydanio rerio/ 96 horas = 178 mg/L Test F242:OECD 203/GLP/report 21/12/1995

Toxicidad aguda - Daphnia

(Poliacrilamida aniónica)

EC50/Daphnia magna/ 48 horas = 212 mg/L Test F243:OECD 202/GLP/report 21/12/1995

Toxicidad aguda - Algae

(Poliacrilamida aniónica)

EC50A (I) /Chlorella vulgaris/ 96 horas = 1,000 mg/LEC50 μ (I) /Chlorella vulgaris/ 96 horas = 1,000 mg/LEfecto de Concentración no observado (NOEC) = 708 mg/L

Test F244:OECD 201/GLP/report 21/12/1995

Toxicidad aguda - Bacteria

(Poliacrilamida aniónica)

EC10/Pseudomonas putida/ 18 horas = 127 mg/L EC50/Pseudomonas putida/ 18 horas = 892 mg/L

Test F245:OECD 301F, DIN 38412-27, ISO 7027/GLP/report 21/12/1995

13. CONSIDERACIONES PARA ELIMINACION DE RESIDUOS

Consideraciones para eliminación de residuos

Eliminar los residuos o desechos de acuerdo a las regulaciones locales y nacionales vigentes.

14. INFORMACION SOBRE TRANSPORTE DEL PRODUCTO

Información sobre el transporte

El producto no es clasificado como peligroso de acuerdo a la Normatividad Australiana de Transporte de productos por carreteras y trenes (7ma. Edición)

15. INFORMACION REGULADORA	
Información reguladora	Producto no clasificado como peligroso de acuerdo a criterios de la Comisión
	Nacional Australiana de Seguridad y Salud Laboral (NOHSC).
	No clasificado como un veneno específico, de acuerdo a los estándares para el
	Listado Uniforme de Medicinas y Venenos (SUSMP)

Venenos planeados No programado.

16. OTRAS INFORMACIONES

Fecha de preparación o última revisión de MSDS revisado en Marzo 2011

la MSDS Supersedes: Julio 2007

Contacto personal / Punto Biocentral Laboratories

Ph, en horas de oficina

08 8234 8886

6.3.3. Proceso Constructivo – instrucciones de procedimiento

Hoja de Datos de Seguridad del Material

Emitido por BIOCENTRAL

Infosafe N° LPWGU Fecha de expedición: Marzo 2011 LAB. LTD

Nombre del Producto: POLYCOM COMPACTIÓN AND STABILISATION AID

No clasificado como peligroso

1. IDENTIFICACION DEL MATERIAL Y EL PROVEEDOR

Nombre del producto POLYCOM COMPACTIÓN AND STABILISATION AID

Nombre de la Compañía

BIOCENTRAL LABORATORIES LTD

Dirección

22 Phillips Street Thebarthon

SA 5031 Australia

Teléfonos de emergencia Dentro de Australia 0415 824 608

Fuera de Australia +61 415 824 608

Tlf. / Fax Tlf. 08 8234 8886

Fax 08 8234 8889

Usos recomendados Aditivo para estabilización y compactación de suelos. El uso del producto

involucra significante dilución en agua (1000 - 6000: 1)

Información adicional POLYCOM está aprobado por el Departamento Australiano de Salud del

Oeste como un aditivo para compactación y supresor de polvo, dentro de

áreas de captación de agua para consumo humano.

Esta aprobación está sujeta a las siguientes condiciones: que POLYCOM sea

usado en concordancia con las instrucciones de los fabricantes.

2. IDENTIFICACION DE PELIGROS

Clasificación de peligros POLICOM no está clasificado como peligroso.

NO ES UNA SUSTANCIA PELIGROSA.

PRODUCTO NO PELIGROSO.

La clasificación de peligro va de acuerdo a los criterios de la Comisión Nacional

Australiana de Seguridad y Salud Laboral (NOHSC).

Clasificación de producto peligroso es de acuerdo a la Normatividad

Australiana de productos peligrosos.

3. COMPOSICION/INFORMACION SOBRE INGREDIENTES

Ingredientes

Nombre
CAS Proporción Símbolo de riesgo de riesgo
Ingredientes determinados
Ingredientes determinados
Ingredientes determinados

como no peligrosos.

4. MEDIDAS DE PRIMEROS AUXILIOS	
Inhalación	Si el producto fuera inhalado, retirar a la persona afectada fuera del área contaminada. Mantenerla en descanso mientras se recupera. Si los síntomas persisten buscar atención médica.
Ingestión	No inducir al vómito. Lavar la boca con agua. Si aparecieran síntomas alarmantes, buscar atención médica.
Piel	Si hubiera contacto directo con el producto, lavar el área afectada con abundante agua y jabón. Si aparecieran síntomas alarmantes, buscar atención médica.
Ojos	Si el producto hiciera contacto con los ojos, mantener los párpados bien abiertos y lavar los ojos con abundante agua continua, por varios minutos hasta que los contaminantes sean retirados completamente. Si aparecieran síntomas alarmantes y persistieran, buscar atención médica.
Instalaciones para Primeros Auxilios	Solo se requiere servicios normales de lavabos o cuarto de baño.
Consejo al doctor	Tratamiento según los síntomas.
5. MEDIDAS CONTRA INCENDIOS	
Medida adecuada	Usar extinguidores adecuados para el ambiente circundante.
Riesgos de extinguidores para combustión	No combustible.
Riesgos específicos	Este producto es no combustible. Sin embargo, la calefacción puede producir expansión o descomposición acarreando la ruptura violenta de los contenedores.
Precauciones al combatir el fuego	Los bomberos deben utilizar aparatos respiratorios de aire comprimido o mascaras de oxigeno, operados en modo de presión positiva y equipo completo de protección para prevenir la exposición a vapores o gases. Los

atomizadores de agua pueden ser usados para refrescar los contenedores sujetos a calentamiento. Combatir el fuego desde lugares seguros. Este

producto debe ser protegido de desagües y de cursos de agua.

6. MEDIDAS ANTE DESCARGAS ACCIDENTALES

Procedimientos de emergencia

El producto se pone resbaladizo cuando está húmedo o mojado. Aumentar la ventilación. Evacuar al personal que no cuente con protección. Utilizar suficiente protección respiratoria y equipo completo de protección para prevenir exposiciones. Barrer el material evitando la generación de polvo o humedecer con agua el material derramado para evitar que el polvo sea arrastrado por el aire, seguidamente transferir el material a un contenedor apropiado. Lavar las superficies con agua y con jabón en cantidad necesaria. Colocar todos los desechos o residuos en contenedores plásticos debidamente rotulados y sellados para el posterior reciclaje o eliminación apropiada. Eliminar los desechos de acuerdo a las regulaciones locales y nacionales vigentes. Si la contaminación de alcantarillas o canales ocurriese, informar a las autoridades locales que administran el servicio de agua y de desechos, de acuerdo con las regulaciones locales.

7. MANIPULACION Y ALMACENAMIENTO

Precauciones para la manipulación segura

Usar el producto solamente en un área bien ventilada. Mantener los contenedores sellados cuando el producto no está en uso. Prevenir el desarrollo de polvo en el lugar de trabajo. Evitar la inhalación de polvo, y el contacto del producto con ojos y piel. Mantener altos estándares de higiene personal, lavándose las manos antes de los alimentos, de beber, de fumar o usar los servicios higiénicos.

Condiciones para el almacenamiento seguro

Almacenar el producto en un área fresca, seca, bien ventilada, alejada de la exposición directa a los rayos solares y la humedad. Almacenar en contenedores debidamente rotulados, resistentes a la corrosión. Mantener los contenedores firmemente cerrados. Almacenar lejos de productos químicos, agua u otros materiales incompatibles. Tener a mano apropiados extinguidores contra incendios cerca al área de almacenamiento. Asegurarse que las condiciones de almacenamiento cumplan con las regulaciones nacionales y locales aplicables.

8. CONTROL DE EXPOSICION / PROTECCION PERSONAL

Exposición de personal

No se han establecido estándares de exposición para este material, sin embargo, los estándares de la Comisión Nacional Australiana para la Seguridad y Salud Laboral (NOHSC) para polvos no especificados de otra manera es 10 mg/m³.

Límites biológicos

No se han asignado límites biológicos al producto.

Controles de ingeniería

Usualmente no se requiere. Aplicación industrial: proveer suficiente ventilación para mantener los niveles de partículas en el aire lo más bajas posible. Donde se genere el polvo, particularmente en sitios cerrados, y donde la ventilación es inadecuada, se requiere un sistema de ventilación de escape local (la ventilación de escape local se usa para alejar vapores o humos con el fin de prevenir exposiciones durante la rutina de trabajo, o para mantener los vapores por debajo de los límites de exposición).

Protección respiratoria

Usualmente no se requiere. Aplicación industrial: Si los controles de ingeniería no son efectivos para controlar la exposición a material acarreado por el viento, entonces debe usarse un respirador aprobado, con un filtro de polvo / partículas reemplazable. La referencia puede hacerse a los estándares de Australia y Nueva Zelanda AS/NZS 1715, Selección, uso y mantenimiento de aparatos para protección respiratoria; y la norma AS/NZS 1716, Equipos de protección respiratoria, para hacer cualquier cambio necesario para circunstancias individuales.

Protección de ojos

No se requiere usualmente. Aplicación industrial: deben usarse anteojos de seguridad con protectores laterales o gafas protectoras para químicos. La elección final de la apropiada protección de rostro y ojos variará de acuerdo a las circunstancias individuales. Los aparatos de protección de ojos deben cumplir con la norma de Australia y Nueva Zelanda AS/NZS 1337 -Protectores de ojos para aplicaciones industriales.

Protección de manos

Usar guantes de material impermeable como de PVC. La elección final de los guantes variará de acuerdo a las circunstancias personales, métodos de manipuleo del material o de acuerdo a la evaluación de riesgo adoptada. Una referencia puede ser hecha a AS/NZS 2161.1: Guantes de protección laboral -Selección, uso y mantenimiento.

Protección corporal

Usualmente no se requiere. Aplicación industrial: ropa de trabajo protectora adecuada, como por ejemplo overoles de algodón abotonados en cuello y muñecas es recomendado. Mandil resistente a químicos es recomendado cuando se manipula grandes cantidades del material.

9. PROPIEDADES FISICAS Y QUIMICAS

Apariencia Polvo azul/verde Olor Olor ligero Punto de fusión No disponible Punto de ebullición No aplicable Solubilidad en agua Mezclable 8.0

Gravedad específica

Valor del pH 6.9 a 25 °C (5000:1)

Presión de vapor No aplicable Densidad de vapor (Aire = 1) No aplicable Punto de inflamación No aplicable

Inflamabilidad No sólido combustible

Temperatura de auto-ignición No aplicable Límites inflamables - más bajos No aplicable Límites inflamables - más altos No aplicable

10. ESTABILIDAD Y REACTIVIDAD

Estabilidad química Estable bajo condiciones normales de almacenamiento, transporte y

manipuleo.

Condiciones a evitar Acumulación de polvo y temperaturas extremas.

Materiales incompatibles Agentes oxidantes. Descomposición peligrosa del producto No disponible.

Polimerización peligrosa No ocurrirá.

11. INFORMACION TOXICOLOGICA

Información toxicológica Información de toxicidad (producto similar)

> LD50 (Oral, rat): > 5050 mg/Kg LD50 (Dérmico, rat): > 2020 mg/Kg

Irritación ocular primaria - Ojos no lavados:

Categoría de toxicidad IV Marcador de irritación: 0.7 Prácticamente no irritante.

Irritación ocular primaria - Ojos lavados :

Categoría de toxicidad IV Marcador de irritación: 1.3 Prácticamente no irritante. Irritación dérmica primaria:

Marcador de irritación primaria: 0.2

Categoría de toxicidad IV.

Irritante leve.

Inhalación La inhalación de polvo del producto puede causar irritación de la nariz,

garganta y sistema respiratorio.

Ingestión La ingestión de este producto puede irritar el tracto gástrico causando

náuseas y vómito.

Piel El contacto con la piel puede causar irritación mecánica, ocasionando

enrojecimiento y picazón.

Ojos El contacto con los ojos puede causar irritación mecánica. Puede resultar en

abrasión leve.

Efectos crónicos La exposición crónica por inhalación puede agravar desordenes respiratorios y

> pulmonares pre-existentes, como la bronquitis, enfisema y asma. El inicio y su evolución están relacionados a concentraciones de polvo y la duración de la

exposición.

12. INFORMACION ECOLOGICA

Ecotoxicidad Este producto es una poliacrilamida aniónica, lo que significa que no tiene

toxicidad sistémica a organismos o microorganismos acuáticos.

Persistencia/Degradabilidad

Ambos, la acrilamida y el acrilato de sodio son inmediatamente degradables bajo condiciones aeróbicas sobre el 90 % a los 28 días. Aun en dosis operativas mayores a 50 mg/Lt, los monómeros residuales emanados en el medio ambiente nunca llegarán a concentraciones que puedan constituir un riesgo a la vida acuática. Su alta biodegradabilidad anula la posibilidad de acumulación en el medio ambiente natural.

Movilidad

No disponible.

Potencial bioacumulativo

La poliacrilamida aniónica, siendo totalmente soluble en agua e insoluble en solventes, tiene un muy bajo coeficiente de partición octanol/agua (P ow) y para todos los propósitos prácticos:

Log Pow = 0

Por consiguiente, el potencial para la poliacrilamida aniónica para

bioacumularse es CERO.

Protección del medio ambiente

Toxicidad aguda - Fish

Prevenir que el producto no ingrese a canales, alcantarillas y desagües.

(Poliacrilamida aniónica)

LC50/Brachydanio rerio/ 96 horas = 357 mg/L LC50/Brachydanio rerio/ 96 horas = 178 mg/L Test F242:OECD 203/GLP/report 21/12/1995

Toxicidad aguda - Daphnia

(Poliacrilamida aniónica)

EC50/Daphnia magna/ 48 horas = 212 mg/L Test F243:OECD 202/GLP/report 21/12/1995

Toxicidad aguda - Algae

(Poliacrilamida aniónica)

EC50A (I) /Chlorella vulgaris/ 96 horas = 1,000 mg/LEC50 μ (I) /Chlorella vulgaris/ 96 horas = 1,000 mg/LEfecto de Concentración no observado (NOEC) = 708 mg/L

Test F244:OECD 201/GLP/report 21/12/1995

Toxicidad aguda - Bacteria

(Poliacrilamida aniónica)

EC10/Pseudomonas putida/ 18 horas = 127 mg/L EC50/Pseudomonas putida/ 18 horas = 892 mg/L

Test F245:OECD 301F, DIN 38412-27, ISO 7027/GLP/report 21/12/1995

13. CONSIDERACIONES PARA ELIMINACION DE RESIDUOS

Consideraciones para eliminación de residuos

Eliminar los residuos o desechos de acuerdo a las regulaciones locales y nacionales vigentes.

14. INFORMACION SOBRE TRANSPORTE DEL PRODUCTO

Información sobre el transporte

El producto no es clasificado como peligroso de acuerdo a la Normatividad Australiana de Transporte de productos por carreteras y trenes (7ma. Edición)

15. INFORMACION REGULADORA	
Información reguladora	Producto no clasificado como peligroso de acuerdo a criterios de la Comisión
	Nacional Australiana de Seguridad y Salud Laboral (NOHSC).
	No clasificado como un veneno específico, de acuerdo a los estándares para el
	Listado Uniforme de Medicinas y Venenos (SUSMP)

Venenos planeados No programado.

16. OTRAS INFORMACIONES

Fecha de preparación o última revisión de MSDS revisado en Marzo 2011

la MSDS Supersedes: Julio 2007

Contacto personal / Punto Biocentral Laboratories

Ph, en horas de oficina

08 8234 8886

<u>Instrucciones de Procedimiento</u>

Estabilización con PolvCom - Aplicación en seco

OBJETIVO

Describir las actividades y métodos de trabajo que se utilizarán para llevar a cabo la aplicación en seco del estabilizador PolyCom.

PROCEDIMIENTO

Requerimientos de equipos.

- Motoniveladora con Escarificadores Traseros
- Rodillos adecuados para lograr una compactación profunda.
- Camión Cisterna de agua (debe estar implementada con barras de presión de goteo o aspersión tipo ventilador de bajo nivel)
- · Esparcidor en seco, tipo SEAL
- PolyCom polímero soluble al agua

Trabajos preparatorios

Asegúrese de que el área a ser estabilizada ha sido inspeccionada y verificada para identificar cualquier servicio subterráneo, de ser el caso.

Asegúrese de que todos los trabajadores tengan los equipos correctos de protección y de seguridad y estén familiarizados con los procedimientos que se llevaran a cabo. Una charla antes del inicio del trabajo es importante para que todos entiendan el procedimiento de trabajo.

Pre-Tratamiento

Si el material a tratar está húmedo y por encima del OCH (Optimo Contenido de Humedad) el área tendrá que ser previamente trabajada.

El esparcido del material con una moto niveladora será requerido para acelerar el secado del material. El área destinada a estabilizarse necesita estar según la especificación y que no exceda el OCH. Asegúrese que todas las zonas que requieren mejoramiento de suelos sean ejecutadas *antes del inicio de la estabilización*.

Identificación del área a tratar

Marcar o identificar un área que se puede estabilizar utilizando el equipo de sitio dentro de un marco de tiempo razonable. Es decir, el área no debe ser tan grande que comienza a secarse antes de que la zona haya sido compactada. Si un área se seca demasiado, los resultados de compactación pueden variar y el área puede necesitar ser modificada. Generalmente, áreas de hasta 500 metros cúbicos / se pueden estabilizar fácilmente con el equipo estándar.* El área seleccionada debe ser estabilizada, el mezclado y la compactación deben completarse antes de continuar al siguiente tramo.

Aplicación de PolyCom

- 1- Una vez que un área ha sido identificada (es decir, 500 metros cúbicos) el material debe ser escarificado.
- 2- Aplique un rociado ligero de agua (si el suelo está seco).
- 3- Calcular la cantidad necesaria de Polycom, para estabilizar el área (Una botella de 2Kg de Polycom por cada 50 metros cúbicos de material a tratar) y aplicar el producto por aspersión en seco de manera uniforme sobre toda el área preparada. Asi, por ejemplo para 500 metros cúbicos, se necesitan 20 kilogramos de Polycom -(10 botellas)
- 4- Una vez que el PolyCom ha sido distribuido uniformemente aplicar adicionalmente un riego ligero de agua. (Este segundo riego de agua disuelve el PolyCom y la zona está ahora lista para la mezcla)
- 5- Vuelva a escarificar el área.
- 6- Mezclar bien con la motoniveladora mientras se añade el agua requerida para llevar el material hasta el nivel deseado del Optimo Contenido de Humedad para la compactación.
- 7- Reconformar y compactar el material en forma convencional.
- 8- Después de culminar la compactación, se debe rociar agua y permitir que penetre en la capa estabilizada.
- 9- Después de que la superficie haya sido compactada un recorte final puede ser aplicado por la moto niveladora para eliminar cualquier ondulación, esto dependerá del acabado requerido. Si un recorte final se lleva a cabo, se debe efectuar nuevamente la compactación de la superficie con rodillo estático (sin vibración) adicionando ligeras cantidades de agua.
- 10- Se puede aplicar Slurry Seal, Tratamiento Superficial Monocapa, Bicapa o Imprimación Reforzada, en este punto, de acuerdo a la intensidad del tráfico y de los requerimientos del cliente.
- 11- Definición de equipos convencionales:
 - Una moto niveladora de 12 pies, con escarificadores traseros
 - Un camión cisterna mínimo de 10.000 litros de agua
 - Una compactadora Rodillo Liso Vibratorio, mínimo 12 toneladas
 - Una compactadora Pata de Cabra, mínimo 12 toneladas
 - Un Rodillo Multi Neumático, mínimo 12 toneladas

Notas Importantes:

- Una Botella de 2 kg de PolyCom trata 50m³.
- Es necesario algunos trabajos de preparación por parte del contratista encargado al inicio de la obra. Es decir, para la mayor durabilidad del proyecto se requiere que las áreas de drenaje o cunetas tengan un apropiado acondicionamiento y/o limpieza, si existieran puntos blandos, (acolchonamientos) necesitarían ser excavados, rellenados con relleno competente y compactado con agua antes de la estabilización. Básicamente se necesita preparar el terreno antes de la aplicación del estabilizador PolyCom.
- Se necesita Personal responsable y con experiencia en el tratamiento de suelos (afirmados) y un capataz para capacitarlo en la aplicación de PolyCom. La disponibilidad logística tanto del personal como de los equipos no deberá de interrumpirse durante el proceso constructivo hasta la culminación del proyecto.
- Toda garantía para un óptimo resultado está condicionado a un proceso constructivo desarrollado de manera correcta.

Para cualquier información adicional, por favor póngase en contacto con:

Edgar Montesinos 991 302 559 RPM #991 302 559 (Perú) RPC 961 765 623

+61409 124 568 (Australia)

Doylith Cauper 961 508 737 RPM #825271 (Perú)

Phil Turley +61 414 185 493 (Australia)

Gonzalo Gutierrez +51 990 263 614 (Perú)

6.4. Panel Fotográfico

PANEL FOTOGRAFICO

Imagen 6: Vista de la excavación de la calicata, para exploración de suelo a cielo abierto

Imagen 7: Vista del perfil estratigráfico del suelo a cielo abierto

Imagen 8: Secado de las muestras sobre una superficie limpia

Imagen 9: Secado y molido de grumos de las muestras sobre una superficie limpia

Imagen 10: molido de grumos de las muestras sobre una superficie limpia, para ensayos de compactación

Imagen 11: Disolución del polímero en agua potable para su aplicación en el suelo seco, para ensayos de compactación

Imagen 12: moldeo de las muestras para ensayo de CBR.

Imagen 13: colocación de las muestras en agua, para el curado de 4 días.

Imagen 14: Preparación de la muestra para el ensayo de penetración en la prensa de CBR.

Imagen 15: Ensayo de penetración en la prensa de CBR.