Universidad Particular de Iquitos

Facultad de Ingeniería Carrera Profesional de Ingeniería Civil

TESIS

"Diseño Estructural del Pavimento y del Drenaje de la Carretera Santa Clara - Distrito de San Juan Bautista, Provincia de Maynas".

Presentado Por:

Bach. Maira Madeleine Quispe Pinedo.

Bach. Romer Alvarez Tuesta.

Para optar el título de INGENIERO CIVIL

> Iquitos - Perú 2,004

UNIVERSIDAD PARTICULAR DE IQUITOS

Creado por Ley N°25213 del 29-05-1990 FACULTAD DE INGENIERÍA

ACTA DE SUSTENTACION DE TESIS

En la Universidad Particular de Iquitos, a los treinta y un días del mes de Mayo del 2004, a las 17:00 horas el Jurado Evaluador designado mediante Resolución No.030-2003-UPI.D.FI, integrado por los Señores Miembros que a continuación se indica:

	ina	3 13	1CEC	$\Lambda \Gamma \Gamma \Lambda \Gamma \Lambda \Lambda$	TOTCOIN	CABRERA
_	2444	1.71		OCIMPIO		CAURLINA

- Ing. MIGUEL ROBALINO OSORIO

- Ing. CAROL BEGOÑA GARCIA LANGER

Presidente

Miembro

Miembro Suplente

Se constituyeron en el Auditorio de la Universidad Particular de Iquitos, Av. Abelardo Quiñones Km. 2.5. San Juan para evaluar LA TESIS titulada: "DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA SANTA CLARA – DISTRITO DE SAN JUAN BAUTISTA, PROVINCIA DE MAYNAS" de los Bachilleres en Ingeniería Civil ROMER ALVAREZ TUESTA y MAIRA MADELEINE QUISPE PINEDO para optar el Titulo Profesional de INGENIERO CIVIL que otorga la Universidad Particular de Iquitos, de acuerdo a su Estatuto Universitario y a lo dispuesto por la Ley Universitaria.

Después de haber evaluado y formulado las preguntas necesarias, las cuales fuero respondidas:
El Jurado después de la deliberación correspondiente en privado llegó a las siguiente conclusiones:
La Sustentación de la Tesis fue: APROBADA por: MAYORIA
Observaciones:
Siendo las 19:00 HPS (31/05/04) se dio por terminado la presente sustentació de Tesis. Ing. ULISES OCTAVIO IRIGOIN CABRERA
Presidente

Ing. MIGUEL/ROBALINO OSORIO
Miembro

Ing. CAROL BEGOÑA GARCIA LANGER
Miembro Suplente

DEDICATORIA

A mi madre Claire por estar a mi lado en los momentos más difíciles, a mi abuelita Laura por su dedicación y sabios consejos, a mis hermanos Brian y Enrique por su colaboración y a Dios por haberme permitido lograr uno de los objetivos mas importantes de mi vida.

MAIRA

A mi querida madre, a mi esposa Lis, a mis hijos Mishell, Carolina y Aaron, por su incondicional apoyo.

ROMER

ÍNDICE

			PAG
INT	RODU	CCIÓN	
CAI	PITULO	<u>) (</u>	
1.0	GEN	ERALIDADES	7
	1.1	PLANTEAMIENTO DEL PROBLEMA	7
		1.1.1 Antecedentes	7
		1.1.2 Formulación del Problema	10
		1.1.3 Definición del Problema	11
	1.2	<u>OBJETIVOS</u>	12
		1.2.1 Objetivo General	12
		1.2.2 Objetivos Específicos	12
	1.3	MARCO TEÓRICO Y CONCEPTUAL	12
	1.4	VARIABLES	32
	1.5	METODOLOGÍA	32
		1.5.1 Actividades de Campo	32
		1.5.2 Labores de Gabinete	33
		1.5.3 Revisión de Bibliografía	33
	1.6	MATERIALES Y EQUIPOS	33
<u>CAF</u>	PITULO	<u>) II</u>	
2.0	CAR	ACTERÍSTICAS ACTUALES DEL TRAMO	35
	2.1	<u>UBICACIÓN</u>	35
	2.2	CLIMA	35
	23	TOPOGRAFÍA	36

	2.4	ESTADO ACTUAL DE LA CARRETERA	36
	2.5	ÁREA DE INFLUENCIA DEL PROYECTO	36
	2.6	ASPECTOS: URBANO, DEMOGRÁFICO Y	
		SOCIO-ECONÓMICO	37
		2.6.1 Aspecto Urbano y Demográfico	37
		2.6.2 Aspecto Socio-Económico	38
CAI	PITULO	<u>) (</u>	
3.0		IDIO TOPOGRÁFICO	39
	3.1	GENERALIDADES	39
		3.1.1 Reconocimiento	39
		3.1.2 Levantamiento Topográfico	39
	3.2	ACTIVIDADES DE GABINETE	40
		3.2.1 Perfil Longitudinal	40
		3.2.2 Sección Transversal	41
		3.2.3 Determinación de la Rasante	41
		3.2.4 Cálculo de Volúmenes de Corte y Relieno	42
	3.3	DISEÑO GEOMÉTRICO DE LA VÍA	42
		3.3.1 Características Geométricas de la Vía	42
		3.3.2 Elementos de la Vía	44
CAF	PITULO	<u>) IV</u>	
			4.0
4.0		ÁLISIS DEL TRÁNSITO VEHICULAR	48
	4.1	INTRODUCCIÓN (NECE MEDIO PLADIO (LA P.)	48
	4.2	ÍNDICE MEDIO DIARIO (I.M.D.)	48
	4.3	TRÁFICO DE DISEÑO	51

CAPITULO V

5.0	ESTU	DIO D	E LA CUENCA HIDROGRAFICA DE LA	
	ZONA	A, DRE	ENAJE Y OBRAS DE ARTE	54
	5.1	INTR	ODUCCIÓN	54
	5.2	RECO	OPILACIÓN DE INFORMACIÓN NECESARIA	55
	5.3	CARA	ACTERIZACIÓN HIDROLÓGICA DE LA CUENCA	58
		5.3.1	Clima del Área en Estudio	58
		5.3.2	Descripción de los Elementos Meteorológicos	59
			5.3.2.1 Precipitación	59
			5.3.2.2 Temperatura	61
			5.3.2.3 Humedad Relativa	62
			5.3.2.4 Vientos	63
			5.3.2.5 Evaporación	64
			5.3.2.6 Intensidad Máxima	65
		5.3.3	Características de la Cuenca	66
		5.3.4	Descargas Máximas	66
		5.3.5	Diseño de Cunetas	79
		5.3.6	Diseño de alcantarillas	83
CAF	PITULC) VI		
0.6	ESTU	DIO DI	E MECÁNICA DE SUELOS	91
	6.1	INTRO	<u>DDUCCIÓN</u>	91
		6.1.1	Operaciones de Muestreo y Toma de Muestras	91
	6.2	ENSA	YOS DE LABORATORIO	92
		6.2.1	Ensayo de Humedad In-Situ	92
		6.2.2	Análisis Granulométrico	93
	6.3	<u>ACTI</u> \	/IDADES DE GABINETE	93
		6.3.1	Descripción de los Suelos	93

	6.4	ESTUDIOS DE CANTERAS Y FUENTES DE AGUA	97
		6.4.1 Canteras	97
		6.4.1.1 Exploración y Localización	97
		6.4.1.2 Canteras Estudiadas	97
		6.4.2 Fuentes de Agua	100
CAI	PITULO	O VII	
7.0	DISE	ÑO DEL PAVIMENTO	101
	7.1	INTRODUCCIÓN	101
	7.2	DISEÑO Y CÁLCULO DE LA ESTRUCTURA DEL	
		PAVIMENTO ELEGIDO	102
CAF	PITULO	O VIII	
8.0	MAN	FENIMIENTO Y CONSERVACION DE LA VÍA	107
	8.1	CONSEVACIÓN DE PAVIMENTOS	107
		8.1.1 Fallas	108
	8.2	ESTUDIOS DE PAVIMENTOS CON FINES DE	
		RECONSTRUCCIÓN	112
CAF	PITULO	<u> </u>	
9.0	CON	CLUSIONES Y RECOMENDACIONES	121
	9.1	CONCLUSIONES Y RECOMENDACIONES	121
	9.2	BIBLIOGRAFÍA CONSULTADA	123

ANEXOS 125

ANEXO I

- ESTUDIO DE IMPACTO AMBIENTAL

ANEXO II

- MEMORIA DESCRIPTIVA Y PRESUPUESTO SUGERIDO DEL PROYECTO.

ANEXO III

- INFORMACIÓN TOPOGRÁFICA

ANEXO IV

- INFORMACIÓN HIDROLÓGICA

ANEXO V

- INFORMACIÓN DE MECÁNICA DE SUELOS

ANEXO VI

- INFORMACIÓN VIGA BENKELMAN

ANEXO VII

- PANEL FOTOGRÁFICO

ANEXO VIII

- PLANOS

INTRODUCCIÓN

En el presente el trabajo de tesis tiene por finalidad realizar el Diseño Estructural del Pavimento Flexible y del Drenaje de la Carretera "Santa Clara" – Distrito de San Juan Bautista, Provincia de Maynas.

La construcción de esta carretera es de suma importancia, por la problemática existente del desarrollo urbano, económico, social y agrícola de las localidades que se beneficiarían con la construcción de esta importante vía, además conllevaría a incrementar la densidad poblacional y con tendencia a seguir creciendo; ya que toda vía de comunicación terrestre (calles o carreteras) constituye un importante elemento dinamizador para el desarrollo socio-económico de los pueblos.

Para el desarrollo del proyecto se ha realizado el reconocimiento de la vía analizando las características actuales de la carretera y área de influencia del proyecto. Entre los trabajos de campo efectuados tenemos el levantamiento topográfico que determinará el diseño geométrico de la vía teniendo como referencia las Normas Peruanas para el Diseño de Carreteras (N.P.D.C.), el análisis de tránsito vehicular definido mediante el conteo de los vehículos que se trasladan por dicha vía, el estudio de mecánica de suelos de la carretera y la selección de las posibles canteras tomando muestras insitu para posteriormente ser analizadas en los laboratorios. Otro de los aspectos importantes fue el estudio de la cuenca hidrográfica de la zona, drenaje y obras de arte ya que se tiene previsto la construcción de estructuras de drenaje como cunetas y alcantarillas para la evacuación de las aguas pluviales; para el diseño de la estructura de pavimento se ha empleado diferentes métodos.

Las carreteras tienen un periodo de vida útil en el cual funcionan en óptimas condiciones, una vez finalizada esta etapa el pavimento comienza a deteriorarse significativamente para lo cual se darán algunas recomendaciones de cómo debe hacerse el mantenimiento de la vía y como reparar los diferentes tipos de fallas que se presentan.

1.0 GENERALIDADES

1.1 PLANTEAMIENTO DEL PROBLEMA

1.1.1 Antecedentes

La carretera en proyecto se encuentra ubicada en el departamento de Loreto, distrito de San Juan Bautista y une la avenida José Abelardo Quiñones, cuyo inicio está a 550 metros antes de llegar a la progresiva Km. 00+000 de la carretera Iquitos-Nauta, y cuyo final se encuentra en el caserío de Santa Clara de Nanay, alcanzando una longitud de 6,129.695 m.

La comunidad campesina Santa Clara data desde el año 1,923 siendo sus primeros habitantes inmigrantes del caserío de Parinari del río Marañón, todos ellos de origen cocama cocamilla, denominaron inicialmente el lugar como Mapacocha. En 1,940 se creó oficialmente el nombre de caserío Santa Clara. Desde el año 1,972 en honor a su patrona Santa Clara se celebra la fiesta patronal de la comunidad todos los segundos domingos del mes de Agosto en donde se realizan actividades que son tradición cultural del pueblo cocama. Por la aproximación que tiene a la ciudad de Iquitos la población ha sufrido un proceso de culturización que se refleja en las actividades cotidianas que realizan. La artesanía es una actividad productiva que tiene demanda en el mercado por las formas características propias de su comunidad de origen. En época de vaciante, frente al poblado se forman playas de arena blanca que son muy concurridas por los bañistas.

La apertura de esta vía se inició en la década de los 70 y a la fecha se encuentra a nivel de trocha carrozable, permitiendo la circulación vehicular desde la parte Sur-Oeste hasta la parte Sur-Este y viceversa, convirtiéndose de esta forma en un eje de articulación importante para la ciudad de Iquitos y comunidades asentadas en la ribera del río Nanay. Actualmente el traslado de la población a Iquitos se efectúa básicamente utilizando mototaxis y camiones no apropiados para transporte masivo de pasajeros, a un costo elevado de pasajes y con riesgo de vida que afecta a la seguridad de la población.

La población beneficiaria que incluye a los moradores de ambos lados de la vía, a los trabajadores de las fábricas en producción de ladrillos, a las instalaciones de granjas y a los habitantes del río Nanay e Iquitos es de aproximadamente 522,077 habitantes (población proyectada al año 2,003 – INEI)

En relación al pavimento, a diferencia de los métodos de diseño de pavimentos rígidos, que tiene como base las fórmulas de Westergaard y a los resultados de la Carretera Experimental AASHTO, se cuenta con una gran cantidad de métodos de diseño de pavimentos flexibles, variando de consideraciones puramente teóricas hasta métodos basados en pruebas a escala natural. El suceso de la Carretera Experimental AASHO llevó al auge de los métodos empíricos y semi-empíricos en la década de los 60 y 70. Sin embargo, a comienzos de la década de los 80 se notaron ciertas reacciones de los "teóricos" por recobrar primacía. Así en la Mobil International Lecture de 1979 llevada a cabo en la Universidad de California, el profesor Carl Monismith. considerado el padre de los métodos analíticos en el diseño de pavimentos flexibles, secundado por el profesor Peter Pell de la Universidad de Nottingham, exhortaron a los asistentes a "abandonar las técnicas tradicionales (basados obviamente en los métodos empíricos y semi-empíricos), a fin de reducir los costos y mejorar el profesionalismo y el estatus de los ingenieros de carretera".

Esta experiencia es pertinente para destacar un sentir de los ingenieros en el diseño de pavimentos flexibles: un método de diseño es mejor, cuanto mas complicado es. Sin embargo, la vastísima experiencia recopilada no solamente de las carreteras experimentales, sino también de las investigaciones de laboratorio, han puesto en evidencia un hecho concreto: las variables que intervienen en un comportamiento de un pavimento flexible son tantas y tan complicadas, que es imposible simular analíticamente su comportamiento en condiciones reales. Podemos decir, que así como se considera importante a los diseños estructural, geométrico y de mezcla; se considera de mayor importancia la práctica constructiva que se siga para hacer realidad esos diseños.

En la ciudad de Iquitos se ha venido construyendo importantes avenidas y calles utilizando, con buenos resultados, pavimentos rígidos y flexibles. El tipo de pavimento rígido mayormente es utilizado en el área urbana desde la década de los 70. El pavimento flexible a base de mortero asfáltico por primera vez se utilizó en nuestra región para la construcción de la avenida la Marina en el año 1,980.

La construcción de la carretera Iquitos-Nauta se inició en la década de los 70 por el Gobierno Regional de Loreto, a la fecha tiene una extensión de 95.2Km, la misma que cuenta con un asfaltado de 68Km y un afirmado de 27.2Km hasta la ciudad de Nauta cuyo pavimento a base de mortero asfáltico es otro caso

que muestra la bondad del Pavimento Flexible para vías de longitud mayor.

Así mismo, en la zona existe una planta de asfalto para mezclas en caliente propiedad del Ministerio de Transportes y Comunicaciones (MTC).

La ruta hacia el poblado de Santa Clara reviste de singular importancia para el desarrollo de la ciudad de Iquitos, ya que en esta zona se tiene previsto el desarrollo del Parque Industrial de las Pequeñas y Medianas Empresas (PYMES), promovidos desde el Gobierno Regional de Loreto.

Santa Clara es una localidad estratégica para los planes de desarrollo del Gobierno Regional de Loreto, ya que ella es una alternativa para la interconexión y la continuación con el eje Bellavista –Mazan. En el eje Bellavista Mazan estaría ubicado el Parque Industrial (CETICOS), y el Centro Logístico para el desarrollo de las Hidrovias.

1.1.2 Formulación del Problema.

En diversos tramos de esta trocha carrozable, en periodos de lluvia se genera encharcamientos y saturación de los suelos que hace intransitable toda la vía. No existe un drenaje apropiado y el suelo predominante es arcilla.

Trabajos de mantenimiento y rehabilitación periódicos a cargo del MTC y últimamente de la Municipalidad Distrital no han resuelto en forma definitiva el problema de intransitabilidad de esta vía durante diversos periodos del año. La apertura al tráfico acarrea costos que acumulados justificarían la conformación de una

plataforma apropiada a nivel de subrasante, (desde el año 1,995 el presupuesto anual aproximado para el mantenimiento y rehabilitación de esta vía asciende a S/. 150,000.00 lo que acumuló a la fecha un costo total de S/. 1'500,000.00 financiado por el Gobierno Regional a través la Dirección Regional de Transportes y Comunicaciones)

Los suelos en la selva baja son difíciles de estabilizar y por tanto la construcción de vías terrestres no pavimentadas tienen elevados costos de mantenimiento y conservación, a parte de incrementar los costos de producción por el uso de la vía, es esta realidad que hace necesaria la pavimentación definitiva de este importante eje vial.

Por lo tanto, se plantea diseñar la carretera previo estudio de la situación actual, aplicando para su diseño las normas de construcción, de tal manera que nos permita obtener mejores condiciones de servicio y garantizar menores costos de transporte.

1.1.3 Definición del Problema

La vía en condiciones actuales no permite el tránsito fluido de vehículos de transporte de pasajeros y carga, afectando a la población beneficiada y a las comunidades que utilizan esta vía como único medio para el traslado de sus productos agrícolas a la ciudad de lquitos y posterior comercialización.

1.2 OBJETIVOS

1.2.1 Objetivo General

Aplicar Normas Técnicas para realizar el diseño geométrico de la vía, diseño estructural del pavimento flexible y el diseño de drenaje de la carretera Santa Clara, adaptándolas a la realidad de la zona.

1.2.2 Objetivos Específicos

Evaluar las condiciones físicas actuales de la vía y otros aspectos de su entorno. Para desarrollar los trabajos de: levantamiento topográfico, estudio de suelos, selección de canteras, análisis de tránsito y vehículos, estudios hidrológicos, para realizar el diseño de drenaje de la carretera Santa Clara.

1.3 MARCO TEÓRICO Y CONCEPTUAL

Terreno de fundación

Terreno donde se apoya o le sirve de fundación al pavimento y que es afectado por este; puede ser terreno natural o material de préstamo, su función es soportar al pavimento en condiciones razonables de resistencia y deformación.

Subrasante

Proporción superior del suelo de fundación, que ha sido nivelada, perfilada y compactada que servirá de apoyo a las diferentes capas del pavimento.

La capacidad de soporte de la subrasante se mide con el CBR (California Bearing Ratio o Relación Soporte de California – Norma AASHTO T193-81) para el caso de pavimentos flexibles; y con el módulo "k" de Reacción de la Subrasante (o Coeficiente de Balastro – AASHTO T221-90) para el caso de los pavimentos rígidos. Una subrasante puede ser buena, regular o de mala calidad si su CBR esta comprendido entre 60% y 100%, 10% y 60% ó 0% y 10%, respectivamente. Si la subrasante es buena, puede servir de apoyo directo a la superficie de rodadura; si es mala, conviene estudiar la posibilidad de reemplazar o estabilizarla con materiales de mejor calidad.

- <u>Subbase</u>

Material de préstamo que se coloca entre la Subrasante y la Base en un pavimento flexible o entre la Subrasante y las losas en un pavimento rígido, para cumplir la función de capa drenante, anticontaminante y/o resistente. Como capa drenante, facilita la evacuación lateral de las agua provenientes del nivel freático, aniegos, o de infiltración a través de las juntas en el caso de un pavimento rígido. Como anticontaminante, impide el arrastre de los finos de la subrasante hacia la base, minimiza el efecto dañino causado por las heladas o por arcillas expansivas, evita que las losas en un pavimento rígido se vean atacadas químicamente por aguas o suelos agresivos al concreto de cemento Pórtland. Y como capa resistente en un pavimento flexible en función de su espesor y de su "Coeficiente de Resistencia Relativa".

Según el MTC, la subbase puede ser seleccionada o granular. La subbase seleccionada es una capa de material con límites de gradación de una arena para concreto (AASHTO M 6-87 y Tabla 1.3.3.a)

Tabla 1.3.3.a

Características de las sub-bases seleccionadas

(capa anticontaminante) según el MTC

Tamaño de la Malla	Porcentaje en peso
(abertura cuadrada)	que pasa
3/8 pulg.	100
N° 4 (4.76mm)	95-100
N° 16 (1.18mm)	45-80
N° 50 (0.30mm)	10-30
N° 100 (0.15mm)	2-10

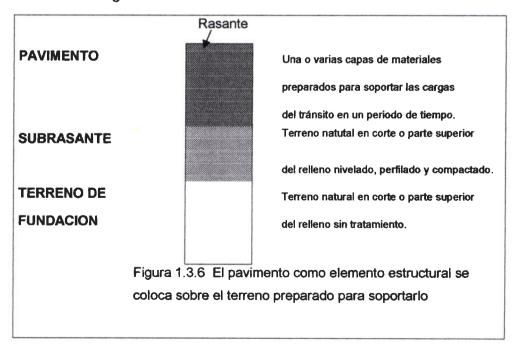
La sub-base granular es un material libre de terrones de arcilla o material orgánico, con una granulometría que cumpla con cualquiera de los requisitos de gradación A, B, C o D de la tabla 1.3.3.b

Tabla 1.3.3.b

Características de los materiales granulares para las sub-bases
y bases granulares según el MTC

Tamaño de la Malla	porcentaje en peso que pasa				
(abertura cuadrada)	tipo I				
		Gradación			
	Α	В	С	D	
2 pulg.	100	100	-	-	
1 pulg.	-	75-95	100	100	
3/8 pulg.	30-65	40-75	50-85	60-100	
N° 4 (4.76mm)	25-55	30-60	35-65	50-85	
N° 10 (2.00mm)	15-40	20-45	25-50	40-70	
N° 40 (0.42mm)	8-20	15-30	15-30	25-45	
N° 200 (0.074mm)	2-8	5-15	5-15	8-15	

- <u>Base</u>


Principal elemento estructural en el pavimento flexible y en el pavimento rígido puede reemplazar a la subbase, pudiendo ser de agregados, aglomerantes con asfalto (como en el caso de las Bases Negras y Estabilizados).

- Capa de Desgaste o Superficie de Rodadura

Capa superficial, que tiene como función principal proporcionar una superficie resistente al desgaste y suave al deslizamiento.

Pavimento

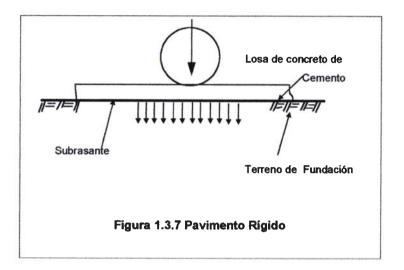
Elemento estructural monocapa o multicapa, apoyado en toda su superficie, diseñado y construido para soportar cargas estáticas y/o móviles; así mismo, para proporcionar una superficie resistente al desgaste y suave al deslizamiento en un periodo de tiempo predeterminado, durante el que necesariamente deberá recibir algún tipo tratamiento tendiente a prolongar su "Vida de Servicio". Figura 1.3.6.

Clasificación:

Pueden clasificarse de la siguiente forma:

- a) Por la forma de su comportamiento:
 - Pavimento Flexible.
 - Pavimento Rígido.
 - Pavimento Mixto.
- b) Por el lugar en que prestan servicio:
 - Pavimentos urbanos.
 - Pavimentos de carreteras.
 - Pavimentos de aeropuertos.
 - Pavimentos de puentes, malecones y muelles.
- c) Por los materiales de que están construidos:
 - Pavimentos con suelos estabilizados.
 - Pavimentos bituminosos.
 - Pavimentos de concreto hidráulico.
- d) Por la calidad que tienen:
 - Pavimento de tipo interior o económico.
 - Pavimento de tipo intermedio
 - Pavimento de tipo superior.

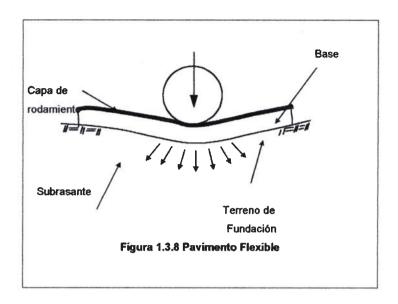
Pavimento de lujo.


Pavimento Rígido

Estructura donde la capa de rodamiento esta formado por una losa de cemento Pórtland con o sin armadura de metálica.

Estos pavimentos transmiten a la subrasante, las cargas que reciben de una manera uniforme, en una extensión considerable y

a una distancia apreciable de su punto de aplicación, repartiéndolas sobre una gran superficie. Figura 1.3.7


Los estudios de estos pavimentos se basan en la teoría de Westergaard y se considera en el diseño una carga repartida.

Pavimento Flexible

Aquellos que tienen una base granular flexible o semirígida, sobre la cual se ha construido una capa de rodamiento con mezcla bituminosa de alquitrán o asfalto. Figura 1.3.8.

Se caracterizan porque transmiten a la subrasante las cargas que reciben solo en las zonas próximas a la aplicación de la carga. La carga de diseño es puntual y las diferentes capas tienen un buen comportamiento resistente al esfuerzo cortante. Su estudio se basa en la teoría de Boussinesq.

Diseño de Pavimentos Flexibles

En la actualidad, existen muchos métodos para calcular pavimentos flexibles. El diseño estructural consiste en la determinación de la estructura e incluye las capas de base, subbase y capa de rodadura, así como el reconocimiento adecuado de la subrasante y las posibles condiciones de drenaje. A continuación describimos algunos métodos de diseño:

Método Del Índice De Grupo

Este método se debe a D. J. Steele, que lo propuso en el comité de Calificación de Suelos para Carreteras del Highway Research Board de los estados Unidos.

Basado en las características físicas del material y, principalmente en su composición granulométrica y grado de plasticidad. La clasificación de suelos que interesa a este método es la clasificación AASHTO.

Para su aplicación se debe cumplir lo siguiente:

- 1.- Índice de Grupo del terreno de fundación.
- 2.- Carga por rueda considerada, se considera 9,000 lb. (4,086Kg).
- 3.- Terreno de fundación, debe ser debidamente compactado a humedad optima y densidad máxima, no mayor del 95% de la densidad máxima obtenida por el método Standard AASHO T-99).
- 4.- Para subbase y base, la compactación no será menor del 100% de su densidad máxima.
- 5.- Se supone que el sistema de drenaje subterráneo y superficial, son buenos y que el nivel de la napa freática se encuentra en una profundidad no perjudicial para la estabilidad del terreno de fundación (mayor de 2.00m.).
- 6.- Tipos de Tráfico.
- <u>Tráfico Liviano:</u> Tiene un tránsito comercial menor de 50 camiones y autobuses diarios.
- Tráfico Mediano: Su Tránsito comercial esta comprendido entre 50 y 300 camiones y autobuses diarios.
- <u>Tráfico Pesado:</u> Tiene un tránsito comercial mayor de 300 camiones y autobuses diarios.

Es bueno recordar que para obtener el INDICE DE GRUPO (IG) se encuentra con formulas empíricas o gráficos; tal como:

I.G. = 0.2A + 0.005AC + 0.01BD, o también:

I.G. = (F-35)(0.2 + 0.005(LL-40)) + 0.01(F-15)(IP-10), donde

- A = % de material que pasa el tamiz # 200, menos 35. Si el % es mayor de 75, solo se notará 75, si es menor de 35 se anotará 0.
- B = % de material que pasa el tamiz # 200, menos 15. Si el % es mayor de 55, solo se anotará 55 y si es menor de 15 se anotará 0.
- C = El valor del límite líquido (LL), menos 40. Si el Límite Líquido es mayor de 60%, solo se anotará 60% y si es menor del 40%, se anotará 0.
- D = El valor del Índice de Plasticidad (IP), menos 10. Si el IP es menor de 30 y si es menor de 10, se anotará 0
- F= % que pasa el tamiz # 200.

CLASES DE PAVIMENTOS.

De acuerdo al tipo de tránsito y al Índice de Grupo obtenido del terreno de fundación donde se sustentará el pavimento, el método recomienda los siguientes diseños:

<u>Pavimento para Tránsito Liviano:</u> De acuerdo con la calidad del terreno de fundación se tiene:

a) Si el terreno de fundación es

Muy malo (IG > 9) 30cm (12") de subbase. 15cm (06") Base + Capa de ------- Rodamiento.

Espesor del pavimento: 45cm (18")

b)	Si el terreno de fundació	n es
	Malo (IG: 4 - 9)	20cm (08") de subbase
		15cm (06") Base + Capa de
		Rodamiento.
	Espesor del Pavimento:	35cm (14")
c)	Si el terreno de fundació	n es
	Regular (IG: 2 - 4)	10cm (04") de subbase
		15cm (06") Base + Capa de
		Rodamiento.
	Espesor del Pavimento:	25cm (10")
d)	Si el terreno de fundació	n es
	Bueno (IG: 1 – 2)	05cm (02") de su-base
		15cm (06") Base + Capa de
		Rodamiento.
	Espesor del Pavimento:	20cm (08")
e)	Si el terreno de fundació	n es
		No nec. Subbase
		15cm (06") Base + Capa de
		Rodamiento

f) Si el terreno de fundación es excelente hace las veces de subbase y base. Por lo tanto bastará colocar una capa de rodamiento.

Espesor del Pavimento: 15cm (06")

El espesor combinado de 15cm (6") de base + capa de rodamiento, puede distribuirse en una base granular de 10cm y 5cm (2") de mezcla bituminosa.

<u>Pavimentos para tránsito Mediano:</u> Como en el caso anterior, el espesor que tenga un pavimento flexible, variará de acuerdo con la calidad de la subrasante de la siguiente manera:

a) Si el terreno de fundación es

Muy malo (IG > 9)

30cm (12") de subbase

22cm (09") Base + Capa de

----- Rodamiento.

Espesor del Pavimento:

52cm (21")

b) Si el terreno de fundación es

Malo (IG: 4 – 9)

20cm (08") de subbase

22cm (09") Base + Capa de

----- Rodamiento.

Espesor del Pavimento:

42cm (17")

c) Si el terreno de fundación es

Regular (IG: 2 – 4)

10cm (04") de subbase

22cm (09") Base + Capa de

----- Rodamiento.

Espesor del Pavimento:

32cm (13")

d) Si el terreno de fundación es

Bueno (IG: 1 – 2)

05cm (02") de subbase

22cm (09") Base + Capa de

----- Rodamiento.

Espesor del Pavimento: 27cm (11")

e) Si el terreno de fundación es

Excelente (IG: 0 – 1) ----- No nec. Subbase

22cm (09") Base + Capa de

----- Rodamiento.

Espesor del Pavimento: 22cm (09")

<u>Pavimentos para Tránsito Pesado:</u> Según la calidad del terreno de fundación, los espesores podrán ser los siguientes:

a) Si el terreno de fundación es

Muy malo (IG > 9) 30cm (12") de subbase

30cm (12") Base + Capa de

----- Rodamiento.

Espesor del Pavimento: 60cm (24")

b) Si el terreno de fundación es

Malo (IG: 4 – 9) 20cm (08") de subbase

30cm (12") Base + Capa de

----- Rodamiento.

Espesor del Pavimento: 50cm (20")

c) Si el terreno de fundación es

Regular (IG: 2 – 4) 10cm (04") de subbase

30cm (12") Base + Capa de

----- Rodamiento.

Espesor del Pavimento: 40cm (16")

d) Si el terreno de fundación es

Bueno (IG:
$$1-2$$
) 05cm (02") de subbase

f) Si el terreno de fundación es

Espesor del Pavimento: 30cm (12")

El espesor combinado de base + capa de rodamiento, puede ser distribuido en varias formas. Por lo general, se selecciona el espesor y el tipo de mezcla a emplearse en la capa de rodamiento. Se recomienda, que la base granular, en ningún caso tenga un espesor menor de 10cm (4").

Por otra parte, el espesor de la capa de rodamiento, debe ser siempre menor que el de la base granular. Este espesor esta condicionado al tipo de mezcla asfáltica. Así, por ejemplo: Los tratamientos superficiales, raras veces pasan de 2.50cm (1") de espesor; las mezclas "en frío" o "en caliente" hechas en planta o en situ, así como los macadam de penetración, comúnmente tienen espesores comprendidos entre 5cm (2") y 10cm(4"), excepción hecha de las mezclas de "arena-asfalto", cuyo espesor puede ser hasta 15cm (6").

Método Del California Bearing Ratio = Relación De Soporte California – C.B.R.

Gran parte de las fallas en los pavimentos asfálticos se debe principalmente al desplazamiento, o sea la falla "al corte", de los materiales que componen las diferentes capas, por lo que se diseña basándose en los ensayos "al corte".

La determinación de la resistencia al corte de un suelo, se puede hacer por medio de un "ensayo de corte directo" de una prueba triaxial, o simplemente midiendo la resistencia a la penetración del material.

El método de California fue propuesto por el ingeniero O.J. Portere en 1,929 y adoptado por el Departamento de Carreteras de California y otros organismos técnicos de carreteras, así como por el Cuerpo de Ingenieros del Ejército de los Estados Unidos de Norteamérica.

Este método establece una relación entre la resistencia a la penetración de un suelo, y su valor relativo como base de sustentación de pavimentos asfálticos. Comprende tres ensayos que, en forma resumida son:

- 1.- Determinación de la Densidad Máxima y Humedad Óptima.
- 2.- Determinación de las propiedades expansivas del material.
- Determinación de la Relación de Soporte California, o CBR.

En la construcción de un pavimento flexible, se recomienda que el material para subbase tenga un CBR mayor del 15%. El material para base debe tener un CBR mayor de 40% cuando

las cargas por rueda son menores de 10,000Libras (4,540kg.) como es el caso de las carreteras en general y un CBR no menor de 80% cuando las cargas por rueda son mayores de 10,000 libras, como sucede en la mayor parte de pistas de aterrizaje.

Método AASHTO (1,993)

W. J. Liddle ha descrito una aplicación directa de los datos obtenidos en la Carretera Experimental AASHTO a fin de establecer las dimensiones más apropiadas para un pavimento.

La versión AASHTO con modificaciones en su metodología, afecta los factores de soporte estructural reemplazándolos por coeficientes de drenaje de las capas; por otro lado sigue utilizando conceptos de tráfico, índice de servicialidad y capacidad de soporte del suelo de fundación. El método AASHTO es bien aceptado porque determina el número estructural (SM) requerido por el pavimento, a fin de soportar satisfactoriamente un volumen de tránsito durante el periodo de vida proyectado. Así mismo, sus consideraciones son:

- Índice de servicialidad final: Terminado el periodo de vida proyectado (superficie de rodadura), éste debe ofrecer una adecuada servicialidad.
- El diseño considera un contenido de humedad igual a la condición más húmeda que puede ocurrir en la subrasante, luego que la vía se abra al tráfico.

 El coeficiente de drenaje reemplaza al factor regional, que es introducido para el cálculo del número estructural. Estos coeficientes son considerados de acuerdo a las propiedades del material granular que serán utilizados para el AASHTO.

Método Del Instituto Del Asfalto.

Se basa en un tránsito probable durante un periodo de 20 años referida a una carga por "eje sencillo" de 18,000 libras aproximadamente y considera además, el valor portante del terreno de fundación, la calidad de los materiales de base, subbase, y capa de rodamiento que se emplea en los procedimientos de estructuración.

El tránsito referido anteriormente se denomina "Valor de Tránsito de Diseño", y es determinado en función del tránsito diario inicial, que es el promedio en ambas direcciones, estimado para el primer año de servicio, considerando una tasa de crecimiento anual. Ver gráfico para la determinación de los valores de tránsito de diseño.

Espesor del Pavimento.-

Una vez determinado los valores de tránsito para el diseño y conocida la capacidad portante del terreno de fundación; el espesor del pavimento flexible se determina utilizando los diagramas indicados en la figura: cálculo de espesor del pavimento.

Relación entre capacidades portantes de subbase, base y mezcla asfáltica.-

El método en cuestión, sugiere lo siguiente:

- a) Relación 2:1, entre la base granular y la base de concreto asfáltico; o sea, 2" de una base granular que llene los requisitos indicados, equivalente a 1" de concreto asfáltico; del tipo IV.
- b) Relación 2.7:1, entre la base granular y mezcla de concreto asfáltico; es decir, que 2.7" de una sub-base que llene los requisitos indicados, equivalente a 1" de concreto asfáltico tipo IV.
- c) Relación 1.35:1, entre la sub-base y base granular; o sea, 1.35" de sub-base equivalente a1" de base granulada.

Determinación del espesor mínimo de la capa de rodamiento.-

Sugiere los siguientes espesores:

Valor de Transito	Espesor mínimo de la		
Para Diseño	capa de rodamiento:		
- Menor de 10 (tránsito			
Reducido)	1"		
- Entre 10 y 100 (tránsito			
Medio)	1 ½"		
- Mayor de 100 (tránsito			
Intenso)	2"		
·			

- <u>Clima</u>

Principal factor climático que afecta a los pavimentos suele ser la precipitación pluvial, ya sea por su acción directa o por elevación de las aguas freáticas.

C.B.R (California Bearing Ratio)

Relación entre la fuerza por unidad de superficie necesaria para penetrar en una mezcla de suelo.

- Resistencia

Medida de idoneidad de un pavimento para soportar la carga aplicada.

- Cantera

Fuente de aprovisionamiento de suelos y rocas necesarios para la construcción de una obra. La calidad de una cantera esta dada por el grado de cumplimiento de las especificaciones del material que se busca; y se deduce de los ensayos de laboratorio que se practiquen sobre las muestras tomadas durante la etapa exploratoria.

Los puntos importantes que se tomaron en cuenta, para la explotación y localización de canteras, fueron los siguientes:

- Considerar la naturaleza y tipo de áridos requeridos.
- Verificar que los materiales satisfagan los requerimientos y que su ubicación sea concerniente a la obra.

- Estimar el volumen necesario de material que será empleado en la obra.
- Disponibilidad de fácil acceso, medios de exploración con procedimientos eficientes y menos costosos.

- Análisis Granulométrico

Determina la cantidad de porcentajes de los diferentes tamaños de partículas que constituyen el suelo.

Límites de Atterberg

Las propiedades plásticas de los suelos arcillosos y limosos, pueden ser estudiadas por medio de pruebas simples. Las más utilizadas se denominan de Consistencia o de Atterberg.

Un suelo arcilloso con alto contenido de agua, se comporta como líquido, al perder agua, va aumentando de resistencia hasta tener un estado plástico, fácilmente moldeable, al continuar el secado, llega a adquirir un estado semi-sólido, al continuar con la pérdida de agua pasa al estado sólido.

Los cambios de estado se producen gradualmente y los límites fijados arbitrariamente entre ellos se denominan, Límite Líquido, Limite Plástico y de Contracción.

- Tránsito

Produce las cargas a las que el pavimento va ha estar sujeto. Respetando el diseño de los pavimentos interesa conocer la magnitud de esas cargas, las presiones de inflado de esas llantas, así como su área de contacto, su disposición y arreglo en

el vehículo, la frecuencia y número de repeticiones de las cargas y las velocidades de aplicación.

<u>Índice medio diario (I.M.D.)</u>

Volumen de tránsito que circula por una vía durante las 24 horas en un cierto periodo de tiempo.

Para calcular el I.M.D. se utiliza la siguiente fórmula:

$$I.M.D. = \frac{5PL + S + D \times F.C.}{7}$$

Donde:

PL = Promedio de Volumen de Tráfico de los Días

Laborables

S = Volumen del Sábado

D = Volumen del Domingo

F.C = Factor de Corrección = 1.00

Para determinar el IMD de un camino en operación, se cuenta el tránsito en forma directa, operación que se llama aforo. Conociendo el IMD actual de una carretera, esta se puede proyectar hasta el periodo de vida útil de nuestra carretera.

Para conocer el IMD de un camino que se va a construir, la situación se complica, pues todavía no hay tránsito sobre él, por lo que se recurre a estimar en base a lo que se llama tránsito inducido y tránsito y tránsito generado.

El tránsito inducido es aquel que en la actualidad esta utilizando otros caminos, pero que al construirse el nuevo, hará uso de él

para llegar al mismo destino. Es decir, que el tránsito que ahora hace un rodeo, pero que al abrirse un nuevo camino lo utilizará por ser más directo, o por darle mayores facilidades para llegar al sitio deseado.

1.4 VARIABLES

Variable Independiente

- Levantamiento Topográfico
- Estudio de Tráfico
- Estudio Hidrológico
- Estudio de suelos y canteras

Variable Dependiente

Diseño Definitivo del Pavimento

1.5 METODOLOGIA

El método empleado para el desarrollo del estudio comprende las siguientes etapas:

1.5.1 Actividades de Campo

Durante la fase de campo se realizaron encuestas para recabar informaciones, levantamiento topográfico, inventario vial de obras de arte, conteo para análisis de tránsito vehicular y estudio de mecánica de suelos en laboratorios y en situ.

Entre los lugares a los que se recurrirá para recabar información siguientes: Ministerio tenemos los de Transportes, Comunicaciones (MTC), Laboratorio de suelos, concreto y asfalto del Servicio Industrial de la Marina de Iguitos S.R.Ltda. (SIMAI), laboratorio de mecánica de suelos de la Universidad Particular de Servicio Nacional Metodología e Iquitos. de Hidrología (SENAHMI), Instituto Nacional de Estadística e Informática (INEI), biblioteca amazónica, biblioteca UNAP y la Municipalidad Provincial de Maynas.

1.5.2 <u>Labores de Gabinete</u>

Comprende el procesamiento de la información obtenida en la etapa anterior, así como la elaboración de planos, presupuesto, etc.

1.5.3 Revisión de Bibliografía

Comprende la revisión de textos e información por Internet, que se requieran para desarrollar los diferentes aspectos del estudio.

1.6 Materiales y Equipos

Instrumentos de Campo

- Libreta de campo
- Machetes
- Wincha de 30m
- Encuestas de campo
- Cámara fotográfica
- Películas fotográficas

- Teodolito WILD TIA
- Nivel WILD NK10
- Mira o estadía
- Trípode de aluminio
- Jalones
- Comba 4 libras
- Estaca
- Pintura
- Tamices
- Espátulas
- Balanzas
- Muestra de terreno natural, para determinar el perfil estratigráfico.

Instrumentos de gabinete

- Computadora Pentium IV
- Impresora laser
- Calculadora Manual Texas Instruments TI-82
- Diskettes 3M
- Papel Bond A-4
- Fichas de registro
- Útiles de escritorio en general
- Software de aplicación (Autocad Land 2,000, S10, MS Proyet)

CAPITULO II	

2.0 CARACTERÍSTICAS ACTUALES DEL TRAMO

2.1 UBICACIÓN

El área en proyecto esta ubicada en el departamento de Loreto, provincia de Maynas, distrito de San Juan Bautista; a una altitud promedia de 124m.s.n.m. así mismo, su punto de inicio esta a 550m. antes de llegar al Km. 0+000 de la carretera Iquitos Nauta hasta la comunidad de Santa Clara.

2.2 CLIMA

La zona del proyecto se enmarca en la zona selva baja, denominada vida del "Bosque Húmedo Tropical", descrito como una zona "húmeda y cálida sin estación bien definida y sin cambio térmico invernal bien definido", donde la biotemperatura media anual esta entre 24°C y 36°C, con humedad relativa mayor al 75% y precipitaciones pluviales mínimas de 1,800 a 2,000 mm/año.

Vientos

La mayor parte del día hay completa calma o, a lo más, ligeras brisas del Noreste (rara vez del Oeste), los vientos del sur son fríos y se sienten, se presenta una vez al año por espacio de una semana, generalmente entre los meses de Mayo y Julio.

2.3 TOPOGRAFÍA

El relieve topográfico del proyecto en estudio es predominante plano; por lo general en la selva baja, las áreas suaves o planas se distribuyen a lo largo de los grandes y sinuosos ríos amazónicos, como es el caso de la carretera en proyecto, la cual se encuentra ubicada en las inmediaciones del río Nanay.

2.4 ESTADO ACTUAL DE LA CARRETERA EN ESTUDIO

En términos generales, la carretera en estudio se encuentra a nivel de trocha carrozable, presentando las siguientes características:

- Velocidad directriz : 40 Km/h.

- Ancho promedio de la plataforma : 8.00m.

- Superficie de rodadura : Encala minada y con

baches

- Bermas laterales : Con baches y maleza.

- Pendiente promedio : 3%

- Alcantarillas TMC, Marcos de C°A° : Obstruidos.

- Cunetas : Terreno natural con

maleza

2.5 ÁREA DE INFLUENCIA DEL PROYECTO

El área de influencia de este proyecto abarca en lo general a la ciudad de Iquitos, al distrito de San Juan Bautista y al río Nanay.

2.6 <u>ASPECTOS URBANOS, DEMOGRÁFICOS Y SOCIO-</u> <u>ECONÓMICOS</u>

2.6.1 <u>Aspectos Urbanos y Demográficos</u>

Entre la población beneficiada ubicada a lo largo de la carretera en estudio tenemos: a las comunidades de Santa Clara y Rumococha y a los asentamientos humanos Simón Bolívar y las Coruñas.

La localidad de Santa Clara se encuentra ubicada en el margen derecho aguas abajo del Río Nanay, en una parte alta no inundable y al final de la carretera en proyecto. Se encuentra aproximadamente a 12km. del centro de la ciudad de Iquitos. Las construcciones de las casas son de material noble y de madera rústica del tipo palafito, cuenta con Servicio de Electrificación, Centro Educativo Inicial, Centro Educativo Primario, Colegio Secundario y Centro Salud; la población es de aproximadamente 2,600.00 habitantes entre niños y adultos.

Se definen dos tipos de estación durante el año, la de verano o estiaje entre Junio y Diciembre y la época de lluvia entre Enero y Mayo, que es la época de creciente de los ríos.

Otra de las comunidades beneficiadas con la construcción de esta importante carretera seria la comunidad de Rumococha, ya que se encuentra ubicada en el Km. 1+ 500 de la carretera a Santa Clara. Esta comunidad cuenta con servicio de electrificación, CEI, CEP y Centro de Salud; tiene una población de aproximadamente 1,500.00 habitantes entre niños y adultos. El único medio de comunicación terrestre para llegar a esta comunidad es la vía en estudio.

2.6.2 Aspecto Socio-Económico

Las actividades socio-económicas en la comunidad de Santa Clara se definen de la siguiente manera:

- La actividad de extracción forestal en las comunidades aledañas con propósitos comerciales no esta generalizada, es selectiva y a veces constante pero aún no provoca mayores daños.
- La actividad pesquera es de autoconsumo y la que provee de mayor proteínas a la población, representa aproximadamente el 2% del total de la Región.
- En tanto, la recolección de especies vegetales y animales es generalizada durante todo el año.
- La actividad manufacturera en la comunidad de Santa Clara no esta desarrollada, solo se realiza el pilado de arroz, la producción de aguardiente de caña de los trapiches como actividad familiar y la actividad de pequeñas panaderías.
- Actualmente no se aprovecha la actividad turística por falta de infraestructura, pero se estima que con la culminación de la carretera, esta actividad debe potenciarse.

3.0 ESTUDIO TOPOGRÁFICO

3.1 **GENERALIDADES**

El estudio topográfico definitivo de un proyecto de pavimentación se efectúa con la finalidad de establecer todas las características geométricas de una vía y demás áreas que se encuentran dentro de la zona en estudio, para luego establecer las diferentes obras que competen al estudio de pavimentación.

3.1.1 Reconocimiento

En esta etapa se procedió al reconocimiento del área de estudio, con la finalidad de detectar aquellas características que pudieran haber pasado inadvertidas y obtener datos complementarios de la zona, que contribuirán a tener una idea más cercana a la realidad de la vía en estudio.

3.1.2 Levantamiento Topográfico

En esta etapa se determinó la configuración (relieve) de la superficie del terreno, el cual permitirá realizar el diseño geométrico y de drenaje de la vía.

Control de Levantamiento Topográfico

a) Control Horizontal: Determinado con dos tipos o más puntos fijos en el terreno cuya posición se determina horizontalmente con precisión por medio de la distancia y su dirección. b) Control Vertical: Todo punto levantado estará referido a un plano de comparación, para ver que punto se encuentra más alto o más bajo siendo este plano oficial (m.s.n.m.) o arbitrario denominado cota de cada punto.

3.2 ACTIVIDADES DE GABINETE

Consistió en realizar los cálculos y la elaboración de los planos respectivos, para los siguientes trabajos:

3.2.1 Perfil Longitudinal

Representación gráfica del relieve que presenta el terreno, en el eje de trazo de la carretera en estudio, en distancias conocidas. El perfil longitudinal debe ser dibujado a escala adecuada con la finalidad de determinar la rasante definitiva.

Para la obtención del perfil longitudinal se realizó los pasos siguientes:

a) Replanteo del Eje: Consistió en la ubicación exacta del eje, para lo cual se tomó la mitad de la distancia existente entre los terrenos delimitados según plano catastral, estos ejes fueron perfectamente alineados con teodolito midiéndose los ángulos de intersección, el cual permitirá realizar los elementos de curvas, así mismo el estacado de las progresiva sobre el eje de la carretera, cada 20m. en tramos en tangente y a cada 10m. en tramos en curva. (El cálculo de los elementos de curvas se encuentra en el anexo III, tabla N° 01)

Nivelación: Una vez definido y estacado el eje de la carretera b) se procedió a ejecutar la nivelación de estacas a lo largo del eje respectivo, esta etapa se realizó dentro de los métodos de nivelación geométrica y el método de nivelación compuesta cerrada. Para dar comienzo a este trabajo se trasladó la cota del BM. 42 ubicado en el cimiento de un poste de alta tensión aproximadamente a unos 40m de la Av. Quiñónez. Cabe mencionar que el BM. en referencia fue SIMA IQUITOS. monumentado nor el para la repavimentación de la Av. Quiñónez.

3.2.2 Sección Transversal

Perfiles que representarán la forma del terreno en el sentido transversal del eje del trazo, inciden directamente en el metrado de movimiento de tierras y por consiguiente en el cálculo del presupuesto.

Se tomará secciones transversales del terreno en cada estaca del eje, en los casos en que la topografía fuese muy uniforme puede dejarse de seccionar en las estacas de los PC, E y PT, pero las estacas enteras del trazo y las intermedias ubicadas en los puntos notables, como quebradas, lomadas, etc., deben de tomarse de todas maneras. El ancho que se requiere tomar a cada lado del eje es de 20m. como mínimo, lo que hace que se tenga en el plano a curvas de nivel un ancho mínimo de topografía de 40m. a lo largo del eje.

3.2.3 Determinación de la Rasante

De acuerdo a los perfiles longitudinales y las secciones transversales se procede a trazar la rasante definitiva de la Avenida en estudio, de acuerdo a la Normas Peruanas para el Diseño de Carreteras, según lo indicado en el Art. 5.5.2 y las tablas 5.5.4.3 y 5.5.4.4

En cambios de pendiente por razones de economía, la rasante seguirá las inflexiones del terreno, sin dejar de lado las limitaciones impuestas por la visibilidad y seguridad.

Debe de buscarse una rasante que establezca, en lo posible compensación transversal y compensación longitudinal de los volúmenes a moverse.

3.2.4 Cálculo de Volúmenes de Corte y Relleno

Ver anexo III, tabla N° 02

3.3 <u>DISEÑO GEÓMÉTRICO DE LA VÍA</u>

Determinará las características geométricas de los diferentes elementos que conforman la carretera, las mismas que deben ser tomadas en el rango de las exigencias mínimas y máximas de las normas y reglamentos.

3.3.1 Características Geométricas de la Vía

Ancho de la Vía

Sección transversal que sirve para la circulación y varía con el volumen de tránsito.

El ancho de pavimento se compone de los siguientes elementos:

- a) <u>Pavimento o Superficie de Rodadura:</u> Se ha diseñado de acuerdo al tránsito que circula y teniendo en cuenta los siguientes factores:
- Carretera del sistema vecinal de segunda clase.
- Velocidad directriz 50Km/hora
- Tránsito < 55 veh/hora (año 2,024)

Con estos datos se entra en la tabla 5.4.1.1 de las N.P.D.C. de donde se obtiene un ancho de superficie de rodadura de 6.00m. para tramos en tangentes, variando en los tramos en curva debido al sobreancho.

Haciendo una comparación con las Normas de Diseño Geométrico para rutas secundarias del American Association of State Highway and Transportation Officials (AASHTO) se obtiene un ancho de carril deseable de 12′ (3.65m) y el número de carriles estará determinado por el volumen del tráfico.

Por lo tanto, se considerará una vía de dos carriles con un a superficie de rodadura de 7.30m.

- b) <u>Veredas:</u> No se considerará la construcción de veredas.
- c) <u>Vías Auxiliares:</u> Como tenemos una velocidad directriz de 50 Km/hora, no es necesario dotar de vías auxiliares como pasarelas peatonales los cuales se estilan poner en pistas donde el tránsito discurre a gran velocidad.

Curvas Horizontales

Elementos que servirán para enlazar dos alineaciones consecutivas de distinta dirección, llamándose curvas de enlace

Para el cálculo de los elementos de las curvas de enlace u horizontales, se realizó aplicando las formulas ya conocidas.

Curvas Verticales

Se usarán en los cambios de rasante de modo que permitan pasar de una pendiente a otra, siempre y cuando la diferencia algebraica de pendientes sea de 1% para pavimentos de tipo superior y 2% para los demás, sin que estos cambios causen molestias o dificultades al conductor o usuario de la vía; por otra parte aseguran la visibilidad para los conductores, evita la fuerza de impacto y el cambio brusco de trayectoria.

3.3.2 Elementos de la Vía

Radios

Para una Velocidad Directriz de 50 Km/Hr, el radio mínimo normal es 90 m de acuerdo a la tabla 5.3.1.1de la N.P.D.C. y el radio mínimo excepcional es 75 m de acuerdo a la tabla 5.3.2.1 N.P.D.C.

Visibilidad de Parada

Distancia mínima requerida para que se detenga un vehículo que viaja a la velocidad directriz, antes de alcanzar un objeto inmóvil que se encuentran en su trayectoria.

De la lámina 4.2.2 de la N.P.D.C. se adopta el valor de 60m.

Visibilidad de Paso

Distancia mínima que deberá estar disponible a fin de facultar al conductor del vehículo a sobrepasar a otro que se supone viaja a una velocidad de 15 Km/hora menos, con comodidad y seguridad sin causar alteración en la velocidad de un tercer vehículo que viaja en sentido contrario a la velocidad directriz y se hace visible cuando se ha iniciado la maniobra de sobrepaso.

Se hallará según la lámina 4.3.2 de las N.P.D.C. del cual adoptamos una distancia de visibilidad de sobrepaso de 260m.

Curvas de Transición

Por ser la velocidad directriz adoptada menor a 60 Km/hora, no se usará espirales de transición de peralte.

Peralte

Con el fin de contrarrestar la acción provocada por la fuerza centrifuga, todas las curvas horizontales deben ser peraltadas.

El peralte como valor máximo excepcional será del 10% (ver lámina 5.3.4.1 de las N.P.D.C.)

Sobreancho

Los conductores, en las curvas tienden a no seguir por el centro de su carril de circulación. Además, las ruedas traseras no siguen las mismas huellas que las delanteras.

Por razones como esas y otras a la seguridad del manejo, se establece la necesidad de dotar a los carriles en curva de mayor ancho, con relación al de los tramos en tangente. Ese aumento de ancho en curva se denomina sobreancho.

- a) Valores del sobre ancho: Variará en función del tipo de vehículo, del radio de la curva y de la velocidad directriz, su cálculo se hará valiéndose del grafico de la lámina 5.3.5.2 debiéndose utilizar los valores de 30cm., siendo éste el mínimo valor que se tendrá en cuenta.
- b) Ejecución del sobreancho: Afectará solamente a la superficie de rodadura y seguirá la inclinación del peralte, permaneciendo inalteradas las dimensiones y la inclinación de las bermas.

En este caso el sobreancho se adosará integramente al lado interior de las curvas, puesto que no hay espirales de transición (ver lámina 5.3.5.3A de las N.P.D.C.)

Bombeo

Inclinación a ambos lados del eje de la sección transversal que tiene como finalidad eliminar el agua de lluvia, haciendo que corra rápidamente hacia la cuneta para evitar contacto con la capa de rodadura.

El bombeo adoptado será del 2% en los tramos en tangente, en los tramos en curva el bombeo será sustituido por el peralte.

Taludes

En corte adoptaremos:

• Tierra suelta 1:2

En relleno adoptaremos:

• Terreno varios 1:2

4.0 ANÁLISIS DEL TRÁNSITO VEHICULAR

4.1 INTRODUCCIÓN

El conocimiento de las características del tránsito que utiliza o utilizará un camino en operación o que se va a construir, es vital para el proyecto de la sección transversal de una vía, convirtiéndose en el principal elemento que se debe tomar en cuenta, ya que el transporte terrestre es el motivo de la obra.

4.2 INDICE MEDIO DIARIO (I.M.D.)

En el presente Proyecto no se pudo realizar lo que se llama tránsito inducido, ya que esta carretera es la única vía para llegar a la Comunidad de Santa Clara.

Para realizar el estudio de tránsito que tiene por objeto conocer el volumen y clasificación vehicular se ubicó la estación de conteo a la entrada de la mencionada carretera. El conteo se efectúo durante toda una semana, las 24 horas de cada día, registrándose todo vehículo que cruzase la estación por sentido y en forma discriminada por tipo de vehículo. Una vez recopilada la información del tráfico se procedió a efectuar el procesamiento de datos. Ver cuadro 4.2.a y 4.2.b

CUADRO 4.2.a ESTUDIO DE CLASIFICACIÓN VEHICULAR CARRETERA SANTA CLARA (AFORO DE VEHÍCULOS)

SECTOR : Av. Abelardo Quiñonez - San Juan

FECHA : Del 14/07/03 al 20/07/03 SENTIDO : Ambos

SENTIDO : KM. 4+500 de la Av. Abelardo Quiñonez UBICACIÓN

TOTAL 108 1580 114 106 112 105 132 159 159 134 96 96 79 8 47 CAMIONES 9 ထ 4 4 ന N S Ŋ 4 4 贸 TRAFICO PESADO 2E 139 12 4 4 3 7 7 7 တ 9 ဖ ∞ ω ဖ တ **4**E OMNIBUS 3日 **2**E COMBIS MICROS TRAFICO LIGERO C. RURAL 464 28 30 23 8 20 30 38 35 45 44 54 1 3 51 AUTOS Y JEEP 930 53 9 53 68 65 75 88 58 56 61 99 63 74 8 SENTIDO 24 HRS 24 HRS **24 HRS** 24 HRS **24 HRS 24 HRS 24 HRS** HORA 24 HRS MIERCOLES DOMINGO VIERNES MARTES 16/07/03 SABADO 14/07/03 15/07/03 18/07/03 20/07/03 JUEVES 17/07/03 19/07/03 **FECHA** LUNES TOTAL

CUADRO 4.2.b VOLUMEN DEL TRÁFICO LIGERO Y PESADO (AFORO DE VEHÍCULOS)

CARRETERA : Santa Clara

SECTOR : Av. Abelardo Quiñónez – San Juan

UBICACIÓN : Km. 4+500 de la Av. Abelardo Quiñónez

FECHA : Del 14 al 20 de Julio del 2,003

	TRÁFICO		
FECHA	LIGERO	PESADO	TOTAL
Lunes	169	38	207
14/07/03			
Martes	164	28	192
15/07/03			
Miércoles	144	16	160
16/07/03			
Jueves	195	25	220
17/07/03			
Viernes	201	16	217
18/07/03			
Sábado	238	28	266
19/07/03			
Domingo	283	35	318
20/07/03			
Volumen Total	1,394	186	1,580
%	88%	12%	100%
I.M.D.	199	27	226

Según el cuadro 4.2 actualmente tenemos un IMD igual a 226 vehículos diarios, si consideramos que este volumen de tráfico tiene tendencia a aumentar con el paso de los años, el tipo de

carga que se asumirá según el cuadro 4.2.c es el **tipo de carga pesada**.

CUADRO 4.2.c Tipos de Tránsito

Descripción	N° Vehículos Diario	Tipo de Carga
Tránsito Liviano	50 camiones o autobuses	Ligero
Tránsito Mediano	50 – 300 camiones y autobuses	Medio
Tránsito Pesado	300 camiones y autobuses	Pesado

En todos los casos anteriores, se supone que un máximo del 15% de los vehículos, tiene una carga por rueda de 9,000Lb (4,086 kilogramos).

4.3 TRÁFICO DE DISEÑO.

Basado en el número de aplicaciones de un eje simple de 18,000 libras (8.2Tn.). El método consiste en determinar un factor de composición de tránsito (M) basado en tres categorías de porcentajes de rango probable de la distribución de ejes de carga (ligero, medio y pesado) de los camiones.

CUADRO 4.3.a

Valores de Factor de Composición de Tránsito

	PORCENTAJE DE CAMIONES		
DISTRIBUCIÓN	Bajo	Medio	Alto
DE CARGA	< 15%	< 15 – 20%	> 25%
Ligero	9	18	27
Medio	23	46	69
Pesado	37	73	110

En nuestro caso según el cuadro 4.2.b el porcentaje de tráfico pesado actual es de 12% y según el análisis del cuadro 4.3.a el tipo de carga es pesada, por lo tanto, se adopta como factor de composición de tránsito el valor de 73 (M =73).

Una vez calculado el factor (M), el cálculo del número de ejes equivalente N(8.2) durante el **periodo de diseño** (proyectado para **20 años**) y en función de la **tasa de crecimiento**, se realiza el cálculo de acuerdo a la siguiente fórmula:

E.A.L. (N8.2) =
$$\frac{365}{2}$$
 [IMDxM%] $\frac{(1+r)^n-1}{r}$

Donde:

E.A.L. (N8.2) = Número de aplicaciones de un eje simple de 8.2Tn.

I.M.D = Índice Medio Diario

n = Periodo de Diseño

r = Tasa de Crecimiento

M = Factor de Composición del Tránsito

Así mismo, para este caso se ha asumido una tasa de crecimiento igual 4%, que aplicado al I.M.D, se obtiene el I.M.D. para calcular el E.A.L., lo cual se obtiene de la siguiente relación:

Aplicando la fórmula se obtiene:

CUADRO 4.3.b

	TRÁ		
FECHA	LIGERO	PESADO	TOTAL
Volumen Total	1,394	186	1,580
%	88%	12%	100%
I.M.D.	199	27	226
I.M.D. Diseño	207	28	235

Para calcular el E.A.L. (N8.2) de la Carretera a Santa Clara se tienen los siguientes datos:

Tipo de Camino

: Mortero Asfáltico

Índice Medio Diario : 235 veh/día

Tasa de crecimiento : 4%

Periodo de diseño : 20 años

Distribución de carga : Pesada

Factor de Comp. "M" : 73

Por lo Tanto:

E.A.L.(N8.2) = ____
$$365 [235 \times 0.73](1+0.04)^{20} - 1$$

2 0.04

E.A.L.(N8.2) = 9.33×10^5 repeticiones

5.0 ESTUDIO DE LA CUENCA HIDROGRÁFICA DE LA ZONA DRENAJE Y OBRAS DE ARTE.

5.1 INTRODUCCIÓN

Una de las estructuras más importantes para la preservación y el mejoramiento del ambiente de aguas urbanas es un sistema de drenaje de aguas lluvias adecuados y que funcione correctamente. La construcción de la pavimentación de la carretera Santa Clara, incrementará la construcción de casas, edificios comerciales, parqueaderos, y calles los cuales incrementaran la cubierta impermeable de la cuenca receptora y reducirá la infiltración. Además, con la urbanización, el patrón espacial del flujo en la cuenca se altera y la eficiencia hidráulica se incrementa a través de canales artificiales, cunetas y sistemas de recolección y drenaje de aguas lluvias. Estos factores incrementan el volumen y la velocidad de la escorrentía y producen caudales de crecientes con picos mayores en las cuencas urbanizadas que aquellos que ocurrían antes de la urbanización. Muchos sistemas de drenaie urbano construidos bajo un cierto nivel de urbanización operan hoy en día bajo niveles de urbanización mayores por lo cual tienen una capacidad inadecuada.

Para el diseño de un sistema de drenaje vial se requiere fundamentalmente contar con suficiente información hidrológica, mecánica de suelos, cobertura vegetal y una buena información planimétrica de la cuenca en estudio.

Lamentablemente, los registros pluviográficos en las estaciones de la cuenca de interés son escasos de modo que el

procedimiento para obtener las curvas intensidad-duraciónfrecuencia con estos datos ha sido poco práctico.

Esta situación ha llevado a buscar procedimientos que permitan superar tal deficiencia, aprovechando al máximo la información de precipitación máxima de 24 horas, que realmente existe.

5.2 <u>RECOPILACIÓN DE INFORMACIÓN NECESARIA</u>

Para el diseño de las obras de drenaje del proyecto de la carretera Santa Clara se ha recopilado información pluviométrica de la Estación CP San Roque, Plu Puerto Almendra, Santa Maria de Nanay y Morona Cocha, el primero en la cuenca del Itaya y los tres restantes en la cuenca del Nanay.

A partir de los datos de Precipitación Máxima de Lluvia de 24 horas, se ha procedido a generar las intensidades máximas de lluvia. Para lo cual se ha empleado la teoría de Frederich Bell(1969).

Este autor publicó un trabajo en el cual generalizaba las curvasintensidad-frecuencia, a partir de los datos recogidos
principalmente en los Estados Unidos. El argumento físico en que
se apoyó es el hecho de que las lluvias extremas de menos de
dos horas de duración se deben a tormentas del tipo convectivo,
las cuales poseen características similares en todas las regiones
del mundo.

a) DISEÑO DE LA INVESTIGACIÓN

La investigación que se plantea en este informe consiste de tres partes, la primera referida al cálculo de la intensidad de lluvia para un periodo de retorno de diseño; la segunda al cálculo del caudal de diseño de la cuenca de interés y la tercera del dimensionamiento y diseño de las alcantarillas y cunetas del Proyecto.

En vista de que prácticamente las estaciones meteorológicas en el área de influencia del proyecto no cuentan con información de intensidad de lluvia, y las que existen no son muy extensos, se ha propuesto realizar el diseño a partir de la información de precipitación máxima diaria de doce años de la estación CO San Roque, Plu Puerto Almendra, Plu Santa Maria de Nanay y Morona Cocha.

De toda la información de precipitación máxima diaria, se escoge el valor más alto para cada año. Tal como se muestra en el Cuadro Nº 01.

CUADRO Nº 01
PRECIPITACIÓN MÁXIMA 24 HORAS

		PTO	STA MARIA	MORONA
AÑO	SAN ROQUE	ALMENDRA	NANAY	COCHA
	mm	Mm	mm	mm
1990	152			112
1991	185			72
1992	112			136
1993	113			107
1994	153	66	30	88
1995	110	12.2	49	148
1996	167	85.6	24	88
1997	138	100.5	48	108.5
1998	93	71.7	45	87
1999	117.2	70.6	127.6	90
2000	155.6	107	92.2	72.5
2001	137.7	166.1	73.4	169
2002	123.6	132.8	49.9	221.5

La serie anual de un tiene la propiedad de estar compuesta por los valores extremos de una serie de observaciones efectuadas durante un año. Esto quiere decir que se puede aplicar la **teoría** de distribución de extremos y hacer predicciones contando con la información de un cierto número de años.

Existe un límite a la cantidad de precipitación o magnitud de tormenta que cauce la avenida, por grande que sea; el coeficiente de escurrimiento en una cuenca no puede ser mayor que uno, o cien por ciento, y el tiempo de concentración no puede ser menor a un tiempo límite, de acuerdo a las características de la cuenca.

5.3 CARACTERIZACIÓN HIDROLÓGICA DE LA CUENCA

CLIMATOLOGÍA E HIDROLOGÍA

El estudio climatológico se ha realizado en base a la información meteorológica de las estaciones climatológicas, Zungarococha, Iquitos, San Roque, Santa Maria de Nanay, Puerto Almendra, Mazan, y Moronococha ubicadas en la zona de influencia del proyecto, las cuales cuentan con datos de temperatura, precipitaciones, humedad relativa y vientos a nivel mensual del periodo1947-2002.

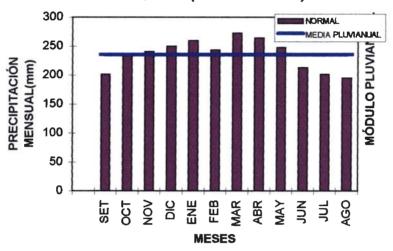
5.3.1 Clima del Área en Estudio

El clima del área en estudio es de Bosque Húmedo Tropical (bh-T), predominando un ambiente caliente y húmedo, caracterizado por pequeñas variaciones de temperatura, durante el día y en las medias mensuales.

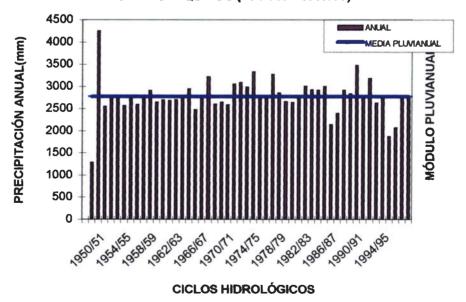
Esta isotermía es predominante en la planicie Amazónica, la misma que disminuye a medida que se acerca a los terrenos más elevados que limitan la Cuenca.

Particularmente, en la región de la Selva, la presencia de un Ciclón Ecuatorial, que en el verano ocupa la parte central de América del Sur, genera una zona de baja presión con vientos cálidos y húmedos que soplan en dirección Sur-Este a Nor-Oeste, debido a este fenómeno se producen intensas precipitaciones.

5.3.2 <u>Descripción de los elementos meteorológicos</u>.


5.3.2.1 Precipitación

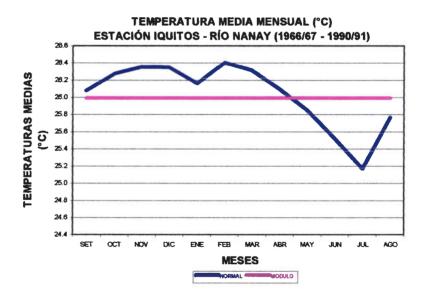
La precipitación total media mensual en la zona del proyecto varía de 195.6 mm, registrada en el mes de agosto a 272.90 mm correspondiente al mes de marzo, siendo la precipitación media anual de 2,770.80 mm.


Según esta información se puede apreciar que entre los meses de diciembre a mayo (verano y otoño), se registra una precipitación mayor (56%) y en los meses restantes, junio a noviembre (invierno y primavera), corresponde el 44%. En el semestre de mayor precipitación, los valores más altos corresponden generalmente a los meses de marzo y abril; los valores más bajos corresponden a los meses de junio, julio y agosto, que registran el 19% de la precipitación anual.

La precipitación total máxima mensual se ha presentado en el mes de marzo con 655.90 mm, siendo la precipitación máxima anual registrada de 4,246.40 mm, ver cuadro.

HISTOGRAMA DE PRECIPITACIONES MEDIA MENSUALES ESTACIÓN IQUITOS (1947/48 - 1997/98)

HISTOGRAMA DE PRECIPITACIONES ANUALES ESTACIÓN IQUITOS (1947/48 - 1997/98)

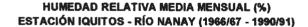

Según esta información el área del proyecto presenta un régimen de precipitación ecuatorial de la alta pluviosidad, donde prácticamente llueve todo el año.

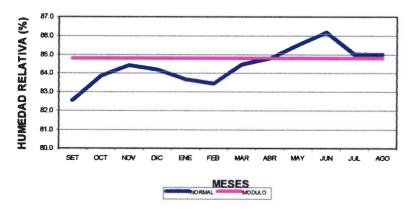
5.3.2.2 Temperatura

La temperatura media mensual en la zona del Proyecto varia de 25.2°C en julio a 26.4°C en noviembre, diciembre y enero, siendo el promedio mensual 26.0°C.

Las mayores temperaturas se producen entre los meses de setiembre a marzo, llegando a valores extremos de 39.6°C, las menores temperaturas se producen entre los meses de junio a agosto, llegando a valores de 19.8°C.

La magnitud de la temperatura registrada, así como su variación, es típica de climas tropicales cálidos

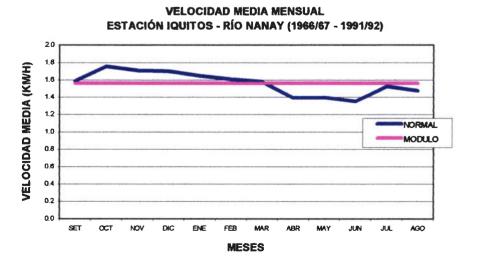

5.3.2.3 Humedad Relativa


La humedad relativa media anual es de 84.4 %, variando de 82.6 % en el mes de setiembre a 86.2 % en el mes de junio.

La máxima humedad relativa se ha registrado en julio, con 94%.

A través del año, se observa que los máximos medios, alcanzan en los meses de abril, mayo y junio valores en el orden de 85% a 86%, y los mínimos medios corresponden a la época menos lluviosa, en los meses de setiembre y octubre, con presencia de valores cercanos a 82%.

En el siguiente gráfico, se muestra el régimen de distribución mensual de la humedad relativa en ella se puede observar que la oscilación de los valores es mínima, por lo que se establece que en área de estudio la humedad relativa es alta y constante.

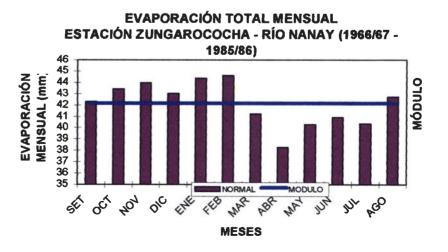


5.3.2.4 Vientos

La velocidad media mensual de los vientos de la estación lquitos, es 1.6 km/h, notándose que la velocidad media es uniforme a lo largo de todo el año, tipificándose como viento débil, según la escala de "Beaufort"; no se tiene información de los valores máximos absolutos, aunque se tiene información de la estación Yurimaguas, donde se han registrado vientos máximos medios de hasta 14.4 km/h (brisa ligera) y vientos máximos absolutos de 64.8 km/h.

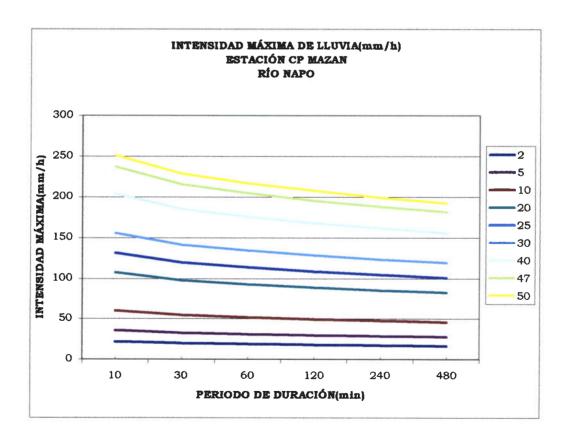
En cuanto a la dirección predominante Nor-Este, se observa que alcanzan su máxima intensidad de frecuencia de septiembre a febrero, los vientos predominantes del Norte tienen la misma oscilación, es decir que, alcanzan su mayor intensidad de frecuencia de setiembre a febrero.

En cambio, los vientos provenientes del sur presentan su máxima intensidad de frecuencia de marzo a agosto, los vientos del Este alcanzan su máxima intensidad de frecuencia de diciembre a mayo.


5.3.2.5 Evaporación

El estudio de este elemento meteorológico ha sido efectuado con los datos registrados por la estación de Zungarococha, pudiéndose apreciar que la evaporación presenta un régimen de distribución mensual que se puede considerar como normal, alcanzando un promedio anual de 505.4 mm.

Se observa que el promedio mensual presenta valores oscilantes, siendo mayores los registrados en noviembre, enero y febrero (44.60 mm) y los más bajos en los meses de abril, mayo y Junio (38.3 mm).


El total promedio anual de evaporación es de 42.1 mm., que se considera bajo y está atribuido a la alta tensión de la humedad relativa todo el año, así como a la escasa velocidad de los vientos que hace que la evaporación presente ligeras variaciones.

Esta relación directa se debe a la mayor incidencia de radiación solar en relación al aumento de altitud. (Gráfico Nº 15-A)

5.3.2.6 Intensidad Máximas

Se cuenta con información de intensidad de lluvia (mm/h), existente en el "Estudio Hidrometeorológico de la cuenca del río Mazan", elaborado por SENAMHI, por encargo del CTAR Loreto, en febrero de 1993, en el cual se presenta las máximas intensidades de precipitación de las tormentas registradas en la Estación C.O. Mazan, en el periodo 1992 a 1993, la cual presenta precipitaciones similares a la zona del Proyecto. Que se podría utilizar a falta de datos propios de la estación San Roque. En el siguiente gráfico se presenta las máximas intensidades de precipitación de tormentas, y la curva de duración-intensidad-frecuencia.

5.3.3 Características de la Cuenca

Los cauces que cruzan la vía tienen cuencas muy pequeñas mucha de ellas de corrientes efímeras.

Por lo general la pendiente es baja y el relieve varía de ondulado a plano.

Por ser zona de expansión urbana, ya intervenida, presenta poca cobertura vegetal, por tanto la relación precipitación escorrentía es más alta que en las zonas más alejadas con cobertura natural inalterada.

La delimitación de las cuencas se ha realizado en base al levantamiento topográfico realizado, a escala 1/10,000.

5.3.4 <u>Descargas Máximas</u>

Las descargas máximas para diseño se han estimado para el total de la cuenca y los cauces más importantes y que presentan escorrentía durante todo el año. Los resultados que se presentan en el cuadro, han sido obtenidos por el método racional, asumiendo coeficientes de escorrentía, características y precipitación máxima (intensidad) para un periodo de retorno de 25 años.

Cálculo de la intensidad de Iluvia

Para el cálculo de la Intensidad de Iluvia de la cuenca de interés se ha partido desde el análisis de la información de Intensidad de Iluvia y de precipitación Máxima de 24 horas, de la Estación asignada con el nombre de CP San Roque y Morona Cocha, se descartan las otras dos Estaciones

debido a que presentan valores que difieren considerablemente de los valores medios de las estaciones mencionadas.

Estas estaciones Climatológicas registran la cantidad de lluvia caída mediante pluviómetros calibrados, que totalizan la cantidad de lluvia caída en una precipitación pluvial.

En el cuadro N° 02 se ordena los datos en forma descendente, asignándole al mayor valor el orden m=1, luego se determina la media y la desviación estándar.

PLU SAN ROQUE CUADRO Nº 02

М	PREC.MAX
	(mm)
1	185
2	167
3	153
4	152
5	138
6	138
7	124
8	117
9	113
10	112
11	110
12	101
13	90
MEDIA	130.7
DESVEST	27.7

En el cuadro Nº 03 se muestra el resultado de las Precipitaciones Máximas para diferentes periodos de Retorno, calculado mediante el método de Gumbel.

PLU SAN ROQUE
CUADRO Nº 03

Т	PREC.MAX
Años	(mm)
2	126.19
5	150.63
10	166.82
20	182.34
25	187.27
30	191.28
40	197.57
47	201.09
50	202.44
100	217.50
200	232.50

Los Estudios Hidrológicos analizan los regímenes de caudales medios y extremos de las corrientes de agua en los tramos de influencia de las obras viales.

Determinación de la Intensidad

Luego de haber definido el objetivo, que es determinar las cargas máximas para el diseño hidráulico de las alcantarillas y cunetas, se requiere encontrar el valor de la precipitación máxima anual para un periodo de retorno determinado y finalmente la intensidad en milímetros por hora (mm/hora). Se tomó como referencia los datos pluviométricos de la estación CP San Roque y Morona Cocha, entre ambas con muy buena aproximación debido a la latitud similar al Proyecto de obras de drenaje de la pavimentación de la calle en estudio.

Para la determinación de la intensidad máxima de lluvia se empleará el método de Frederich Bell (1969) y Espíldora, que se describe a continuación:

 A partir de los datos de Precipitación Máxima de Lluvia de 24 horas, se ha procedido a generar las intensidades máximas de Iluvia.

Frederich Bell publicó un trabajo en el cual generalizaba las curvas-intensidad-frecuencia, a partir de los datos recogidos principalmente en los Estados Unidos. El argumento físico en que se apoyó es el hecho de que las lluvias extremas de menos de dos horas de duración se deben a tormentas del tipo convectivo, las cuales poseen características similares en todas las regiones del mundo.

$$P_{t}^{T} = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

En realidad no siempre se cuenta con información de lluvias de una hora de duración. Pero **Espíldora**, obtuvo en Chile que la relación entre la lluvia máxima diaria y la lluvia de una hora es más o menos constante e igual a 4.04. Esto hace posible obtener la lluvia P^{10}_{60} que entra en la fórmula, a partir de las lluvias máximas diarias cuyos registros son más frecuentes.

- A partir de los registros de precipitaciones máximas diarias, obtener mediante un análisis de frecuencia, la magnitud de la lluvia con periodo de retorno de 10 años.
- Usando el coeficiente de Espíldora obtener P¹⁰₆₀ y luego aplicar la fórmula de Bell.

Por último, calcular, a partir de las magnitudes encontradas de Iluvia, intensidades correspondientes a fin de poder construir las curvas intensidad-duración-frecuencia.

Los resultados se muestran en el Cuadro Nº 04.

CUADRO Nº 04

	INTENSIDAD MÁXIMA(mm/h)							
Т	PERIODO DE DURACIÓN(min)							
Años	10	30	60	120	240	480		
2	31.19	28.36	26.94	25.74	24.73	23.89		
5	52.10	47.37	44.99	42.99	41.31	39.89		
10	86.94	79.05	75.08	71.74	68.93	66.57		
20	156.63	142.42	135.26	129.25	124.19	119.93		
25	191.48	174.10	165.35	158.00	151.81	146.61		
30	226.32	205.78	195.44	186.75	179.44	173.29		
40	296.01	269.15	255.62	244.25	234.69	226.65		
47	344.79	313.50	297.75	284.51	273.37	264.01		
50	365.70	332.51	315.81	301.76	289.95	280.01		
100	714.14	649.33	616.71	589.28	566.21	546.81		
200	1411.01	1282.97	1218.52	1164.32	1118.74	1080.42		

Análisis de Frecuencia de Valores Extremos

En todo Proyecto de Ingeniería se debe determinar la vida útil de la obra y luego definir el acontecimiento extremo, que comprende a esa vida útil, escogiendo para ello un porcentaje adecuado de riesgo de falla.

La vida útil de un pavimento rígido o flexible está en función directa al costo de la misma para ello, para el presente proyecto se ha tomado un periodo de vida útil de diseño de 20 años.

Riesgo de Falla

Representa la probabilidad de que el caudal considerado para el diseño sea superado por otro evento de mayor magnitud. Asumimos para el diseño de las estructuras un riesgo de falla de 35%, basándonos en recomendaciones dadas por algunos investigadores; aunque también se puede calcular asumiendo una probabilidad de que no ocurra tal evento; mediante la formula:

$$J = 1 - p^N$$
 (1)

Donde:

J = Probabilidad de excedencia

P = Probabilidad de no excedencia

N = Vida útil

CUADRO Nº 05

PERIODO DE RETORNO							
PERIODO DE DISEÑO		PROBABILI	DADDENOE	XCEDENCIA			
OVIDAUTIL	0.01	0.25	0.65	0.75	0.99		
2	1.11	200	5.16	7.46	199.50		
5	1.66	4.13	12.11	17.89	498.00		
10	271	7.73	23.72	35.26	995.49		
20	4.86	14.93	46.93	70.02	1990.48		
30	7.03	22.14	70.14	104.78	2985.47		
50	11.37	36.57	116.57	174.30	4975.46		
100	2222	72.64	232.64	348.11	9950.42		
RIESGO DE FALLA	99%	75%	35%	25%	1%		

Tiempo o Período de Retorno

Es el tiempo transcurrido para que un evento de magnitud dada se repita, en promedio. Esta expresado en función de la probabilidad P de no ocurrencia.

Esto es:

$$Tr = \frac{1}{1 - P}$$
 (2)

Despejando P de la ecuación (1) y reemplazando en la ecuación (2) se tiene:

$$Tr = \frac{1}{1 - (1 - J)^{1/N}}$$

Ecuación que se utilizará para estimar el tiempo de retorno Tr para diversos riesgos de falla y vida útil N de las estructuras.

Entonces, para un periodo de vida útil de la estructura correspondiente a 20 años, y asumiendo un riesgo de falla de 35%, se obtiene un periodo de retorno de 47 años.

A continuación se presenta una tabla para encontrar el periodo de retorno para diferentes periodos de vida útil y riesgo de falla, consecuencia de la aplicación de las fórmulas antes expuestas.

Análisis del Modelamiento Matemático de Valores Aleatorios Extremos

Para el presente acápite se tendrá en cuenta el Análisis para la Distribución Extremo de Gumbel Tipo I. La misma que se desarrollará a continuación

a) <u>DISTRIBUCIÓN DEL VALOR EXTREMO DE GUMBEL</u> TIPO I

Mediante las fórmulas de VEN TE CHOW Y GUMBEL:

$$X = x + KSx \tag{4}$$

a.1) PROCEDIMIENTO DE LA DISTRIBUCIÓN GUMBEL

Es el más usado para el ajuste de descargas máximas.

Se define a partir de las ecuaciones:

$$P[Pp_Pp_o] = 1 - (e)^{-e}$$
 (5)

Donde:

$$W = (Pp_i - Pp_m + 0.45005 \sigma) / (0.7797 \sigma)$$
 (6)

T = 1/F

Donde:

P [Pp _ Pp_o] : Probabilidad de ocurrencia de una Precipitación menor o igual a Pp_o.

T : Período de retorno del evento.

F : Frecuencia de ocurrencia del evento.

Pp_m: Media de la serie de avenidas.

Ppi : Avenida del año i

 σ : Desviación estandar σ

e : Base de logaritmo neperiano

El procedimiento de ajuste a la ley de Gumbel de una serie de avenidas observadas Ppi se puede resumir en lo siguiente:

- a) Seleccionar de cada serie anual disponible de precipitaciones máximas mensuales diarios o instantáneos un valor máximo y formar de esta manera la serie Ppi de avenidas de extensión N.
- b) Calcular los estadísticos correspondientes:

$$Pp_m = \sum Pp_i / N$$

$$\sigma = [\sum (Pp_i - Pp_m)^2 / (N-1)]^{1/2}$$

c) Ordenar de mayor y menor asignando las correspondientes frecuencias según el criterio Weibull.

$$F = m / (N+1)$$

- d) Hallar la función teórica de Gumbell según las expresiones teóricas dadas, previa corrección por la longitud de registro.
- e) En el papel Gumbell y sobre la recta de la distribución dibujada, hallar los Q_{max} correspondiente a distintos periodos de retorno de interés; esto también se puede hacer directamente con la fórmula.

 $Pp_T = Pp_m - \sigma \{ 0.45 + 0.7797 Ln *[Ln T-Ln (T-1)] \}$ (7)

Donde:

Ppt: Avenida correspondiente al periodo de retorno T.

Pp_m: Media de la serie de Avenidas

σ = desviación estandar de la serie de Avenidas.

Los resultados de los cálculos realizados se muestran en el Cuadro Nº 03:

Tiempo de Concentración

Es definido como el tiempo requerido para que una gota de agua caída en el extremo mas alejado de la cuenca fluya hasta los primeros sumideros y de allí a través de los conductos hasta el punto considerado. Así tenemos:

Método de Kirpich (1940)

 $t_c = 0.01947* L^{0.77*} S^{-0.385}$

Donde:

L: longitud del canal desde aguas arriba hasta la salida en

m.

S : pendiente promedio de la cuenca en m/m.

t_c minutos

Método de California Culverts Practice(1942)

$$t_c = 0.0195(L^3/H)^{0.385}$$

L : longitud del curso más de agua más largo en m.

H : Diferencia de nivel entre la entrada de agua y la

salida en m.

t_c : Horas

En este caso se asume que el tiempo de concentración es igual al periodo de duración.

Para la cuenca de interés:

L = 6,400.00m;

S = 0.285%;

Reemplazando en la ecuación de Kirpich resulta:

$$t_c = 0.01947^* L^{0.77*} S^{-0.385}$$

$$t_c = 135.51 \text{ min} = 136 \text{ min}.$$

Cálculo del Caudal

Se realizará mediante el Método Racional, el cual empezó a utilizarse de la mitad del siglo XIX, es probablemente el método más ampliamente utilizado hoy en día para el diseño de alcantarillados de aguas lluvias (Pilgrim, 1986).

A pesar de que han surgido críticas válidas acerca de lo adecuado de este método, se sigue utilizando para el diseño de alcantarillados debido a su simplicidad. Una vez

que se ha seleccionado la distribución y se han determinado los tamaños de las tuberías por el método racional, la bondad del sistema puede verificarse utilizando un tránsito dinámico de los hidrogramas de caudal a través del sistema.

La idea detrás del método racional es que si una lluvia con intensidad i empieza en forma instantánea y continúa en forma indefinida, la tasa de escorrentía continuará hasta que se llegue al tiempo de concentración t_c , en el cual toda la cuenca está contribuyendo al flujo en la salida. El producto de la intensidad de lluvia i y el área contribuyendo al flujo en la salida. El producto de la intensidad de lluvia i y área de la cuenca A es el caudal de entrada al sistema, iA, y la relación entre este caudal y el caudal pico Q (que ocurre en el tiempo e_{tc}) se conoce como el coeficiente de escorrentía C ($0 \le C \le 1$). Éste se expresa en la fórmula racional:

$$Q = \underline{C i A}$$
 (16)

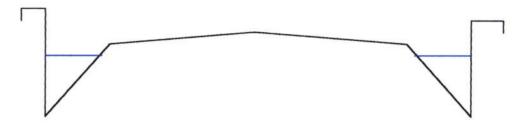
Comúnmente, Q está dado en metros cúbicos por segundo (mcs), *i* milímetros por hora y A en Hectáreas. La duración utilizada para la determinación de la intensidad de precipitación de diseño *i* en (16) es el tiempo de concentración en cuenca.

En áreas urbanas, el área de drenaje usualmente está compuesta de subáreas o subcuencas de diferentes características superficiales. Como resultado, se requiere un análisis compuesto que tenga en cuenta las diferentes características superficiales. Las áreas de las subcuencas se denominan como Ai y los coeficientes de escorrentía

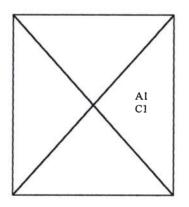
para cada una de ellas se denominan como Cj. La escorrentía pico se calcula al utilizar la siguiente forma de la fórmula racional:

$$Q = i \sum_{j=1}^{m} C_{-j} A_{-j}$$

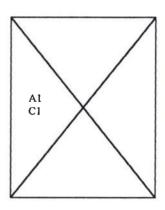
Donde *m* es el número de sub.-cuencas drenadas por un alcantarillado.


Las suposiciones asociadas con el método racional son:

- 1. La tasa de escorrentía pico calculada en el punto de salida de la cuenca es una función de la tasa de lluvia promedio durante el tiempo de concentración, es decir, el caudal pico no resulta de una lluvia más intensa, de menor duración, durante la cual solamente una porción de la cuenca contribuye a la escorrentía a la salida de ésta.
- 2. El tiempo de concentración empleado es el tiempo para que la escorrentía se establezca y fluya desde la parte más remota del área de drenaje hacia el punto de entrada del alcantarillado que se está diseñando.
- 3. La intensidad de lluvia es constante durante toda la tormenta.


5.3.5 Diseño de Cunetas

La pavimentación de la carretera Santa Clara contempla la construcción de cunetas a ambos lados de la vía. En los tramos que sea necesario. Presentándose dos alternativas:


La primera de sección triangular a pelo abierto, con sumideros que trasladaran el flujo de la lluvia hacia los colectores o flujos de corrientes naturales.

Para el dimensionamiento de las cunetas, en la zona urbana conformada por la localidad de Santa Clara, el caudal de diseño será calculado en función del área techada y el área disponible entre manzanas. Este caudal se dividirá entre dos, ya que en ambos lados se tiene previsto instalar las cunetas.

A2 C2

Triangular

A1 = 2500 m2

C1 = 0.40

A2 = 3000 m2

C2 = 0.75

C = (2500*0.40+2500*0.40+3000*0.75)/3000

C = 0.53

Cálculo de la to

$$tc = 0.01947 L^{0.77} S^{0.358}$$

Para L = 100 m y S = 2.5%, entonces tc = 2.53 min

Cálculo de la i_{max}

Por la ecuación de BELL

Para T = 10 años

$$i = P_t^T = (2.62)(0.54t^{-0.25} + 0.50)*41.29$$

i = 100.40 mm/h

Cálculo del caudal

Método Racional

$$Q = (0.53*100.40*0.8)/360 = 0.12 \text{ m}^3/\text{s}$$

Q = 120 lt/s

Para la sección Triangular:

Parámetro de Diseño

Caudal de diseño $(Qd) = 0.060 \text{ m}^3 / \text{s}$

Ancho de solera (b) $= 0.00 \, \text{m}$

Talud (Z) = 1

Rugosidad (n) = 0.014

Pendiente **(S)** = 0.0030 m/m

Pendiente Crítica (Sc) = 0.011569 m/m

Tirante Normal (Yn) = 0.40 m

Tirante Crítico $(Yc) = 0.31 \, \text{m}$

Área Hidráulica $= 0.08 \text{ m}^2$ (A)

= 0.40 m

Espejo de agua **(T)**

Número de Froude (F) = 0.53

Perímetro Mojado (P) $= 0.57 \, \text{m}$ Radio Hidráulico (R) = 0.14 m

Velocidad (V) = 0.75 m/s

Energía específica (E) = 0.43 m-Km / Kg

Tipo de Flujo = Subcrítico

Observación = Velocidad permitida

5.3.6 Diseño de Alcantarillas

Se diseñara las alcantarillas en zonas donde no existan y las alcantarillas existentes se evaluara para comprobar si su seccion pueda evacuar las aguas que llegan a ella; caso contrario se cambiara por otra.

Inventario de Alcantarillas

Prog.	Descripción	Observación			
0+010	Alcant. TMC Ø 36"	Alcant. Deteriorada, necesita cambio			
0+811	Alcant. TMC Ø 72"	Alcant. En pefectas condiciones			
2+166	Tuberia de rebose de F°G° Ø 8″	Se debe cambiar por Alcant marco C°A° (1x1)			
2+860	Alcant. TMC Ø 72"	Alcant. En pefectas condiciones			
3+065	Alcant. TMC Ø 24"	Se debe cambiar por Alcant marco C°A° (1x1)			
3+605	Alcant marco C°A° (0.60x0.60)	Se debe cambiar por Alcant marco C°A° (1x1)			
3+780	Alcant marco C°A° (0.60x0.60)	Se debe cambiar por Alcant marco C°A° (1x1)			
3+900	Alcant marco C°A° (0.60x0.60)	Se debe cambiar por Alcant marco C°A° (1x1)			
4+207	Alcant marco C°A° (0.60x0.60)	Se debe cambiar por Alcant marco C°A° (1x1)			
5+385	Alcant. TMC Ø 72"	Alcant. En pefectas condiciones			
5+764	Tuberia de rebose de F°G° Ø 8″	Se debe cambiar por Alcant marco C°A° (1x1)			
5+997	Alcant marco C°A° (1.00x1.00)	Alcantantarilla proyectada			

Cálculo del Tiempo de Concentración

$$t_c = 0.000325 L^{0.77}$$

$$S^{0.368}$$

Datos Para toda la cuenca

S = L = A = C _m =	0.29% m/m 6,400 m 128 Ha 0.34	1
t _c =	2.26 hora	as

Cálculo de la Intensidad

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

Q	=	CiA	_m³/s
		360	
C		0.343	3
Α		128	B Ha
Q		19.13	3 m³/s

2+860

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.358}}$$

Datos Para toda la subcuenca

suelos pesados planos 2%

$$t_c = \frac{1.42 \text{ horas}}{}$$

$$t_c = 85.15 \text{ min}$$

Cálculo de la Intensidad

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

$$T = 25 \text{ años}$$
 $P^{10}_{60} = 41.29 \text{ mm}$
 $t_c = 85.15 \text{ min}$
 $i_{max} = 161.47 \text{ mm/h}$

$$Q = \frac{\text{CiA}}{360} \text{m}^3/\text{s}$$
 $C = 0.15$
 $A = 12 \text{ Ha}$
 $Q = \frac{0.81}{3} \text{m}^3/\text{s}$

3+780

$$t_c = 0.000325 L^{0.77}$$

$$S^{0.358}$$

Datos

Para toda la subcuenca

suelos pesados planos 2%

$$t_c = 48.94 \text{ min}$$

Cálculo de la Intensidad

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

$$T = 25 \text{ años}$$
 $P^{10}_{60} = 41.29 \text{ mm}$
 $t_c = 48.94 \text{ min}$
 $i_{max} = 167.76 \text{ mm/h}$

$$Q = \frac{\text{CiA}}{360} \text{m}^3/\text{s}$$

$$C = 0.15$$

 $A = 2 \text{ Ha}$
 $Q = 0.13 \text{ m}^3/\text{s}$

4+207

$$t_c = 0.000325 L^{0.77}$$

$$S^{0.358}$$

Datos

Para toda la subcuença

S = 0.04% m/m L = 850 m A = 3 Ha C_m = 0.15

suelos pesados planos 2%

t_c = 1.01 horas

t_c = 60.66 min

Cálculo de la Intensidad

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

$$T = 25 \text{ años}$$
 $P^{10}_{60} = 41.29 \text{ mm}$
 $t_c = 60.66 \text{ min}$
 $i_{max} = 165.22 \text{ mm/h}$

$$Q = \frac{\text{CiA}}{360} \text{m}^3/\text{s}$$
 $C = 0.15$
 $A = 3 \text{ Ha}$
 $Q = \frac{0.17}{\text{m}^3/\text{s}}$

5+385

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.358}}$$

Datos

Para toda la subcuenca

S = 0.05% m/m L = 1,200 m A = 4 Ha C_m = 0.34

suelos pesados planos 2% área urbana y agricola

 $t_c = \frac{1.21}{\text{horas}}$

 $t_c = 72.30 \text{ min}$

Cálculo de la Intensidad

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

$$T = 25 \text{ años}$$
 $P^{10}_{60} = 41.29 \text{ mm}$
 $t_c = 72.30 \text{ min}$
 $i_{max} = 163.24 \text{ mm/h}$

Cálculo del Método Racional

$$Q = \frac{\text{CiA}}{360} \text{m}^3/\text{s}$$

C = 0.34 A = 4 Ha $Q = 0.62 \text{ m}^3/\text{s}$

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.358}}$$

Datos Para toda la subcuenca

S = 0.05% m/m

L = 1,200 m

4 Ha

suelos pesados planos 2%

área urbana y agricola

 $C_{m} = 0.34$

A =

 $t_c = 1.21$ horas

 $t_c = 72.30 \text{ min}$

Cálculo de la Intensidad

$$i_{t}^{T} = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

T = 25 años

 $P^{10}_{60} = 41.29 \text{ mm}$

 $t_c = 72.30 \text{ min}$

i _{max} = 163.24 mm/h

$$Q = \frac{\text{CiA}}{360} \text{ m}^3/\text{s}$$

$$C = 0.34$$

$$A = 4 \text{ Ha}$$

$$Q = \frac{0.62 \text{ m}^3/\text{s}}{360}$$

CUADRO RESUMEN DE ALCANTARILLAS

* Se ha realizado el diseño de las alcantarillas mas críticas. Así mismo se evalúa las alcantarillas existentes.

Seccion Rectangular		2+860	3+780	4+207	5+385	5+997
Caudal	Q	0.81	0.13	0.17	0.62	0.62
pendiente	S	0.025	0.025	0.025	0.025	0.025
n	n	0.013	0.013	0.013	0.013	0.013
Area	Α	0.08	0.06	0.07	0.18	0.18
Perimetro	Р	0.82	0.71	0.76	1.27	1.27
Espejo	T	0.3	0.25	0.3	0.45	0.45
Tirante normal	Yn	0.26	0.23	0.23	0.41	0.41
Tirante critico	Yc	0.36	0.3	0.32	0.58	0.58
pendiente critica	Sc	0.011841	0.012711	0.011108	0.010857	0.010857
Celocidad	V	2.54	2.27	2.46	3.36	3.36
Carga de velocidad	hv	0.33	0.26	0.31	0.58	0.58
Energia especifica	Es	0.59	0.49	0.54	0.99	0.99
Nº Froude	F	1.58	1.52	1.64	1.68	1.68
Dimensiones como Canal			0.30 x 0.25	0.30 x 0.25	0.45 x 0.45	0.45 x 0.45
Velocidad en alcantarilla		1.25	1.25	1.25	1.25	1.25
Area alcantarilla		0.648	0.104	0.136	0.496	0.496

Área de alcantarilla marco de C°A° (1.00x1.00) = Área de alcantarilla TMC \oslash 72" = 2.63m2

1.00 m2

Evaluación de la alcantarilla prog. 2+860 y 5+385

Se observa que el área necesaria para evacuar las aguas pluviales es de A=0.648m2 y A=0.496m2 respectivamente, pero en las progresivas existen alcantarillas TMC de diámetro D=72" el cual tiene un área de 2.63m2 por lo tanto las alcantarillas existentes evacuarán las aguas satisfactoriamente

En las alcantarillas de las progresivas 3+780, 4+207, 5+385, 5+997 y otras no mensionadas en el cuadro anterior, se plantea construir alcantarillas típicas de 1.00x1.00m.

CUADRO RESUMEN DE ALCANTARILLAS

* Se ha realizado el diseño de las alcantarillas mas críticas. Así mismo se evalúa las alcantarillas existentes.

Seccion Rectangular		2+860	3+780	4+207	5+385	5+997
Caudal	Q	0.81	0.13	0.17	0.62	0.62
pendiente	S	0.025	0.025	0.025	0.025	0.025
n	n	0.013	0.013	0.013	0.013	0.013
Агеа	Α	0.08	0.06	0.07	0.18	0.18
Perimetro	Р	0.82	0.71	0.76	1.27	1.27
Espejo	T	0.3	0.25	0.3	0.45	0.45
Tirante normal	Yn	0.26	0.23	0.23	0.41	0.41
Tirante critico	Yc	0.36	0.3	0.32	0.58	0.58
pendiente critica	Sc	0.011841	0.012711	0.011108	0.010857	0.010857
Celocidad	V	2.54	2.27	2.46	3.36	3.36
Carga de velocidad	hv	0.33	0.26	0.31	0.58	0.58
Energia especifica	Es	0.59	0.49	0.54	0.99	0.99
Nº Froude	F	1.58	1.52	1.64	1.68	1.68
Dimensiones como Canal			0.30 x 0.25	0.30 x 0.25	0.45 x 0.45	0.45 x 0.45
Velocidad en alcantarilla		1.25	1.25	1.25	1.25	1.25
Area alcantarilla		0.648	0.104	0.136	0.496	0.496

Área de alcantarilla marco de C°A° (1.00x1.00) = Área de alcantarilla TMC Ø 72" = 2.63m2 1.00 m2

Evaluación de la alcantarilla prog. 2+860 y 5+385

Se observa que el área necesaria para evacuar las aguas pluviales es de A=0.648m2 y A=0.496m2 respectivamente, pero en las progresivas existen alcantarillas TMC de diámetro D=72" el cual tiene un área de 2.63m2 por lo tanto las alcantarillas existentes evacuarán las aguas satisfactoriamente

En las alcantarillas de las progresivas 3+780, 4+207, 5+385, 5+997 y otras no mensionadas en el cuadro anterior, se plantea construir alcantarillas típicas de 1.00x1.00m.

6.0 ESTUDIO DE MECÁNICA DE SUELOS

6.1 INTRODUCCIÓN

Para el desarrollo de toda obra de ingeniería se debe contar con los estudios de suelos, tanto en la etapa del proyecto como durante la ejecución de la obra. Todo este conjunto de estudios nos dan una información casi exacta de las propiedades físicas y mecánicas del suelo.

Las propiedades mecánicas del suelo, físico-mecánicas o llamado también propiedades hidráulicas del suelo, se obtiene realizando ensayos de control (compactación) y ensayos de resistencia (CBR), realizados en el laboratorio o In-situ; pues evalúa el comportamiento de un suelo bajo la acción de las fuerzas exteriores.

6.1.1 Operaciones de Muestreo y Toma de Muestras

Para el desarrollo del análisis de suelos, se realizaron calicatas de evaluación a lo largo de la vía en estudio y calicatas de exploración en las canteras encontradas.

Las calicatas de evaluación fueron espaciadas aproximadamente cada 500m., con medidas de 1.20m. de diámetro por 1.50m. de profundidad.

En cada calicata se midieron las diferentes capas encontradas y se realizó una descripción visual del material encontrado, además se determinó la humedad In-Situ y se tomaron muestras representativas.

Las muestras obtenidas de campo, fueron llevadas al laboratorio para la ejecución de los respectivos ensayos.

6.2 ENSAYOS DE LABORATORIO

Las muestras de suelos fueron clasificados y relacionados siguiendo el procedimiento del ASTM D-2488 "Practica recomendada para la descripción de suelos", realizándose los siguientes ensayos:

Ensavo Estándar

- Humedad Natural (ASTM D-2216)
- Análisis Granulométrico por Tamizado (ASTM D-130)
- Limites de Atterberg.
 - Limite Líquido.
 - Limite Plástico.
 - Índice de Plasticidad.

Ensayos Especiales.

- Ensayo de Proctor Modificado ASTM D-1557.
- Ensayo de CBR ASTM D-1883.

6.2.1 Ensayo de Humedad In-Situ

Se ha utilizado el método del "cono de arena", que consistió en obtener un peso de suelo húmedo de una excavación, hecho sobre la superficie del suelo. La densidad húmeda se obtiene de dividir el peso del suelo seco y volumen del hueco, este último obtenido en función de la densidad y pesos conocidos de la arena de Ottawa, mayormente utilizada. El contenido de humedad hallado en el laboratorio, resulta de la diferencia de pesos de la muestra, antes y después del secado al horno.

6.2.2 Análisis Granulométrico.

En el estudio se ha considerado únicamente el método más directo haciendo uso de los diferentes tamices, según la serie ASTM, con mallas cuadradas cuyas nominaciones y dimensiones se presentan en los resúmenes y gráficos correspondientes. Así mismo el tamizado se ha realizado por el método del lavado, o sea tomando aproximadamente 200gr. del material que pasa la malla N.4, secado al horno y se vuelve a tamizar, obteniendo proporcionalmente los porcentajes de material retenido.

La información obtenida del análisis granulométrico se presenta en forma de curva, llamada "Curva Granulométrica".

En el anexo de suelos se muestra los resultados de diferentes ensayos realizados.

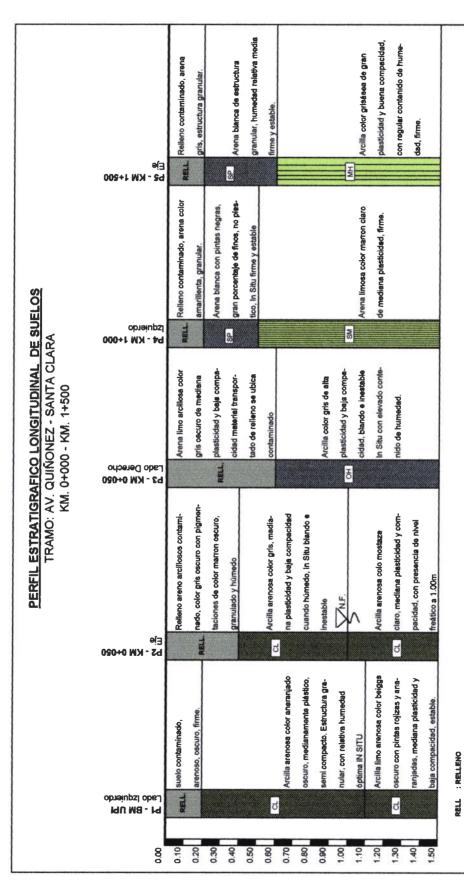
6.3 ACTIVIDADES DE GABINETE

En base a la información obtenida durante los trabajos en campo y los resultados de los ensayos de laboratorio, se efectúo la clasificación de suelos de los materiales (Sistema S.U.C.S. y A.A.S.H.T.O) para luego correlacionarlos de acuerdo a las características litológicas similares lo cual se consigna en las columnas estratigráficas.

6.3.1 Descripción de los Suelos

Los suelos encontrados son básicamente homogéneos (finas), predominando las arcillas inorgánicas de baja compresibilidad, el cual de acuerdo a la clasificación SUCS corresponde a un CL, se observa el nivel freático en la calicata N° 02 Km. 0+050 a una profundidad de 1.00m, por lo que previa a la construcción del pavimento se tendrá que colocar una capa drenante de acuerdo al alineamiento topográfico, así mismo se encontró presencia de relleno orgánico en la progresiva 0+050 a una profundidad de 0.40m, en la progresiva 0+500 a 0.60m y en la progresiva 2+500 a una profundidad de 0.80m donde se tendrá que eliminar y reemplazar por otro de mejores características (de cantera). El resumen de los resultados de los ensayos de laboratorio se pueden observar en los cuadro 6.3.1a, y 6.3.1.b.

CLASIFICACIÓN DE SUELOS Y LÍMITES DE ATTERBERG DE TERRENO NATURAL


Ubicación	Profundidad	Tipo de Suelo		LL	LP	IP	%
		SUCS	AASHTO				Humed
							. In-situ
BM - UPI	0.20 - 1.10	CL	A - 6(10)	39	23	16	28.0
BM - UPI	1.10 - 1.50	CL	A - 6(8)	41	22	19	30.5
Km. 0+050	0.40 - 1.00	CL	A - 7 - 6(11)	46	24	22	32.1
Km. 0+050	1.00 – 1.50	CL	A - 7 – 5	41	20	21	36.0
Km. 0+500	0.60 - 1.50	ОН	A - 7 - 5 (6)	79	37	42	38.6
Km. 1+000	0.20 - 0.50	SP	A – 3	15	NP	NP	13.6
Km. 1+000	0.50 - 1.50	SM	A - 2 - 4 (0)	18	NP	NP	15.4
Km. 1+500	0.10 - 0.60	SP	A-3	14	NP	NP	12.0
Km. 1+500	0.60 - 1.50	МН	A - 7 - 5(18)	42	26	16	24.0
Km. 2+000	0.20 - 1.50	CL	A-7-5	42	24	18	28.0
Km. 2+500	0.80 - 1.50	CL	A - 6(7)	30	18	12	19.6
Km. 3+000	0.10 - 0.70	CL-ML	A - 4(5)	24	17	7	13.6
Km. 3+000	0.70 - 1.50	SP	A - 2 - 4 (6)	16	NP	NP	12.5
Km. 3+500	0.10 - 1.50	CL	A - 6(7)	28	16	12	21.0
Km. 4+000	0.10 - 0.70	CL-ML	A - 4(5)	26	17	9	18.0
Km. 4+000	0.70 - 1.50	MH	A - 7 - 5(19)	60	31	29	24.0
Km. 4+500	0.10 - 0.60	CL	A - 7 - 6(10)	44	26	18	28.0
Km. 4+500	0.60 - 1.50	CL	A - 7 - 6(8)	41	25	16	26.0
Km. 5+000	0.10 - 1.00	SP	A-3	13.5	NP	NP	12.0
Km. 5+000	1.00 - 1.50	CL	A - 6(10)	44	26	18	28.5
Km. 5+500	0.10 - 1.50	CL	A - 6(8)	40	23	17	26.0
Km. 6+000	0.10 - 1.50	CL	A - 6(8)	29	19	10	21.0
Km. 6+500	0.10 - 1.50	CL-ML	A - 4(5)	26	18	8	14.8

CUADRO 6.3.1.a

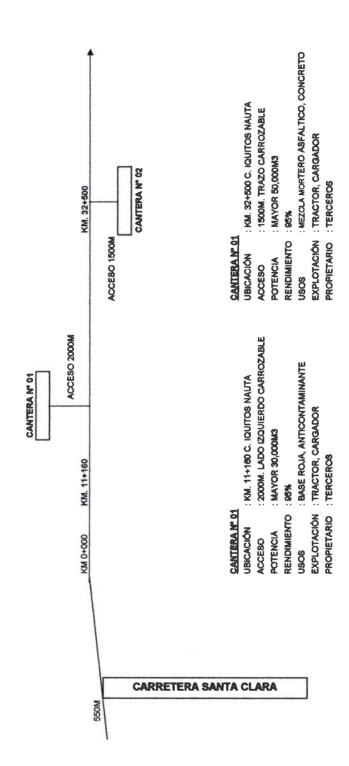
ENSAYO CBR DE TERRENO NATURAL

Ubicación	Calicata	Profundidad	C.B.R. %
			MDS
BM – UPI	C – 1	0.20 - 1.10	5.20
Km. 0+050	C-2	0.40 - 1.00	5.60
Km. 0+500	C – 3	0.60 - 1.50	3.36
Km. 1+000	C-4	0.20 - 1.50	18.00
Km. 1+500	C - 5	0.60 - 1.50	5.20
Km. 2+000	C-6	0.20 - 1.50	4.80
Km. 2+500	C-7	0.80 - 1.50	5.00
Km. 3+000	C – 8	0.10 - 0.70	6.20
Km. 3+500	C-9	0.10 - 1.50	6.00
Km. 4+000	C - 10	0.70 - 1.50	5.00
Km. 4+500	C - 11	0.10 - 0.60	4.90
Km. 5+000	C - 12	0.10 - 1.00	18.00
Km. 5+500	C - 13	0.10 - 1.50	5.50
Km. 6+000	C - 14	0.10 - 1.50	4.20
Km. 6+500	C - 15	0.10 - 1.50	5.20

CUADRO 6.3.1.b

SMUESTRA

* LA MUESTRA DE MATERIAL TOMADO DONDE SE UBICÓ EL NIVEL FREÁTICO ES DE 06-08-03


con vetas de color gris, mediana Limo arenoso color anaranjado Rell. cont., arena arcillosa gris plasticidad, humedad relariva óptima, semi compacto, firme. RELL. Eje **b2 - KW 6+130** ਹ ₹ Relleno contaminado, arena color mediana plastickdad, humedad Arcilla limosa cofor anaranjado, elativa óptima, medianamente compacto, estructura granular, n Situ firme. PERFIL ESTRATIGRAFICO LONGITUDINAL DE SUELOS TRAMO: AV. QUIÑONEZ - SANTA CLARA RELL. Eje ba - KW e+000 ರ anaranjado, semi compacto, Arcilla limo arenosa color humedad relativa óptima, RELL. Suelo cont. Arena gris firme, medianamente KM. 4+500 - KM. 6+130 F390 | F300 | F3 ರ RELL. Suelo cont., arena gris oscuro Arena color gris blanquesino, Arena arcillosa color beiggs, buena compecidad, relativa estrutura granular medla, umedad, firme. In Situ húmedo. Eje bJS - KW 2+000 ВS 덩 blanda, humedad relativa optima RELL. Suelo cont. Arena arcillosa anar. Arcilla plomíza crema con vetas rojas y amarillentas, granulado baja plasticidad, buena compresibilidad y compacidad, firme. plasticidad, semi compacto, Arcilla color rojiza, mediana rsqo Detecto b11 - KW 4+200 ರ ರ 0.40 0.50 09.0 0.80 0.90 1.00 1.20 1.30 1.50 0.70 1.10

RELL : RELLENO SANUESTRA

Arcilla color grisdees con pintas Arcilla color beigge con pintas y con regular contanido de hume-RELL Rell. cont., arena arcillosa anar. relative optime, mediana plasticidad, semi-compacto, firme y vetas color rojizo, humedad rojas, buena compacidad, dad, firme. estable. Eje be - KW 4+000 Ξ ਹੇ⊌ RELL. Suelo cont., arcilla arenosa gris Arcilla limo arenosa color rojizo de mediana plasticidad, buena compacidad, regular contenido de humedad firme y estable. PERFIL ESTRATIGRAFICO LONGITUDINAL DE SUELOS rado Izdnjendo ba - KM 3+200 ರ TRAMO: AV. QUINONEZ - SANTA CLARA RELL. Suelo cont. Arena amarilla humedad, mediana plasti-Arena ilmosa color blanco con regular contenido de opaco, elevado contenido de humedad, de estruc-Limo arenoso color gris KM. 2+000 - KM. 4+000 ura granular. sidad, firme. P8 - KM 3+000 Lado Izquiendo SP ਹ ਂ≅ color gristseo, mediena plesticidad, Suelo contemínado, erena arcillosa anaranjado, mediana plasticidad y buena compacidad, granulado, Arcilla limosa arenosa de color relative humeded optime, úmedo in Situ firme. In Situ firme. Eje 63 - KW 3+800 RELL. 占 ciara, de mediana plasticidad y Arcilla color rolizo con pigmencontenido de humedad, firme y buena compacidad, regular taciones de color plomiza Material de relieno, arena blanca granular. ರ 0.90 0.70 1.10 1.30 0.50 09.0 08.0 1.40 0.20 0.40 1.00 1.20 0.30

RELL : RELLENO SANUESTRA

CROQUIS DE CANTERAS

6.4 ESTUDIO DE CANTERAS Y FUENTES DE AGUA

6.4.1 Canteras

El reconocimiento de las probables fuentes de aprovisionamiento de los materiales, que se emplearán en la construcción del refuerzo del pavimento en proyecto, se realizó en forma paralela a los estudios de suelos.

6.4.1.1 Exploración y Localización

La exploración y localización de canteras se llevo a cabo por el método del reconocimiento directo, acompañado de los análisis de suelos y de las calicatas efectuadas.

6.4.1.2 Canteras Estudiadas

Para el presente proyecto de pavimentación se identificado dos canteras muy importantes dentro de la zona, con la finalidad de establecer los volúmenes necesarios de materiales adecuados que satisfagan las demandas de construcción del proyecto en mención. La calidad de los agregados para los diferentes usos ha sido verificada mediante los ensayos efectuados en el laboratorio.

La primera cantera ubicada en el Km. 11+160 de la Carretera Iquitos-Nauta, esta formada de arena blanca y arena roja es decir, mezcla de arena blanca y arena limosa, material que sirven para uso de sub-base o anticontaminante y base, respectivamente. Ver cuadro 6.4a

La segunda cantera ubicada en el Km.32+ 500, pueden proveer de material adecuado para mezcla de mortero asfáltico y concreto. Ver cuadro 6.4.b.

CANTERA N° 01

Km. 11+160 Carretera Iquitos - Nauta

Lado Izquierdo

UBICACIÓN

: Km. 11+160 Carretera Iquitos- Nauta

Acceso

: Km. 2+000 tramo carrozable en regular estado

de mantenimiento y Conservación

Potencia

: 30.000 m3

Explotación

: Tractor, cargador frontal y volquetes

Periodo de utilización : Todo el año

Propietarios

: Terceros

USO Y TRABAJO	PROCESAMIENTO	RENDIMIENTO
Sub-Base (Anticontaminante)	Zarandeo	95%
Base (Base Roja)	Uso de equipo pesado	
Relleno		

CUADRO 6.4.a

CANTERA N° 02

Km. 32+500 Carretera Iquitos - Nauta

Lado Derecho

UBICACIÓN

: Km. 32+500 Carretera Iquitos- Nauta. A 200m.

Del eje de la carretera por medio de una vía

carrozable de 1,500m

Acceso

: 1,500m. Buen estado de Conservación

Potencia

: Mayor de 50,000 m3

Explotación

: Tractor, cargador frontal y volquetes

Periodo de utilización : Todo el año

Propietarios

: Terceros

USO Y TRABAJO	PROCESAMIENTO	RENDIMIENTO
Mezcla de mortero asfáltico y	Zarandeo	95%
Concreto.	Uso de equipo pesado	

CUADRO 6.4.b

CLASIFICACIÓN DE SUELOS Y LÍMITES DE ATTERBERG DE MATERIAL DE CANTERA

USO	UBICACIÓN	Tipo de Suelo		LL	LP	ΙP	% H.
		SUCS	AASHTO				Natural
SUB-	KM. 11+160 L.	SP	A-3	19.78	NP	NP	14.0
BASE	Izquierdo.						
	Carretera Iquitos-						
	Nauta						
BASE	KM. 11+200 L. Izquierdo.	SM	A-2-4	22.16	20.56	1.6	16.0
	Carretera Iquitos-						
	Nauta						

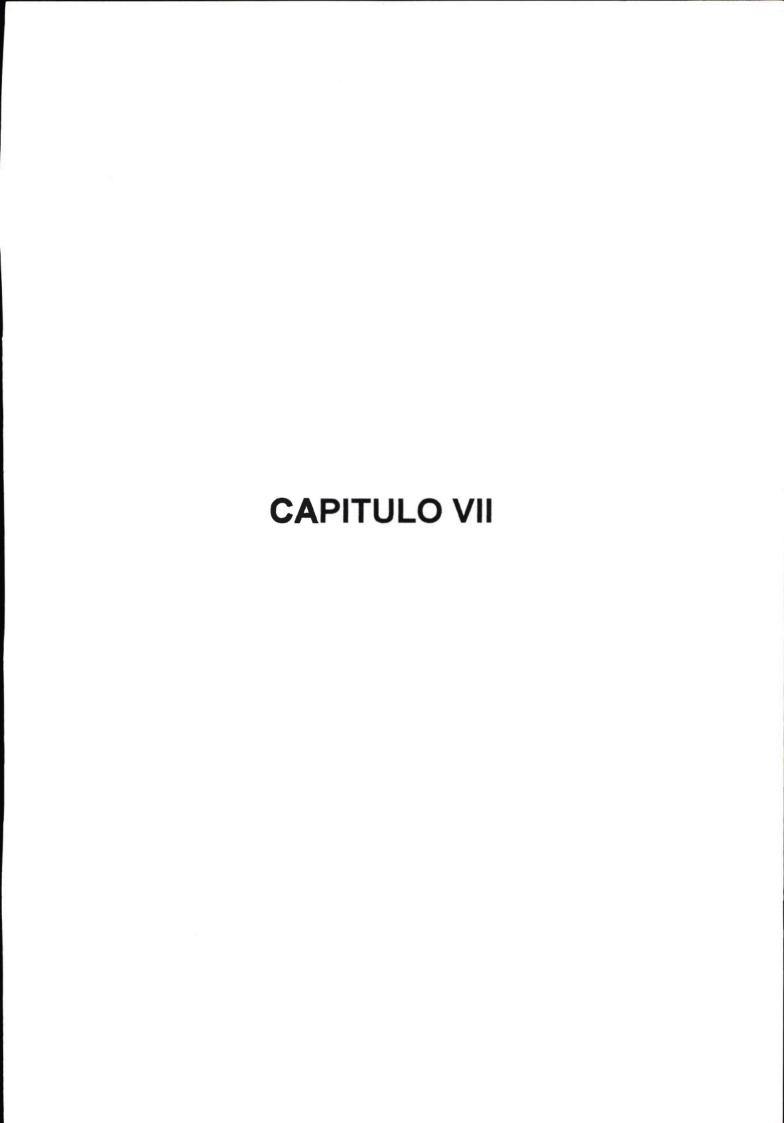
CUADRO 6.4.c

ENSAYO CBR DE MATERIAL CANTERA

USO	UBICACIÓN	Densidad Máxima	C.B.R. % MDS
SUB- BASE	KM. 11+160 L. Izquierdo. Carretera Iquitos- Nauta	1.64	13.20
BASE	KM. 11+200 L. Izquierdo. Carretera Iquitos-Nauta	1.95	46.62

CUADRO 6.4.d

Los diferentes resultados de los ensayos de laboratorio de suelos se encuentran en el anexo I del presente estudio.


6.4.2 Fuentes de Agua.

Como fuentes de agua a emplearse en las diferentes obras como preparación de sub-base, base, concreto, mezcla asfáltica, etc; tenemos el río Nanay y las quebradas que se encuentran a lo largo de la carretera en proyecto.

Del Km. 0+000 al Km. 2+000 cuyo eje de la carretera esta dentro de zona urbana, se considerará como fuente de agua el río Nanay la cual será suministrada a obra a través de cisternas.

Del Km. 2+000 al Km. 6+000 se utilizarán las quebradas ubicadas en el Km. 2+880 y en el Km. 4+980 sólo en épocas de creciente y épocas de lluvias; cuando no se den las condiciones que nos permitan hacer uso de estas quebradas se tomará como fuente de agua el río Nanay.

Del Km. 6+000 al k. 6+320 se empleará las aguas del río Nanay que se encuentra ubicado aproximadamente a 80.00m. del carril izquierdo de la vía.

7.0 DISEÑO DEL PAVIMENTO

7.1 INTRODUCCIÓN.

El pavimento es el acabado de una calle, carretera y pista de aterrizaje, por lo tanto, realizada la explanación, no esta aún terminada la vía y para que el tráfico pueda utilizarla es preciso construir el pavimento necesario y suficiente a fin de que los vehículos puedan circular en todo el tiempo, en condiciones de comodidad, economía y seguridad.

El tipo de pavimento a emplearse en el presente proyecto será el **pavimento flexible** con mezcla de mortero asfáltico en caliente por las siguientes razones:

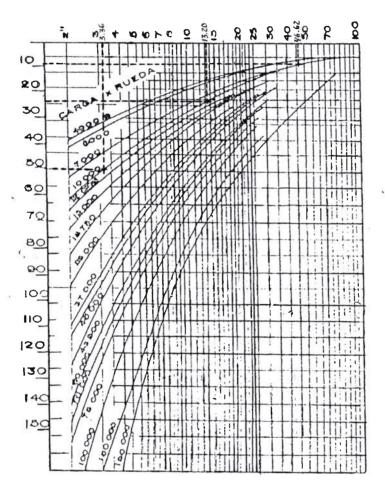
- Por ser su costo de construcción menor respecto al pavimento rígido. Si bien es cierto que este tipo de pavimento requiere de constante mantenimiento, su costo se hace conveniente teniendo en cuenta que el tipo de pavimento flexible a emplearse será el mortero asfáltico (mas no concreto asfáltico) con mezcla en caliente. Debido a la ausencia del agregado grueso (piedra) en nuestra zona, se opta por emplear materiales que estén a nuestro alcance, pero siempre teniendo en cuenta los parámetros de diseño. Así mismo cabe mencionar que en nuestro país el uso del "mortero asfáltico" no es muy frecuente solo se utiliza en zonas carentes de agregado grueso, como es nuestro caso.
- El proceso constructivo de un pavimento rígido es mas lento y no pueden aperturarse al tráfico los tramos terminados, hasta después de transcurrido el periodo de curado, el cual conllevaría a mantener desvíos y control del tráfico por un tiempo mayor.

7.2 <u>DISEÑO Y CÁLCULO DE LA ESTRUCTURA DEL PAVIMENTO</u> ELEGIDO.

Luego de haber obtenido los resultados del estudio de suelos y del análisis del tráfico, se procede a diseñar y calcular la estructura del pavimento de la carretera en proyecto; si bien es cierto que existen varios métodos de diseño, en este caso emplearemos el Método del California Bearing Ratio = Relación de Soporte California - C.B.R.

METODO DEL C.B.R.

Para desarrollar este diseño contamos con los valores de C.B.R. obtenidos del estudio de suelos de cada material que se va ha utilizar para la estructura del pavimento.


De acuerdo al estudio de suelos se ha asumido un valor de C.B.R. para el terreno de fundación igual a 3.36%

Así mismo el método indica que para diseñar un pavimento flexible en el caso de carreteras las cargas por rueda son menores a 10,000 libras (4,540 Kg.). En este caso se asumirá 10,000Lb.

En resumen, para calcular la estructura del pavimento del presente Proyecto los C.B.R. adoptados de los estudios de laboratorio a las diferentes muestras son:

- C.B.R. del terreno de fundación igual a 3.36% (ver cuadro 6.3.1.b)
- C.B.R. de la Sub-base o capa granular anticontaminante igual a 13.20% (ver cuadro 6.3.1.b')

MÉTODO C.B.R.

RELACIÓN DE SOPORTE CALIFORNIA (C.B.R.) EN % PARA 0.1" DE PENETRACIÓN - C.B.R. de la Base o Base Roja igual a 46.62% (ver cuadro 6.3.1.b')

Según la grafica del Método del C.B.R. tenemos para una carga por rueda de 10,000Lb y un C.B.R de 3.36%, un espesor combinado de 50cm aproximadamente.

Como el material de préstamo tiene un C.B.R. igual a 13.2%, el espesor encima de este material sería de 23cm. Luego tendríamos: 23 - 50 = 27cm. de material de préstamo.

Además, como el material para base tiene un CBR de 46.62%, el espesor encima de la Base (capa de rodamiento), sería de 08 cm. (3") Por lo tanto tendremos 23 - 8 = 15cm. de base, resumiendo:

Espesor de la Sub Base = 27cm (11")

Espesor de la Base = 15cm (06")

Espesor de la capa de

Rodamiento = 08cm (03")

Espesor total del Pavimento = 50cm (20")

MÉTODO DEL ÍNDICE DE GRUPO.

Para desarrollar este método se ha tomado los valores obtenidos en los ensayos de suelos de la calicata N.03 ubicada en el Km. 0+500 de la carretera Santa Clara.

El índice de grupo se ha determinado mediante la siguiente formula:

IG = (F - 35)(0.2 + 0.005(LL-40)) + 0.01(F-15)(IP-10)

Donde:

F = Porcentaje que pasa el tamiz N.200

LL = Límite Líquido

IP = Índice de Plasticidad

De los resultados del estudio de suelos tenemos que el porcentaje de finos que pasa la malla N.200 es igual a 96, el Límite Líquido es igual a 79 y el Índice de Plasticidad es igual a 42, por lo tanto reemplazando estos valores en la fórmula tenemos que el valor del **IG = 50.015**.

Así mismo tipo de tránsito definido de acuerdo al análisis realizado corresponde a un tránsito pesado.

En resumen, el método del índice de grupo considera que para pavimentos de tránsito pesado con un terreno de fundación muy malo (IG>9) los valores para la estructura serán los siguientes:

Espesor de la Sub Base = 30cm (12")

Espesor de la Base + capa de Rodamiento = 30cm (12")

Espesor total del Pavimento = 60cm (24")

Luego de haber calculado la estructura del pavimento por estos dos métodos se ha optado por asumir la estructura resultante del método del CBR.

DISEÑO DE MEZCLA PARA LA ESTRUCTURA DEL PAVIMENTO.

Con la finalidad de diseñar la mezcla, para las diferentes de capas de la estructura del pavimento, utilizando los materiales más adecuados y que cumplan con las normas, se ha realizado los ensayos de suelos de la vía y de los materiales de cantera.

* Subbase.

Como el suelo encontrado es básicamente homogéneo donde predominan las arcillas (susceptibles de saturación), se colocará una de subbase de arena blanca, libre de material orgánico y granos de arcilla y cuya granulometría esta dentro de los límites indicados en las especificaciones técnicas del MTC. Esta capa se colocará por encima de la subrasante y tendrá la función de servir de drenaje al pavimento, controlar y eliminar los cambios de volumen, elasticidad y plasticidad y, controlar la ascensión capilar del agua proveniente de la napa freática cercana o de otra fuente.

La cantera que proporcionará el material esta ubicada en el Km. 11+160 de la Carretera Iquitos – Nauta.

* Base.

Estará formada por arenas limosas (o arcillas) con un contenido aproximado de 25% de limo arcilloso y 75% de arena blanca, con un IP no mayor de 3. Esta capa del pavimento cumplirá con las siguientes características:

- Ser resistente a los cambios de humedad y temperatura.
- 2.- No presentar cambio de volumen.
- 3.- Porcentaje de desgaste debe ser inferior a 50.
- 4.- La fracción que pasa el tamiz N° 40 no debe tener límite líquido menor del 25% y un índice de plasticidad inferior a 6.
- 5.- El CBR tiene que ser superior a 50% y no menos de 40%.

* Superficie de Rodadura.

El material que se empleará para la superficie de rodadura será una mezcla de mortero asfáltico, compuesta por arena fina y cemento asfáltico; así mismo el método mas utilizado para diseño de mezclas asfálticas es el MARSHALL (ASTM D-1557) la cual no será materia de estudio en la presente tesis.

CAPITULO VIII

8.0 MANTENIMIENTO Y CONSERVACIÓN DE LA VÍA

GENERALIDADES

Las vías terrestres se planean y se constituyen para que estén en servicio un determinado número de años (como mínimo) que se llama vida útil de la obra, al cabo del cual se abandonan, pudiendo tener algún valor de rescate, o se reconstruyen con el fin de aumentar su servicio por mas tiempo, que es lo que en forma general sucede.

Al estar en operación una obra, se va deteriorando, presentando diferentes condiciones de servicio a través de los años. Los deterioros que se van teniendo al principio pueden ser pequeños, pero pueden ser la causa de problemas serios en la obra, que aceleran su falla, por lo que una obra para proporcionar un servicio adecuado requiere de mantenimiento, que cuando menos asegure su vida de proyecto.

8.1 CONSERVACIÓN DE PAVIMENTOS

La conservación de pavimentos, ya sean rígidos o flexibles son de trascendental importancia, ya que un mantenimiento preventivo llevado a cabo con tecnología eficiente, puede prolongar significativamente la vida del pavimento a un bajo costo.

Esta actividad comprende las siguientes tareas:

- a) Conservación preventiva, y
- b) Conservación correctiva.

La conservación preventiva tiende a prevenir o retardar el efecto de las fallas, mientras que, la conservación correctiva se aplica cuando a ocurrido las fallas en un pavimento, y se dan los pasos para localizar y definir el tipo de falla y la causa del mismo procediendo a la reparación necesaria.

8.1.1 FALLAS

Se reconoce dos tipos de fallas, y son:

- Fallas Funcionales.- Estas son relativamente leves y se producen cuando un pavimento ha perdido su función inicial o asignada de antemano. Generalmente esta localizado en la capa superficial.
- Fallas Estructurales.- Estas se originan en una o varias capas, si son graves. También puede fallar estructuralmente el suelo que soporta el pavimento.

Descripción de las Fallas en Pavimentos Flexibles.

a) Falla en la Carpeta Asfáltica.- Pueden ser también funcionales o estructurales. Las primeras se presentan por exceso de asfalto, de arcilla o humedad. La carpeta pierde su tersura; también puede deformarse la carpeta por consolidación debido a la falta de compactación. Si la cantidad de asfalto es menor a la óptima, el agregado se desprende y la carpeta se disgregará; o puede ser que el espesor de esta capa no sea el indicado para el transito que lo usa y la falla será por fatiga en la mezcla.

Estas fallas pueden provocar ondulaciones, grietas aisladas en forma de piel de cocodrilo.

b) Fallas en la Capa de Subbase.- Son las mismas que las mencionadas para la base. Si la falla es en la subbase o en la subrasante, el movimiento en la base y la carpeta es exagerada manifestándose por deformaciones profundas. De ahí que la magnitud de una deformación puede ser un índice de donde esta localizado la falla.

Los diferentes tipos de fallas que se presentan en el pavimento flexible se pueden categorizar como grietas, deformaciones y desintegración.

 Grietas: Aparecen en muchas formas como el resultado de varias causas. En orden de poder hacer reparaciones apropiadas, primero se deben determinar las causas de la grieta.

Típicas grietas comúnmente encontradas.

Grietas de cocodrilo.- Formado por grietas conectadas que forman una serie de pequeños bloques que se asemeja la piel de lagarto. Son usualmente asociadas con una base granular que ha fallado o tiene una sub-base suave o saturada. La reparación adecuada incluirá remover el material fallado o saturado y un parcheo profundo de mezcla de asfalto caliente.

Grietas en el borde.- Formado por grietas grandes las cuales corren paralelamente al borde del pavimento y se debe a la falta de apoyo y asentamiento de la base del material. Se puede conseguir una reparación llenando la grieta con una emulsión de asfalto aguda o llenado hasta la superficie con una mezcla de bacheo de asfalto caliente.

Grietas en la junta. – Ocurren entre dos líneas de tráfico y son el resultado de agua en depresiones en la unión. La falta de drenaje debe ser corregido y la grieta se puede llenar con una emulsión de asfalto agudo.

Grietas de reflejo.- Ocurren en capas sobrepuestas de asfalto y refleja el módulo de grietas de más abajo. Las grietas pueden ser llenadas con asfalto emulsionado de mezcla cubierto con arena.

Grietas de Deslizamiento.- Parecen perforaciones debido a que la superficie del asfalto ha sido estirada. Son el resultado del peso del tráfico y la falla de unión entre la capa de la superficie y la capa de trabajo. La única reparación efectiva es remover la capa de la superficie y corregir la base antes de parchar con mezcla de asfalto caliente.

- 2. **Deformaciones:** Resultado de debilidad de la sub-base, las reconocidas mas comúnmente son:
 - Canalización.
 - Ondulación.
 - Desplazamiento.
 - Depresiones.
 - Levantamiento.

Reparación de las deformaciones en muchos de los casos significa remover el área afectada, estabilizando la base y parchando con mezcla de asfalto caliente.

 Desintegración: La forma más común de desintegración y resultado de desintegración localizada bajo el tráfico son los baches.

La reparación es realizada al construir un parche profundo con una mezcla de asfalto en caliente. Los procedimientos de parcheo deben ser seguidos rigurosamente para asegurar un parcheo duradero.

MANTENIMIENTO GENERAL DEL CAMINO.

Además del mantenimiento de pavimento en caminos, las operaciones de mantenimiento incluyen modelado y sello de acotamiento, podado (o tratamiento químico) de hierba y setos, limpieza de cunetas y drenajes, reparación de pequeñas estructuras, remoción de desechos, repintado de rayas de tráfico, etc. Para los caminos principales, el segado es el procedimiento continuo desde la primavera hasta el otoño.

El pasto en las fajas centrales angostas y a lo largo de los bordes exteriores de las fajas centrales anchas se debe mantener corto. El resto de la cubierta de pasto de una faja central se debe mantener a una altura controlable. Estos procedimientos se aplican también a las zonas de intercambios, especialmente para contiguas a salidas y entradas de rampas, en donde el pasto indebidamente grande no solo se ve mal sino que interfiere con la distancia visual y fácilmente puede ser origen de fuego en los periodos secos. Un corte ocasional del pasto en las porciones externas de las pendientes es suficiente, excepto a lo largo de las vías de parques, en donde la estética es muy importante.

El equipo comprende las segadoras del tipo múltiple, grandes, tiradas por tractores, segadoras de propulsión propia con barras cortadoras de motor operadas a mano para los lugares angostos y para alrededor de guarda caminos. (Una razón secundaria para las pendientes a aplanadas en permitir el uso del equipo mecánico para segar).

8.2 <u>ESTUDIOS DE PAVIMENTOS CON FINES DE</u> RECONSTRUCCIÓN

En muchos países se presentan con frecuencia la necesidad de analizar el estado de un pavimento construido anteriormente con la finalidad de decidir sobre la necesidad de repararlo y sobre el monto de reparación.

Aunque presente en todas partes, este es un problema muy común en las redes de transporte de los países, en vías de desarrollo, pues en ello se da las condiciones de rápida expansión del tránsito, insuficiencia presupuestal en momento de la construcción y falta de la adecuada conservación, que contribuyen a generarlo.

CAUSAS DEL DETERIORO DE UN PAVIMENTO

Tráfico.- El deterioro de un pavimento se traduce a nivel de deformaciones y fisuras en función de la magnitud de carga por eje-rueda, sus repeticiones y la duración de la misma, que cuando no coincide con el diseño genera daños.

Clima.- Las diferentes variaciones de clima en el Perú generan cambios bruscos de temperatura a si como condiciones de humedad que en exceso disminuyen la resistencia del suelo y por

lo tanto generan deterioro en el pavimento. Es necesario tener en cuenta que el clima es un parámetro de diseño y construcción y por lo tanto no deben existir perjuicios por este concepto.

Igualmente los fenómenos naturales a veces no previstos intensifican los daños de los caminos (caso fenómeno del niño).

Diseño.- El dimensionamiento de la estructura debe ser la correcta al momento de elaborar el proyecto, caso contrario el trabajo del pavimento será forzado.

Deficiente control de supervisión.- Esto implica lo referente a la calidad de los materiales como son agregados (canteras), asfalto, agua así como el equipo mecánico a utilizar y finalmente el control permanente de todo el proceso constructivo, a fin que se asegure la buena ejecución de la obra.

EVALUACIÓN DE PAVIMENTOS

Los problemas de rehabilitación de pavimentos pueden ser inmensamente variados y van desde la colocación de riesgos de "rejuvenecimiento" o construcción de sobre carpetas, hasta reconstrucciones integrales.

Las rehabilitaciones por incremento normal del tránsito suelen resolverse con el empleo de sobre carpetas, en tanto que las reconstrucciones serán necesarias en pavimentos que muestren indicios de fallas consistentes en la aparición de deformaciones excesivas o en niveles muy elevados de deflexión, detectados con los instrumentos que hoy se disponen.

El planteamiento de un criterio de rehabilitación es, en rigor, un enlistado de las circunstancias que hacen insatisfactorio el

servicio de un pavimento dado; desde luego es algo mucho mas complicado que la simple aparición de gritas superficiales. En lo anterior, insatisfactorio no implica, desde luego, la necesidad de una falla catastrófica; puede requerir rehabilitación un pavimento que esta soportando adecuadamente muy altos volúmenes de tránsito, pero en el que se gasta mas de lo conveniente en conservación.

Las normas de criterio que suelen considerarse para definir la necesidad de una rehabilitación son:

- Nivel de Servicio.- Este concepto variara con el tipo de la vía terrestre.
- 2.- Condición Estructural.- Este concepto se refiere a la capacidad del pavimento para soportar las cargas del tránsito en la actualidad y seguirlo haciendo en el futuro próximo.
- 3.- Condiciones de la Superficie.- La apariencia del pavimento no necesariamente esta ligada a la capacidad estructural y desde luego no lo esta por una relación única y sencilla, si bien es cierto que una falta de capacidad estructural se reflejara rápidamente en la apariencia del pavimento. Muchos defectos en las condiciones superficiales pueden corregirse fácilmente con métodos que no producen ninguna mejoría real en las condiciones estructurales.
- 4.- Seguridad.- El se concepto se evalúa generalmente con base en estadísticas de accidentes.
- 5.- Costos.- Se refiere no solo a la erogación necesaria para pagar la rehabilitación si no también a los costos de conservación y de operación al que se llegue.

Es muy importante que en todo programa para la ejecución de un estudio con fines de rehabilitar un pavimento se incluya un

levantamiento de los deterioros que presentan la superficie de rodamiento y su posible relación con la condiciones de drenaje y subdrenaje, topografía de la zona y cualquier otra que se considere con alguna influencia en el comportamiento general exhibido por el pavimento.

En lo referente a la capacidad estructural de un pavimento, esta característica se ha relacionado, para fines de evaluación, con la medición de la deflexión del pavimento cuya capacidad estructural se desea evaluar. Las deflexiones de un pavimento flexible bajo una carga estática pueden ser determinadas con equipos tales como la VIGA BENKELMAN o un curvímetro Dehlen.

VIGA BENKELMAN

La Viga Benkelman es u equipo diseñado para determinar las deformaciones elásticas de un pavimento flexible cuando es cargado con un peso normalizado.

Aparatos y Materiales para el Ensayo

- A) Aparato.- La Viga Benkelman de doble brazo con sus correspondientes diales registradores (al 0.01 mm y el recorrido 12 mm) y las siguientes dimensiones fundamentales:
 - Longitud del primer brazo de ensayo desde el pivote al punto de prueba= 2440 mm.
 - Longitud del primer brazo de ensayo, desde el pivote al punto de apoyo del vástago de su dial registrador= 0.610 mm.
 - Longitud del segundo brazo de ensayo, desde el pivote a
 la punta de prueba = 2190 mm.

- Longitud del segundo brazo de ensayo, desde el pivote al punto de apoyo del vástago de su dial registrador= 0.5475 mm.
- B) <u>Camión para ensayo</u>.- Debe tener las siguientes características:
 - El eje trasero pesara en la balanza 8175 Kg igualmente distribuidos sus dos ruedas, cada una en las cuales debe tener dos llantas.
 - Las llantas deberán ser de 10"x20" y 12 lonas, e infladas a 5.6 Kg/cm2 (80 Lb/pulg2). La distancia entre los puntos medios de la banda de rodamiento de ambas llantas de cada rueda dual debe ser 32 cm.
 - La presión de inflado debe verificarse cuando menos dos veces al día.
- C) Un medidor de presión de inflado.
- D) Un termómetro de 0° a 100° °C, con divisiones cada grado.
- E) Un barreno para ejecutar orificios en el pavimento de 4 cm de profundidad y 10 mm de diámetro.
- F) Un cronometro.
- G) Una wincha de acero de 2 m y otra de 25 m.
- H) Un vibrador.

Procedimiento del Ensayo.

A) El punto del pavimento al ser ensayado deberá ser marcado convenientemente con una línea transversal al camino. Sobre dicha línea será localizado el punto de ensayo a una distancia prefijada del borde. Se recomienda utilizar las distancias indicadas en la siguiente tabla.

Distancia del punto de Ensayo Desde el borde del pavimento	
0.45 m	
0.60 m	
0.75 m	
0.90 m	

- B) La rueda dual externa del camión deberá ser colocada sobre el punto seleccionado; para la correcta ubicación de la misma, deberá colocarse en la parte trasera extrema del camión una guía vertical en correspondencia con el eje de carga. Desplazando suavemente el camión, se hace coincidir la guía vertical con la línea transversal indicada en A), de modo que simultáneamente el punto quede entre amabas llantas de la rueda dual.
- C) Se coloca la viga sobre el pavimento detrás del camión, perpendicularmente al eje de la carga, de modo que la punta de prueba del primer brazo coincida con el punto de ensayo y la viga no roce contra las llantas de la rueda dual.

- D) Se liberan los seguros de los brazos y se ajustan la base de la viga por medio del tornillo trasero, de manera que los dos brazos de medición queden en contactos con los diales.
- E) Se ajustan a los diales de modo que sus vástagos tengan un recorrido libre comprendido entre 4 y 6 mm. Se giran las esferas de los diales hasta que las agujas queden en cero y se verifica la lectura golpeándolos suavemente con un lápiz. Girar la esfera si es necesario y repetir la operación hasta obtener la posición cero.
- F) Se hace avanzar suavemente el camión; se pone en marcha el cronometro y vibrador y se lee los diales cada 60 segundos. Cuando 2 lecturas sucesivas de cada un de ellos no difieran en mas de 0.01 mm, se da por finalizado la recuperación, registrándose las últimas lecturas observadas (L₀ y L₂₅).
- G) Con el fin de medir temperaturas del pavimento se practica un orificio (antes de comenzar el ensayo y simultáneamente con el trazo de la línea), cuyas dimensiones serán 4 cm de profundidad y 10 mm de diámetros, aproximadamente, emplazado sobre la línea paralela al eje del camión que pasa por el punto de determinación de la deflexión y 50 cm del mismo, en el sentido de avance del camión. Se llena con aceite no menos de 10 minutos antes de iniciar el ensayo, se inserta el termómetro y se lee la temperatura, retirando el mismo antes del desplazamiento del camión.

El rango de temperatura de trabajo deberá quedar dentro de los siguientes límites:

Limite inferior : 5°C

Limite superior: 35°C

- No obstante el límite superior indicado en el párrafo G), el H) ensavo no se deberá efectuar a temperaturas inferiores si ellas producen deformaciones plásticas entre ambas llantas de la rueda dual. Para detectar si dicha deformación se produce, se deberá proceder de la siguiente forma: Una ves registradas las lecturas Lo y L₂₅, se hace retroceder suavemente y lentamente el camión hasta que la rueda dual externa quede colocad sobre el punto de ensayo observando la marcha en la aguja del dial. Si alcanzara cierta posición la aguja se detiene y luego se observa un desplazamiento en sentido contrario, como si se produjera la recuperación del pavimento, ello indica que existe deformación plástica medible entre ambas llantas de la rueda dual. Esa aparente recuperación puede ser debida, también, al hecho de que el radio de acción de la carga del camión afecten las patas de
- I) Tampoco deberá efectuarse el ensayo si, aun cuando no se detectara deformación plástica mediante el procedimiento se recién indicado se constatara que el radio de acción de la carga del camión afecta las patas de la regla, para lo cual se procederá de la siguiente forma:

la viga (ver numeral l)).

Una vez registradas las lecturas de los diales, se hace retroceder lentamente el camión observando el dial del primer brazo. Cuando se observe que el dial comienza a desplazarse acusando la deformación producida por la carga, se marca sobre el pavimento la posición de la guía vertical mencionada en el párrafo B) y se detiene el retroceso del camión.

Se mide la distancia entre la punta de prueba del primer brazo y la marca practicada sobre el pavimento, de acuerdo

con lo indicado antes. Sea "d" esa distancia, si d es mayor de 2.40 m la acción de la carga del camión afecta las patas de la viga.

Cálculos:

A) La deflexión bajo el eje de la carga (Do), se calcula mediante la siguiente expresión.

 $D_0 = 4 \times L_o$ (expresado en 0.01 mm)

Donde Lo es la lectura registrada en el dial del primer brazo de ensayo.

B) La deflexión a 25cm del eje de carga (D₂₅), se calcula con la expresión.

 D_{25} = 4 x L_{25} (expresado en 0.01 mm)

Nota. el valor 4 usado por el calculo D_0 y D_{25} obedecen a que la relación de longitudes de brazo indicadas anteriormente es 4, en caso en que la viga utilizada tenga una relación diferente, se aplicara el factor que corresponda.

 El radio de curvatura del punto de ensayo se calcula con la expresión.

RC= 3125 / (D_o-D₂₅) expresada en mm.

En la tesis se adjuntan resultados de haber realizado un ensayo con la Viga Benkelman, las mismas que se encuentran en los anexos.

CAPITULO IX

9.0 CONCLUSIONES Y RECOMENDACIONES

9.1 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- El diseño geométrico del proyecto se ha realizado en base a las especificaciones establecidas en las Normas Peruanas para el Diseño de Carreteras.
- Al realizar el trazo del eje de la carretera se ha considerado llevarlo por el centro de la carretera existente, debido a la existencia de viviendas en las márgenes de la carretera.
- Los suelos encontrados en el terreno de fundación son básicamente homogéneos (finos) donde predominan las arcillas inorgánicas.
- La capacidad de soporte CBR del terreno de fundación es de 3.36%, dato que será de gran importancia para el diseño de la estructura del pavimento.
- En la progresiva 0+050 se ubicó un nivel freático a una profundidad de 1.00m, en las demás progresivas no se ubicó presencia de nivel freático siendo la profundidad de exploración de 1.50m.
- Las cuencas que cruzan la vía son muy pequeñas, habiéndose identificado cinco de mayor importancia para los cuales se ha calculado los caudales máximos, observándose un rendimiento máximo promedio de 2.78 lt/s/Ha de cuenca.
- Al realizar el diseño de las estructuras de drenaje, se contó con información metereológica proporcionada por el SENAHMI, y con información topográfica real de la zona.
- La vía debe hacer frente al problema de drenaje, debido a las precipitaciones pluviométricas estudiadas.

Para la eliminación de estas aguas se ha recurrido a proporcionar pendientes longitudinales y un bombeo hacia los costados de 2%, ubicando cunetas laterales que permitan recolectar toda el agua de lluvia para llevarla a las alcantarillas o canales laterales.

- Las cunetas se han considerado todas revestidas para evitar su erosión, con concreto f´c = 140 kg/cm2 de 0.50x0.60m de sección transversal triangular.
- La estructura del pavimento consiste en:

Espesor de la Sub Base = 27cm (11")

Espesor de la Base = 15cm (06")

Espesor de la Capa de Rodamiento = 08cm (03")

Espesor Total del Pavimento = 50cm (20")

Espesor calculado por el método del C.B.R. (Bearing California Ratio).

RECOMENDACIONES

- Las condiciones de alta temperatura y alta precipitación de la zona son factores que deben considerarse en el diseño de la carretera en nuestro medio.
- El estudio de las diferentes canteras que abastecerán de material durante la ejecución de la obra, deberá incluir características mecánicas, gradación y volúmenes.
- Para el diseño estructural de vías semejantes a la presente deberá elegirse el método que este más de acuerdo a la realidad de la zona. Sugerimos el método del C.B.R.
- Es importante sensibilizar e involucrar a los moradores de la zona,
 para que participen en el proceso de diseño, ejecución, servicio y mantenimiento.

9.2 BIBLIOGRAFÍA CONSULTADA.

- NUEVAS NORMAS PERUANAS PARA EL DISEÑO DE CARRETERAS (2,002). Ministerio de Transportes y Comunicaciones. Editorial Ciencias S.R.Ltda. Lima Perú.
- CONDE R. Domingo y Conde R. Paulino (1,977). "Método y Cálculo Topográfico". Primera edición. Nelvi Industria Gráfica, Lima Perú.
- CRESPO V. Carlos (1,979) "Vías de Comunicación". Tercera edición.

 Editorial Luminosa, S.A. de C.V. Grupo Noriega Editores, Mexico.
- VALLE RODAS, Raúl (1,982). "Carreteras, Calles y Aeropistas". Sexta edición, segunda reimpresión. Editorial "El Anteno" Argentina.
- VIVAR R. Germán. "Diseño y Construcción de Pavimentos" (1,995).

 Libro 6. Colección del Ingeniero Civil. Editorial Princeliness

 E.I.R.L. Lima Perú.
- COLEGIO DE INGENIEROS DEL PERU (1,999). Consejo

 Departamental de Lima. Capitulo de Ingeniería Civil. Programa de actualización profesional. Curso: "Pavimentos".
- ANDRADE E. Simón (1,992). "Proyectos de Inversión" Tomo I y II, tercera edición. Editorial Lucero. Lima Perú
- WACKER CORPORATION (1,994). "Manual del Asfalto".
- CESPEDES ABANTO, José (2,002). "Los Pavimentos en las Vías

 Terrestres Calles, Carreteras y Aeropistas". Impreso en los
 talleres gráficos de la Universidad de la UNC Cajamarca Perú.

- VEN TE, Chow (1,998). "Hidrología Aplicada". Editorial Mc Graw Hill. Colombia, Santa Fe de Bogota.
- NORMAS DE SANEAMIENTO Y ELECTROMECÁNICA (2,003).

 Reglamento Nacional de Edificaciones. ICG. Perú Lima.
- ESTUDIO HIDROLÓGICO DE LA CUENCA DEL RÍO NAPO (1,996).

 DREM CTAR Loreto. Iquitos.
- VEN TE, Chow (1,998). "Hidráulica de Canales Abiertos". Editorial Mc Graw Hill. Colombia, Santa Fe de Bogota.
- WENDOR CHIROQUE, Moran (1,989). "Hidrología para Estudiantes de Ingeniería Civil". PUCP Lima Perú.

ANEXO

ANEXO I

- Estudio de Impacto Ambiental

ESTUDIO DE IMPACTO AMBIENTAL

1.0 INTRODUCCIÓN

El Proyecto de Construcción de la Carretera a Santa Clara constituye un trabajo de investigación del Proyecto de Tesis para optar el título de Ingeniero Civil, como contribución de la Universidad Particular de Iquitos a la solución de la problemática existente en la zona; donde, actualmente, la vía de acceso hacia la comunidad de Santa Clara es una trocha carrozable que presenta una superficie encalaminada y con baches pese al frecuente mantenimiento que realiza el Ministerio de Transportes y últimamente la Municipalidad Distrital de San Juan Bautista; como parte de la propuesta se presenta lineamientos para la formulación del Estudio de Impacto Ambiental.

1.1 OBJETIVOS Y ALCANCES DEL ESTUDIO

1.1.1 Objetivos

Determinar y evaluar los posibles impactos que podría ocasionar la ejecución del proyecto, para de esta manera recomendar las pautas para la elaboración del Estudio Definitivo de Impacto Ambiental que coadyuven a tomar las medidas idóneas que logren minimizar los efectos negativos que podría ocasionar la ejecución del Proyecto sobre el medio ambiente; así como maximizar los efectos positivos de la construcción de esta vía de comunicación.

1.1.2 Alcance

El Estudio de Impacto Ambiental para el Proyecto de la construcción de la Carretera Santa Clara (Km. 00+000 – Km. 6+129.695) incluye lo siguiente:

- Descripción del Proyecto.
- Preparación de la "Línea Base" con la caracterización del medio físico o abiótico, el medio biológico o biótico y el medio socio-económico-cultural.
- Identificación y Evaluación de los impactos potenciales que el Proyecto podría ocasionar en el medio caracterizado.
- Preparación del Plan de Manejo Ambiental y Monitoreo para las etapas de construcción y uso que permitan eliminar o minimizar los impactos negativos y/o maximizar los positivos.
- Evaluar la ubicación de canteras, fuentes de agua, planta de asfalto, botaderos para eliminar los excedentes de corte y desperdicios.
- Evaluar y predecir con mayor precisión los impactos en el aspecto hidrológico y geológico y su interrelación en los respectivos entornos ecológicos.
- > Evaluar el impacto ecológico producido con la construcción de la trocha carrozable ya ejecutada.

Identificación y evaluación de los impactos residuales después de la aplicación de los Planes de Manejo Ambiental y Contingencias.

1.2 <u>METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL</u> ESTUDIO DE IMPACTO AMBIENTAL

Consiste fundamentalmente en el análisis e integración de todos los aspectos relacionados con los recursos naturales, medio socioeconómico y las actividades que se desarrollan en el área de
estudio. En los aspectos de estudio se tendrá en cuenta
básicamente, rubros que a continuación se indican y que no son
limitativos: conservación de suelos, mantenimiento de cursos de
agua superficiales y subterráneas, remoción de suelo y
vegetación, emisión de elementos y ruídos que perturben el
ecosistema, efecto de las obras provisionales, aprovechamiento
de materiales de canteras, agua, control de residuos, aguas
servidas y otros.

Para la elaboración del Estudio de Impacto Ambiental se cumplió el siguiente proceso:

- a) Ubicación y emplazamiento del área en mapa cartográfico.
- b) Reconocimiento del área, que incluye una extensión de 300Ha, considerando 250m a ambos lados del eje.
- c) Toma de fotografías para mostrar visualmente aspectos importantes sobre "Línea Base".
- d) Ponderación de variables y aspectos ambientales.
- e) Formulación de la matriz de Impacto Ambiental.
- f) Trabajos de gabinete para la predicción de impactos y preparación de los Planes de Manejo Ambiental, Monitoreo y Contingencias.

2.0 DESCRIPCIÓN DEL PROYECTO

2.1 UBICACIÓN DEL PROYECTO

El área en proyecto esta ubicada en el departamento de Loreto, provincia de Maynas, distrito de San Juan Bautista; a una altitud promedia de 124m.s.n.m. así mismo, su punto de inicio esta a 500m. antes de llegar al Km. 0+000 de la carretera Iquitos Nauta hasta la comunidad de Santa Clara.

La temperatura media anual esta entre 24°C y 36°C, con humedad relativa media anual de 84.4% y la precipitación media anual de 2,770.80 mm.

2.2 JUSTIFICACIÓN DEL PROYECTO

El proyecto en referencia es de suma importancia y es de necesidad prioritaria su ejecución, por la problemática existente del desarrollo y expansión urbana; y, por la trascendencia económica, social y agrícola de las localidades que se beneficiaran con la construcción de esta importante vía.

Por lo tanto, parte del proyecto incluye la elaboración del Estudio de Impacto Ambiental, la misma que tiene la finalidad de evaluar los posibles daños que pueda provocar al área de influencia la construcción de la carretera.

2.3 ÁREA DE INFLUENCIA DEL PROYECTO

El área de influencia de este proyecto abarca en lo general a la ciudad de Iquitos, al distrito de San Juan Bautista y el distrito de Alto Nanay.

2.4 TRABAJOS Y ACTIVIDADES A DESARROLLARSE

La carretera a pavimentar está catalogada como carretera de sistema vecinal de 2da. Categoría cuyo estudio de tráfico, estudio geológico e hidrológico se están presentando en la presente Tesis.

En forma resumida las características de la carretera son:

- Ancho de Rodaduras : 7.30 m.

- Bermas : 2 x 1.00m. a cada lado.

- Cunetas : De forma en "V" donde

requiera.

- Bombeo : 2%

- Talud : Aproximadamente 1:2

- Rodadura : Carpeta asfáltica en

caliente.

Las actividades a desarrollarse en el Proyecto abarcan los siguientes aspectos:

- Trazo y nivelación.
- Excavación de material orgánico por debajo de la Subrasante.
- Eliminación de material orgánico y/o material no adecuado.
- Relleno a nivel de subrasante.
- Compactación, refine y nivelación de la Sub rasante.
- Colocación y compactación de capa granular o contaminante.
- Colocación, refine, nivelación y compactación de sub base.

- Imprimación de la sub base.
- Colocación de carpeta asfáltica de rodadura.
- Trabajos misceláneos como son:
 - Colocación de sub drenes.
 - Construcción de cunetas y alcantarillas.

Todas estas actividades tienen en común el uso de maquinaria pesada, tanta para el trabajo en si, como en el transporte de los materiales, especialmente el transporte de material de cantera a la vía, como el material bituminoso desde la planta de asfalto hacia el lugar de su colocación.

Como es de esperar todas las actividades son impactantes para el medio ambiente (físico, biológico y otros aspectos del entorno).

3.0 DESCRIPCIÓN DEL AMBIENTE SELECCIONADO

3.1 **GEOLOGÍA**

La presente descripción es una síntesis del estudio geológico y tiene como objetivo principal proporcionar información necesaria acerca de la litología superficial que sirve de apoyo a la interpretación y fundamentaron de las conexas como Fisiografía, Suelos y Ecología.

Se considera, como toda la selva baja, que la zona de estudio como las circunvecinas, constituyen en sus orígenes una gran cuenca de sedimentación en donde se depositaron sedimentos en su origen del tipo marino y después continental. Estas fueron posteriormente disturbadas a consecuencia de movimientos orogenéticos y epirogenéticos, los cuales quedaron testificados

regionalmente por el levantamiento de la Cordillera de los Andes y por el desarrollo de las estructuras plegadas y falladas cuyas principales exposiciones se encuentran cubiertas en toda la zona por depósitos del terciario – cuaternario.

3.1.1 <u>Estratigrafía</u>

La secuencia estratigráfica de la región ha sido establecida por la similitud, tanto en el aspecto litológico de las formaciones como en la posición equivalente de éstas dentro de ciclos sedimentarios de origen común, con formaciones estratigráficas similares que afloran en otros sectores del Oriente Peruano, en donde han sido debidamente clasificadas.

Una de las características principales de los suelos Cuaternarios formados por depósitos superficiales de sedimentos fluviales es que son blandos y de baja resistencia.

Debajo de estos depósitos superficiales del cuaternario, se observa formaciones de estos suelos duros y de mayor resistencia pertenecientes al periodo terciario.

Se observa que estos suelos de tipo residual se encuentran estratificados, formados principalmente por arcillas, limos y suelos limo- arenosos.

Los suelos a lo largo de la vía son arcillas básicamente de naturaleza caolinitica de coloraciones rojas o amarillas por la presencia de óxidos de fierro, pero también se encontró tramos de suelos limosos y limo arenosos.

Las arenas blancas que se usarán en la obra tienen una antigüedad aproximada de 8'000,000.00 de años. Son de PH ácido y se recomienda un estudio químico antes de su uso para conocer la compatibilidad con el resto de materiales.

3.2 TOPOGRAFÍA Y FISIOGRAFÍA

El relieve topográfico de la extensión involucrada es predominante ondulado a colinado, correspondiendo el ancho y la longitud en todo el derecho de vía a una superficie plana ondulada con desnivel menor a 1.00m.

El drenaje natural es bueno a moderado, con fuerte escorrentía superficial en las áreas disectadas que le confieren una alta susceptibilidad a la erosión hídrica, habiéndose detectado, generalmente en las convergencias de las colinas, áreas con drenaje defectuoso, que funcionan como verdaderos depósitos naturales de agua en las épocas de lluvia.

3.3 AMBIENTE BIOLÓGICO

La zona del Proyecto se enmarca en la zona selva baja, denominada zona de vida del "Bosque Húmedo Tropical" (TOSI, 1960; ONERM, 1976), descrito como una zona "húmeda y calida sin estación bien definida y sin cambio térmico invernal bien definido" (ONERM, 1975).

Se caracteriza por presentar un bosque no muy elevado y algunas chacras desde el Km. 2+800 al 4+500 aproximadamente; tanto al inicio como al final de la carretera en proyecto se encuentra poblada a ambos lados del eje de la vía, así mismo se puede

observar que no hay especies forestales ni especies de fauna terrestre de bosque primario, ya que estas han sido extinguidas.

Especies de Fauna con potencial nocivo o peligroso.

A parte de los reptiles venenosos, existe el riesgo de la malaria o paludismo y el dengue, que son reportados con alta incidencia en la zona de estudio.

3.4 AMBIENTE SOCIO-ECONÓMICO

Entre la población beneficiada ubicada a lo largo de la carretera en estudio tenemos: a las comunidades de Santa Clara y Rumococha y a los asentamientos humanos Simón Bolívar y Las Coruñas.

La localidad de Santa Clara se encuentra ubicada en el margen derecho del Río Nanay, en una parte alta no inundable y al final de la carretera en proyecto. Se encuentra aproximadamente a 12km. del centro de la ciudad de Iquitos. Las construcciones de las casas son de material noble y de madera rústica del tipo palafito, cuenta con Servicio de Electrificación, Centro Educativo Inicial, Centro Educativo Primario, Colegio Secundario y Centro Salud. La población es de aproximadamente 2,600.00 habitantes entre niños y adultos.

Las actividades socio-económicas en la comunidad de Santa Clara se definen de la siguiente manera:

 La actividad de extracción forestal en las comunidades aledañas con propósitos comerciales no esta generalizada; es selectiva y a veces constante, pero aún no provoca mayores daños.

- La actividad pesquera es de autoconsumo y la que provee de mayor fuente de proteínas a la población. Esta actividad representa aproximadamente el 2% del total de la Región.
- En tanto, la recolección de especies vegetales y animales es generalizada durante todo el año.
- La actividad manufacturera en la comunidad de Santa Clara no esta desarrollada, solo se realiza el pilado de arroz, la producción de aguardiente de caña de los trapiches como actividad familiar y la actividad de pequeñas panaderías para el autoconsumo local.
- Actualmente no se aprovecha la actividad turística por falta de infraestructura y promoción, pero se estima que con la culminación de la carretera, esta actividad se potencie.

3.5 PAISAJE

El paisaje predominante corresponde al de la llanura amazónica y se ha visto afectado por la construcción de la trocha carrozable y el asentamiento poblacional en todo el sector: La proximidad de lquitos y San Juan Bautista, nos permite señalar que el área en estudio se transformará en zona de expansión urbana en el más breve plazo.

3.6 RECURSOS ARQUEOLÓGICOS.

En la zona directamente involucrada y en toda la Provincia de Maynas no existe registro de la existencia de algún resto arqueológico, llámese Huaca, caso pictográfico, petroglifo u otro que pudiera ser afectado por la construcción de la carretera.

3.7 NIVELES DE CONTAMINACIÓN

3.7.1 Calidad de suelo

El suelo a ambos lados del eje de la vía, básicamente esta ocupada ahora, como espacio, de instalación de granjas de crianza avícola y huertas de árboles frutales y pequeñas chacras de cultivo de hortalizas. En los espacios no cultivados existe bosque secundario.

Las características edafológicas del suelo del área circundante corresponden a "purma"; pero, por la cercanía con los centros poblados se convertirá en área de expansión urbana.

El estudio del suelo como estructura para la vía se presenta en título aparte.

3.7.2 Calidad de agua

Los cursos de agua son relativamente limpios. Existen dos (02) riachuelos que atraviesan la vía. Sin embargo, por la topografía de la vía, en horas de lluvia el agua de toda la micro cuenca se almacena y a través de estos cursos de agua se evacúa.

3.7.3 Calidad de aire

El aire en la zona de estudio, por ser su ubicación en la zona de vida "Bosque Húmedo Tropical", con precipitaciones casi durante todo el año, es lavado continuamente de contaminaciones, llámese polvo o ceniza u otros gases de combustión.

La actividad de fabricación de ladrillos produce la emisión de gases de combustión que no afecta a la población de área de influencia, el polvo levantado por los vehículos al transitar es una fuente de contaminación muy reducida y solo ocurrirá durante la construcción de la carretera, mas no cuando esta se encuentre concluida.

3.7.4 Calidad de ruido

Solo es frecuente cuando la fuente emisora esta activa, esta disturbación del ambiente será cuando estén operando las máquinas en la ejecución de las obras, después en el uso de la vía debe ser mínimo.

4.0 IDENTIFICACIÓN Y EVALUACIÓN DE LOS IMPACTOS AMBIENTALES

4.1 INTRODUCCIÓN

La identificación y evaluación de probables impactos ambientales (beneficiosos y perjudiciales) consiste en predecir, interpretar y cuantificar los posibles cambios ambientales que se producirían como consecuencia de la construcción de la Carretera a Santa Clara.

Primero se procederá a identificar los impactos ambientales probables que ocurrirían en el medio físico, en el medio biológico (flora y fauna) y en el medio socio-económico en una construcción descuidada sin un Plan de Manejo Ambiental, los mismos que deberán ser aceptables para que el Proyecto obtenga la autorización respectiva de las autoridades competentes.

4.2 IMPACTOS AL MEDIO FÍSICO

4.2.1 Antecedentes

Se puede indicar que al construir la trocha carrozable en la década de los 70 desde la intersección con la Av. Abelardo Quiñónez hasta el caserío de Santa clara, ya se ha producido el mayor deterioro del medio físico, especialmente al efectuar el desbroce y tala de árboles para la ejecución la trocha.

4.2.2 Suelos

El potencial de erosión existente en el área del Proyecto solo se dará en mayor magnitud en la utilización de canteras, que para este caso es relativamente bajo, ya que no se requerirá de gran cantidad.

También hay potencial de dañar los suelos con el uso de botaderos de desmonte donde se producirá algo de mezcla del sub-suelo de baja fertilidad con la delgada capa de suelo fértil, característica de la selva baja.

4.2.3 Río

No se producirá ninguna variación en la morfología de las playas, ya que solo se extraerá agua para los diversos trabajos.

4.3 IMPACTOS AL MEDIO BIOLÓGICO

Disminución de la capacidad fotosintética.

Como resultado del movimiento de tierras y el tránsito de equipo y vehículos y en mayor grado el funcionamiento de la planta de asfalto, se podría generar polvo que cubrirá las hojas de las plantas reduciéndose temporalmente la capacidad de fotosíntesis de las plantas cercanas al derecho de vía.

Este impacto no es permanente y la capacidad fotosintética será restablecida cuando las frecuentes lluvias laven las hojas.

Pérdida de Habitad.

La remoción de la cobertura vegetal contribuirá con la fragmentación del bosque secundario por una existente en la ruta de la carretera, lo cual implica una modificación del habitad y de los patrones de alimentación de la fauna silvestre.

Stress Temporal en la Fauna.

La generación de ruidos del equipo pesado y vehículos en general producirá stress en la escasa fauna terrestre y en la avifauna, esto producirá el alejamiento de la zona. Este impacto es temporal durante la construcción de la carretera y es poco significativo.

Pérdida de Biodiversidad

La pérdida de habitad por la construcción del Proyecto a nivel de suelo y floresta es muy pequeño, sin embargo al ser más accesible por los pobladores del área de influencia se prevé un impacto por este motivo. La fragmentación ya producida por el despeje de la trocha carrozable, también ya ha afectado los patrones de alimentación de la fauna al migrar a otras áreas más tranquilas originando posibles conflictos entre las especies, pero por el tiempo transcurrido desde que se construyó la trocha, ya se debe haber recompuesto el sistema.

4.4 IMPACTOS SOCIO-ECONÓMICOS

Demoliciones y Reubicaciones.

Por estar definido el eje de la vía no existirán problemas de demoliciones y/o reubicaciones de viviendas, personas o el uso de terrenos cultivados.

Ruidos y Enfermedades.

Los ruidos de las máquinas producirán molestias a los trabajadores y a los habitantes ubicados a lo largo del eje de la vía.

Por la zona existen insectos y ofidios que pueden atacar a los trabajadores. La no atención efectiva pueden originar la muerte por envenenamiento o enfermedades como la malaria, el dengue, etc.

Incremento de Actividad Comercial.

El proyecto generará puestos de trabajo temporales entre técnicos y personal no calificado y posteriormente para el mantenimiento.

Se espera el incremento de la actividad comercial tanto en la etapa de construcción como en la etapa del uso de la carretera, así mismo las comunidades ubicados en el río Nanay cercanas al área de influencia tendrán mas facilidades para trasladar sus productos agrícolas a la ciudad de Iquitos.

4.5 IMPACTOS A NIVEL DE RUIDO

Durante el proceso de construcción de la carretera se generarán ruidos por el funcionamiento de la maquinaria pesada y vehículos, esto prevé un significativo incremento de los ruidos. Esto debe mitigarse con el uso de equipos en buen estado.

4.6 IMPACTOS EN LA CALIDAD DEL AIRE

Los gases de combustión de los equipos pesados, vehículos en general y la planta de asfalto, durante la construcción son significativos, además de la producción de polvo por el movimiento de tierras. Puede mitigarse con el uso de equipos en buen estado; sin embargo son impactos irreversibles.

4.7 IMPACTOS EN LA CALIDAD DEL AGUA

Los principales impactos potenciales de los recursos híbridos incluyen el aumento de los sólidos suspendidos de las aguas receptoras debido a la erosión, la contaminación de las aguas superficiales y aguas subterráneas como resultado de la escorrentía y de derrames de hidrocarburos accidentales.

- el material orgánico producto del retiro de la cobertura vegetal en el movimiento de tierras (mínimos), si es tirado a las quebradas, puede producir un aumento de la acidez del agua y una disminución del oxigeno como resultado de la descomposición bacterial de dicha materia orgánica.
- Los desechos sanitarios vertidos por los trabajadores pueden ser foco de contaminación de las aguas.

4.8 IMPACTO EN EL CONTEXTO REGIONAL Y NACIONAL

El uso de la carretera Santa Clara permitirá el desarrollo de la ciudad de Iquitos, de la comunidad de Santa clara, de las áreas vecinas a la carretera y de las comunidades cercanas asentadas en las riberas del río Nanay.

El impacto a nivel nacional puede considerarse que disminuirá los niveles de pobreza del país.

5.0 PLAN DE MANEJO AMBIENTAL Y DE MITIGACIÓN

El plan de manejo ambiental que se detalla a continuación contiene las medidas preliminares, serán ampliadas y profundizadas en el proyecto definitivo, con el propósito de control (para que el impacto llegue a ocurrir) o de mitigaciones (para disminuir al mínimo sus efectos), así como también maximizar los que son beneficiosos.

5.1 MEDIDAS PREVENTIVAS GENERALES

- Efectuar la programación de la obra para que en los periodos críticos de lluvia se efectúe el menor movimiento de tierras.
- Se debe despejar únicamente el área mínima requerida para facilitar las actividades de construcciones provisionales.

5.2 <u>MEDIDAS CONTRA EL VERTIDO DE DESECHOS DE</u> CONSTRUCCIÓN

- ➤ La disposición de desechos generados por la ejecución de la obra, deberán ser almacenados en un lugar seguro, protegiendo los desechos de la precipitación, que por su acción puede originar la disgregación y contaminación de las quebradas o cursos de agua.
- No se debe apilar la maleza fuera del derecho de vía, debe conservarse una brecha para permitir que actúe como corta fuego en caso de incendio.

5.3 MEDIDAS CONTRA EL DERRAME DE COMBUSTIBLES

➤ Se deberá prever el regulamiento de transporte de combustibles hacia la obra, en vehículos preparados y autorizados para tal fin.

5.4 <u>MEDIDAS CONTRA LA MODIFICACIÓN DEL SISTEMA DE</u> DRENAJE

Se evitará depositar los troncos en un curso de agua.

e e			

ANEXO II

- Memoria Descriptiva y Presupuesto Sugerido del Proyecto.

MEMORIA DESCRIPTIVA

Tesis : Diseño Estructural del Pavimento y del Drenaje de la Carretera "Santa Clara" – Distrito de San Juan Bautista, Provincia de Maynas.

1.0 ANTECEDENTES

La comunidad campesina Santa Clara data desde el año 1,923 siendo sus primeros habitantes inmigrantes del caserio de Parinari del rio Marañón, todos ellos de origen cocama cocamilla, denominaron inicialmente el lugar como Mapacocha. En 1,940 se creó oficialmente el nombre de caserío Santa Clara

La apertura de esta vía se inició en la década de los 70 y a la fecha se encuentra a nivel de trocha carrozable, permitiendo la circulación vehicular desde la parte Sur-Oeste hasta la parte Sur-Este y viceversa, convirtiéndose de esta forma en un eje de articulación importante para la ciudad de lquitos y comunidades asentadas en la ribera del río Nanay. Actualmente el traslado de la población a lquitos se efectúa básicamente utilizando moto-taxis y camiones no apropiados para transporte masivo de pasajeros, a un costo elevado de pasajes y con riesgo de vida que afecta a la seguridad de la población.

En diversos tramos de esta trocha carrozable, en periodos de lluvia se genera encharcamientos y saturación de los suelos que hace intransitable toda la vía. No existe un drenaje apropiado y el suelo predominante es arcilla.

Trabajos de mantenimiento y rehabilitación periódicos a cargo del MTC y últimamente de la Municipalidad Distrital no han resuetto en forma definitiva el problema de intransitabilidad de esta vía durante diversos periodos del año. La apertura al tráfico acarrea costos que acumulados justificarían la conformación de una plataforma apropiada a nivel de subrasante, (desde el año 1,995 el presupuesto anual aproximado para el mantenimiento y rehabilitación de esta vía asciende a S/. 150,000.00 lo que acumuló a la fecha un costo total de S/. 1'500,000.00 financiado por el Gobierno Regional a través la Dirección Regional de Transportes y Comunicaciones)

Los suelos en la selva baja son difíciles de estabilizar y por tanto la construcción de vías terrestres no pavimentadas tienen elevados costos de mantenimiento y conservación, a parte de incrementar los costos de producción por el uso de la vía, es esta realidad que hace necesaria la pavimentación definitiva de este importante eje vial.

2.0 UBICACIÓN

El área en proyecto esta ubicada en el departamento de Loreto, provincia de Maynas, distrito de San Juan Bautista; a una altitud promedia de 124m.s.n.m. así mismo, su punto de inicio esta a 550m antes de llegar al Km. 0+000 de la carretera Iquitos Nauta hasta la comunidad de Santa Clara alcanzando una longitud de 6,129.695 m.

3.0 OBJETIVOS

Ante la problemática descrita en los antecedentes, y considerando la demanda ciudadana, se hace necesario la "Pavimentación de la

Carretera a Santa Clara (Km. 0+000 al Km. 6+129.695)", con lo cual se solucionará la problemática de esta vía.

4.0 ESTUDIOS EXISTENTES

No se ha podido recabar ningún estudio que tenga que ver con el que determinó el presente Proyecto.

El contratista encargado de la ejecución de la obra deberá tener presente, efectuar las coordinaciones del caso con las empresas de servicio público a fin de actualizar o rememorar las efectuadas en el estudio, esto podrá hacerse en consulta con el Municipio.

5.0 FACTORES DE DISEÑO

5.1 CLIMATOLOGÍA E HIDROLOGÍA

El estudio climatológico se ha realizado en base a la información meteorológica de las estaciones climatológicas, Zungarococha, Iquitos, San Roque, Santa Maria de Nanay, Puerto Almendra, Mazan, y Moronococha ubicadas en la zona de influencia del proyecto, las cuales cuentan con datos de temperatura, precipitaciones, humedad relativa y vientos a nivel mensual del periodo 1947-2002.

Clima del Área en Estudio

El clima del área en estudio es de Bosque Húmedo Tropical, predominando un ambiente caliente y húmedo, caracterizado por

pequeñas variaciones de temperatura, durante el día y en las medias mensuales.

La precipitación total media mensual en la zona del Proyecto varía de 195.60mm, registrada en el mes de agosto a 272.90mm correspondiente al mes de marzo, siendo la precipitación media anual de 2,770.80mm.

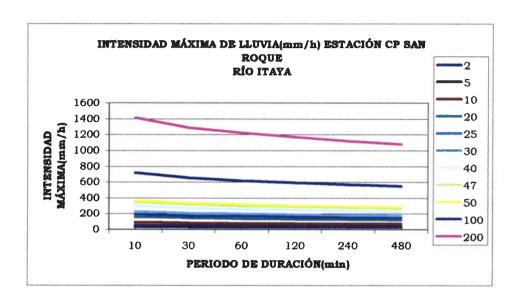
La precipitación total máxima mensual se ha presentado en el mes de marzo con 655.90mm, siendo la precipitación máxima anual registrada de 4,246.40mm.

Vientos.- La velocidad media mensual de los vientos de la estación lquitos, es 1.60km/h, notándose que la velocidad media es uniforme a lo largo de todo el año, tipificándose como viento débil, según la escala de "Beaufort". En cuanto a la dirección predominante Nor-Este, se observa que alcanzan su máxima intensidad de frecuencia de setiembre a febrero.

La humedad relativa media anual es de 84.4%, variando de 82.6% en el mes de setiembre a 86. % en el mes de junio. La máxima humedad relativa se ha registrado en julio, con 94%.

Hidrografía.- La red hidrográfica en el ámbito de estudio es bastante densa y esta compuesta por ríos y quebradas, como el Amazonas, Marañón, Ucayali, Nanay, Itaya, Tamshiyacu, Momón y Manití entre otros, que son utilizados como medio de comunicación y transporte, y en pequeña escala como fuentes de agua para

satisfacer necesidades primarias de las comunidades asentadas en la zona.


5.2 FACTORES AMBIENTALES

La temperatura media mensual en la zona del Proyecto varia de 25.2°C en julio a 26.4°C en noviembre, diciembre y enero, siendo el promedio mensual 26.0°C.

Las mayores temperaturas se producen entre los meses de setiembre a marzo, llegando a valores extremos de 39.6°C, las menores temperaturas se producen entre los meses de junio a agosto, llegando a valores de 19.8°C.

Hidrología (Pluviometría).- Para el estudio pluviométrico se cuenta con información existente en el "Estudio Hidrometeorológico de la Cuenca del Río Itaya", elaborado por SENAMHI. Para el cálculo de la Intensidad de Iluvia de la cuenca de interés se ha partido desde el análisis de la información de Intensidad de Lluvia y de Precipitación Máxima de 24 horas, de la estación asignada con el nombre de CP San Roque, estas estaciones climatológicas registran la cantidad de Iluvia caída mediante pluviómetros calibrados, que totalizan la cantidad de Iluvia caída en una precipitación pluvial.

En el siguiente gráfico se presenta las máximas intensidades de precipitación de tormentas, y la curva de duración-intensidad-frecuencia.

El caudal superficial de diseño producido por las precipitaciones pluviales, se puede determinar por el Método Racional:

$$Q = \frac{C \times I \times A}{360}$$

Donde:

C : coeficiente de escorrentía C ($0 \le C \le 1$).

: Intensidad de la tormenta en (l/s)/Há

A : Área de la cuença

6.0 CRITERIOS DE DISEÑO

Para realizar el diseño de la estructura del pavimento y del drenaje de la carretera a Santa Clara se ha empleado las Normas Peruanas para el Diseño de Carreteras, el Reglamento Nacional de Construcciones, datos estadísticos proporcionados por el SENAMHI, así como datos obtenidos en campo.

7.0 DESCRIPCIÓN DEL PROYECTO

7.1 GENERALIDADES

La construcción de la Carretera a Santa Clara esta diseñada en base a Pavimento Flexible empleando mezcla de mortero asfáltico en caliente, cuenta con un sistema de drenaje de acuerdo al estudio hidrológico realizado con la finalidad de que las aguas superficiales y subterráneas no afecten la estructura de nuestro pavimento.

Así mismo se ha diseñado alcantarillas en zonas donde no existían y se ha evaluado las alcantarillas existentes para comprobar si su sección puede evacuar las aguas que lleguen a ella, caso contrario se cambiará por otra, como es el caso de las alcantarillas ubicadas en las progresivas Km. 2+166, km. 3+065, km. 3+605, km. 3+780, km. 3+900, km. 4+207 y km. 5+764.

Se ha previsto que los rellenos que conforman el terreno de fundación del pavimento flexible queden confinados por medio de sardineles que tendrán una altura adecuada para tal efecto (0.60m). De acuerdo al diseño realizado y en base a las Normas Peruanas para el Diseño de Carreteras se ha adoptado un ancho de carpeta de rodadura igual a 7.30m.

7.2 CARACTERÍSTICAS GEOMÉTRICAS

Curvas Horizontales

Estac.	PC	PT	LC	Ang. H	Ang.Def. (rad)	R (m)	TAN (m)	EXT. (m)
PI 1	0 + 223.474	0 + 235.827	12.353	178°13′50"	0.03	400.00	6.177	0.048
Pl 2	0 + 426.454	0 + 448.833	22.379	163°58′21"	0.28	80.00	11.263	0.789
Pl 3	0 + 509.439	0 + 584.190	74.751	122°53′39"	1.00	75.00	40.811	10.385
PI 4	0 + 830.395	0 + 887.244	56.849	83°26′20"	1.69	33.732	37.834	16.956
Pl 5	0 + 887.243	0 + 999.230	111.987	115°50′10"	1.12	100.00	62.686	18.023
PI 6	1 + 155.262	1 + 222.541	67.279	128º36'10"	0.90	75.00	36.093	8.233
Pl 7	1 + 342.615	1 + 375.732	33.118	154º40′00"	0.44	75.00	16.833	1.866
PI 8	1 + 150.268	1 + 600.239	49.971	144º12'40"	0.62	80.00	25.831	4.067
PI 9	1 + 725.337	1 + 764.338	39.001	165°06′10"	0.26	150.00	19.611	1.277
Pl 10	1 + 846.495	1 + 932.389	85.894	137°12'20"	0.75	115.00	45.062	8.513
Pl 11	1 + 932.390	1 + 989.299	56.909	160°18′00"	0.34	165.516	48.738	2.476
PI 12	2 + 058.070	2 + 071.326	13.256	171°33′40″	0.15	90.000	6.640	0.245
PI 13	2 + 138.026	2 + 202.043	64.017	131°05′40″	0.85	75.000	34.105	7.390
Pl 14	2 + 535.327	2 + 577.226	41.899	147°59′30″	0.56	75.000	21.512	3.024
Pl 15	2 + 953.222	3 + 021.217	67.995	154°01′40″	0.45	150.000	34.592	3.937
PI 16	2 + 616.962	2 + 689.335	72.373	166°10"40"	0.24	300.000	36.363	2.196
PI 17	4 + 267.792	4 + 343.648	75.856	122°03"00"	1.01	75.000	41.530	10.731
Pl 18	4 + 557.026	4 + 624.291	67.265	147°53"00"	0.56	120.000	34.542	4.872
PI 19	4+751.211	4 + 819.460	68.250	164°21"30"	0.27	250.000	34.338	2.347
PI 20	4 + 819.460	4 + 923.137	103.677	164°23"10"	0.27	380.446	52.162	3.559
Pl 21	5 + 826.433	5 + 875.821	49.388	117°07"03"	1.10	45.000	27.513	7.744

Longitud de Pavimento

El pavimento alcanza una longitud 6,129.695 m.

7.3 PAVIMENTO FLEXIBLE

La estructura del pavimento es la siguiente:

Asfalto, estará conformado una capa de 3" de espesor, denominada Carpeta Asfáltica (52 Gal/m3).

Base, de espesor 0.15m y estará conformada por un material de cantera denominado A-2-4 de acuerdo a clasificación de suelos de la AASHTO.

Sub-Base o Anticontaminante, de espesor 0.27m y estará conformada por un material de cantera denominado A-3 de acuerdo a clasificación de suelos de la AASHTO.

Sub. Rasante, Capa que coincide con el terreno de fundación.

Breve descripción de proceso constructivo de la colocación de los morteros asfálticos.

Imprimación reforzada

Después de verificar el grado de compactación de la base de material A-2-4 (no menor al 100% de la máxima densidad seca del Proctor modificado), se procederá a efectuar la limpieza de la superficie por medio de un compresor, esta debe quedar limpia de polvo, sobre esta superficie, empleando un camión cisterna con cocina incorporada, se procede al imprimado, utilizando asfalto CUT-Back, tipo RC-250 (líquido de curado rápido) mezclado con kerosén industrial en una proporción del 20% de la cantidad del RC-250; procediendo de acuerdo a lo indicado en especificaciones técnicas se logra que la imprimación sea uniforme y controlada. Después de 24 horas, cuando la base ya se encuentra saturada por la imprimación, se procede a colocar arena sobre la superficie tratada, y se abre al transito vehicular por unas 24 horas, con la finalidad de que la arena colocada en forma superficial se fije en la superficie tratada, lográndose con esto un refuerzo al proceso de imprimación.

Riego de liga

Haciendo uso de una compresora, se limpiaran los residuos de arena empleados en la imprimación reforzada y se procederá al riego de liga de acuerdo a lo descrito en las especificaciones técnicas, en el tramo de trabajo que se viene tratando. En el riego de liga se emplea el líquido asfáltico RC-250 puro, sin combinar con ningún otro insumo a diferencia de la imprimación. Este riego se efectuará por medio del sistema de ducha o regadera; no es recomendable emplear camión esparcidor (cisterna), debido a los altos costos que implica su uso, considerando que es cemento asfáltico con lo que se trabaja, cuyo secado es rápido.

Colocación de las capas de mortero asfáltico.

Inmediatamente después de efectuado el riego de liga, se procederá a la colocación de la carpeta asfáltica, la cual se hará de acuerdo a las especificaciones técnicas descritas, utilizando PEN 40-50, debiendo destacarse la calidad y cantidad de los materiales a emplearse, los cuales para efectos de este proyecto se consideran en función del ensayo Marshall propuesto cuyos parámetros de diseño se vienen dando en las obras de pavimentación flexible en la ciudad de Iquitos.

El agregado del mortero se considerará de acuerdo a la granulometría especificada y cuyas canteras estudiadas se encuentran ubicadas por la carretera Iquitos Nauta.

Por todo lo expuesto en los párrafos anteriores se recomienda al Contratista mantener un control riguroso con las especificaciones de Producción del mortero asfáltico en planta, hacer control sobre el factor Asfalto y la granulometría de la arena a emplearse, controlar que se encuentre comprendida dentro del uso granulométrico especificado.

Asimismo, controlar los ensayos de estabilidad Marshall. La temperatura de producción del asfalto debe estar comprendida entre 150°C. y 160°C., mayores temperaturas originarían el problema de "craqueo " del asfalto que trae como consecuencia que al ser colocado y puesto en servicio se origine el desgaste o envejecimiento prematuro de la carpeta asfáltica

7.4 OBRAS DE ARTE

Cunetas, de mortero armado Fc= 175 Kg / cm2, de acuerdo a diseño especificado en planos.

8.0 POBLACIÓN BENEFICIARIA

La población beneficiaria que incluye a los moradores de ambos lados de la vía, a los trabajadores de las fábricas en producción de ladrillos, a las instalaciones de granjas y a los habitantes del río Nanay e Iquitos es de aproximadamente 522,077 habitantes (población proyectada al año 2,003 – INEI)

9.0 VALOR REFERENCIAL

El Monto del Valor Referencial asciende a :

<u>Sin I.G.V.</u>: S/. 5,842,742.66 (Cinco Millones Ochocientos Cuarenta y dos mil Setecientos Cuarenta y dos y 66/100 nuevos soles).

<u>Con I.G.V. (19%)</u>: S/. 6,952,863.77 (Seis Millones Novecientos Cincuenta y dos mil Ochocientos Sesenta y tres y 77/100 nuevos soles).

PRESUPUESTO SUGERIDO

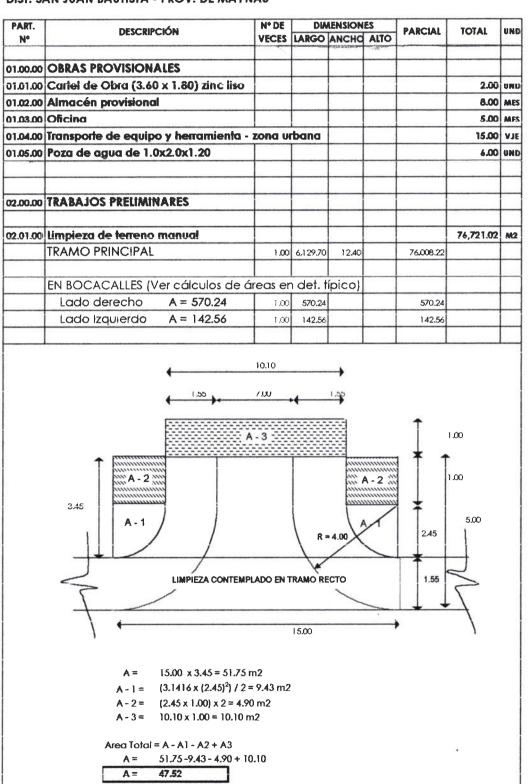
TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV.DEMAYNAS"

PART.	DESCRIPCIÓN	UND	METRADO	UNITARI	PARCIAL	SUB TOTAL
	OBRAS PROVISIONALES					
	Cartel de Obra (3.60 x 1.80) zinc liso	UND		343.12		
	Almacén provisional	MES				
01.03.00		MES	5.00	200.00	1,000.00	
01 04 00	Transporte de equipo y herramienta - zona urbana	VJE	15.00	60.00	900.00	
	Poza de agua de 1.0x2.0x1.20	UND	6.00	264.12		
J		10110	0.00	201.12	1,004.72	0,070.00
02 00 00	TRABAJOS PRELIMINARES	1				
	Limpieza de terreno manual	M2	76,721.02	1.29	98,970.11	
	Trazo, nivel y replanteo	M2	-	0.98		
02.02.00	11azo, nivei y replanteo	MZ	64,366.08	0.98	63,078.76	162,048.87
03.00.00	MOVIMIENTO DE TIERRAS					
03.01.00	CORTES Y EXCAVACIONES	-				
	Corte de terreno a nivel de sub.					
	Rasante, inc. Excavación de cuneta y					
03.01.01	sardinel	M3	9,660.08	5.39	52,067.84	
	Sobreexcavación de material orgánico					
03.01.02	con retroexcadora	M3	1,123.20	18.01	20,228.83	
	Eliminación de mat. exced. < 10 Km					
03.01.03		МЗ	13,479.10	5.21	70,226.12	142,522.79
00.01.00	o. ro.q.	IND	10,470.10	0.21	10,220.12	172,022.70
03.02.00	NIVELACIÓN					
	Conformación y compactación de sub					
03.02.01	rasante	M2	57,623.41	0.17	9,795.98	9,795.98
02 02 00	RELLENOS	-				
	Relleno hasta la sub rasante.	-				
		1.0	5 0 40 04	24.42	450 400 05	
	Compactado con mat. A-2-4 Relleno en Sobreexcavación con	МЗ	5,040.61	31.43	158,426.25	
03.03.02		МЗ	1 422 20	24.42	25 202 40	
	Sub base c/mat. A-3, e = 0.27 m -	IVIS	1,123.20	31.43	35,302.18	
	Pavimento flexible	МЗ	17,378.84	24.94	433,428.30	
	Base c/mat. A-2-4, e = 0.15 m -	1410	17,570.04	27.57	400,420.00	
	Pavimento flexible	МЗ	9,654.91	44.36	128 201 88	1,055,448.61
00.00.04	T AVIITICATO TICALOTO	IAY	9,004.91	44.50	420,231.00	1,000,440.01
04.00.00	PAVIMENTO FLEXIBLE					
	Imprimación asfáltica	M2	57,623.41	2.66	153,278.28	
	Riego de Liga	M2	57,623.41	1.14		
	Carpeta asfáltica, e=3"	МЗ	4,380.20		2,026,674.84	
	Transporte de carpeta asfáltica e=3"	M3	4,380.20	14.90		
	Colocación de carpeta asfáltica e=3"	M3	4,380.20	28.10	The second secon	2,433,992.42
J-1,01,00	Totalation do varpata asiatica 6**0	IAP	7,500.20	20.10	120,000.00	z,433,332.42

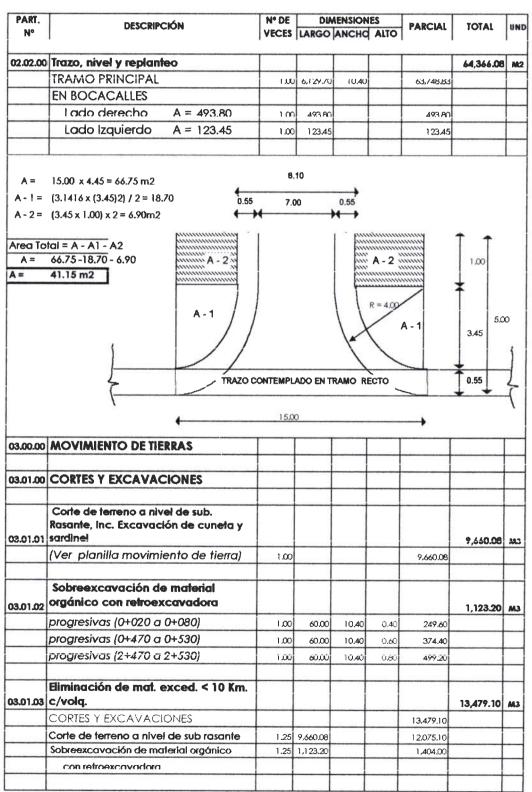
PRESUPUESTO SUGERIDO

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV.DEMAYNAS"

PART.	DESCRIPCIÓN	UND	METRADO	LINITARI	PARCIAL	SUB TOTAL
N°	SEGGINI GIGIT	OND	METTORDO	ONITARI	TANOIAL	OOD TOTAL
05.00.00	OBRAS DE ARTE					
05.01.00	SARDINEL Y CUNETA					
05.01.01	Solado e=2" mortero c:a 1:8	МЗ	4,813.76	11.19	53,865.93	
05.01.02	Mortero f'c =175kg/cm2	МЗ	1,684.81	232.20	391,213.95	
	Encofrado y desencofrado	M2	13,425.01	16.23	217,887.90	
05.01.04	Armadura de fierro Ø 3/8"	KG	87,250.84	2.66	232,087.22	
	Relleno junta de dilatación de 1" a cada					
05.01.05	9 m en cuneta y sardinel	М	735.35	3.69	2,713.44	
	Tarrajeo pulido en sardinel	M2	4,212.04	10.91	45,953.32	
05.01.07	Revestimineto pulido en cunetas	M2	4,813.76	10.91	52,518.08	996,239.84
06.00.00	ALCANTARILLA DE PASE Y CABEZALES					
06.01.00	Mortero f c =175kg/cm2	МЗ	131.87	232.20	30,621.03	
	Encofrado y desencofrado	M2	818.40	16.23	13,282.63	
	Armadura de fierro Ø 1/2"	KG	10.653.39	0.83	8.842.31	
06.04.00	Armadura de fierro Ø 3/8"	KG	2,003.96	2.81	5.631.12	
06.05.00	Relleno junta de dilatación de 1" a cada 9 m	М	52.80	3.69	194.83	
06.06.00	Junta con Water stop Ø=6"	М	37.40	3.68	137.63	
	Tarrajeo pulido en Muros laterales	M2	288.64	10.91	3,149.06	
06.08.00	Revestimiento pulido en Piso de canal	M2	153.45	10.91	1,674.14	63,532.75


COSTO	PIRECTO	4,868,952.22

Gastos Generales (10%)	486,895.22
Utilidad (10%)	486,895.22
Sub-Total	5,842,742.66
I.G.V. (19%)	1,110,121.11
Total Presupuesto S/.	6,952,863.77


SON: SEIS MILLONES NOVECIENTOS CINCUENTIDOS MIL OCHOCIENTOS SESENTITRES Y 77/100 NUEVOS SOLES

HOJA DE METRADO

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PART.	DESCRIP	CIÓN.		Nº DE	DU	MENSION	ES	PARCIAL	TOTAL	
N°	DESCRIP	CION		VECES	LARGO	ANCHO	ALTO	PARCIAL	TOTAL	UN
03.02.00	NIVELACIÓN			1						
03.02.01	Conformación y con sub rasante	npacto	ición de						57,623 <i>.</i> 41	MC
	TRAMO PRINCIPAL			Idem pa	ırl. № 04.0	ומוי		57,623,41		
03.03.00	RELLENOS									
03.03.01	Relieno hasta la sub ra	sante (con mat. A	-2-4					5,040.61	M
	(Ver planilla movim	iento c	de tierra)							
03 03 03 	Relleno en Sobreexo material A-2-4	cavaci	ión con	-					1,123.20	_
	TRAMO PRINCIPAL	************		ldem pa	rt. Nº 03.0	1.02		1,123.20	1,123.20	AA.
	Sub base c/mat. A-3 Pavimento flexible	, e = 0.	.27 m -						17,378.84	_
	TRAMO PRINCIPAL			1.00	6,129.70	10.40	0.27	17,212,18	17,370.04	M
	EN BOCACALLES									
	Lado derecho	A = 4	493.80	1,00	493.80		0.27	133.33		
	Lado izquierdo	À = '	123.45	1,00	123.45		0.27	33.33		
03.03.04	Base c/mat. A-2-4, e Pavimento flexible	= 0.15	m -						9,654.91	M
	TRAMO PRINCIPAL			1.00	6,129 <i>,7</i> 0	10,40	0.15	9,562.32		
	EN BOCACALLES			1						-
	Lado derecho		493.80	1,00	493.80		0.15	74.07		
	Lado Izquierdo	A =	123.45	1.00	123.45		0.15	18.52		
										_
										_
	W-1									
										_
										_
							_			_

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PART.	DESCRIPCIÓN	1	Nº DE	DIA	RENSION	ES	PARCIAL	TOTAL	
N°	DESCRIPCION		VECES	LARGO	ANCHO	ALTO	PARCIAL	TOTAL	UNI
04.00.00	PAVIMENTO FLEXIBLE								
04.01.01	Imprimación asfáltica							57,623.41	M2
	TRAMO PRINCIPAL		1.00	6,129 <i>7</i> 0	9,30		57,006.16		
	EN BOCACALLES								-
	Lado derecho A	= 493.80	1.00	493.80			493.80		
	Lado Izquierdo A	= 123.45	1.00	123.45			123.45		
	Ared Ioidi = A - Ai - Az						, mm		
,	4 = 41.87 m2	A - 1		122		2 	1.0	5.00	
,	4 = 41.87 m2	mm A - 2 mmn mm A - 2 mmn mmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmm	and the state of t	122		- 2 - 2 	1.0	5.00	

04.01.02	Riego de liga	(Idem F	ort. Nº 0	4.01.01)	-		57,623.41	M2
04.01.03	Carpeta astáttica, e=3"						4,380.20	M3
	TRAMO PRINCIPAL	1.00	6,129,70	9.30	0.076	4,332.47		
	EN BOCACALLES							
	Lado derecho A = 502.44 m2	1.00	502,44		0.076	38.19		
	Lado Izquierdo A = 125.61 m2	1.00	125.61		0.076	9.55		
04.01.04	Transporte de carpeta asfáttica e=3"	(Idem F	ort. № 0	4.01.03)			4,380.20	мз
04.01.05	Colocación de carpeta astáttica e=3"	(Idem P	art. Nº 0	4.01.03)			4,380.20	M3
				-+	-			700
		-			-			
		-						_

TESIS : "DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"

N°	DESCRIPCIÓN		Nº DE	DIA	AENSION	ES	PARCIAL	TOTAL	UN
	DESCRIPCION .		VECES	LARGO	ANCHO	ALTO	PARCIAL	IOIAL	
05.00.00	OBRAS DE ARTE								
05.01.00	SARDINEL Y CUNETA								
ú5.01.01	Solado e=2" mortero c:a 1:8							4,813.76	M
	TRAMO PRINCIPAL								
	Lado Derecho 5.	.949.70 ml	1.00	5,949.70	0.40	0.05	2,379,88		
		.084.70 ml	+	6,084.70	-	0.05	2,433,88		
05.01.02	Mortero f'c =175kg/cm2							1,484.81	M
	TRAMO PRINCIPAL							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Lado Derecho 5.	.949.70 ml	1.00	5,949.70	0.14		832.96		
	Lado Izquierdo 6,	,084.70 ml	-	6,084.70			851.86		
		ido Derect	10 -				180.00	m	
	·	recho = uierdo =	6,129.70	3.00 un)m - 180r	$d \times 15.0$ $n = 5.94$	0 m. = 19.70m	45.00 + 174.84m =	m 6124.54m	
	0.15 0.55	recho =	6,129.70	3.00 un)m - 180r	d x 15.0 m = 5,94 n = 6,08 sardine A = (0.5	9.70m - 4.70m + 55 x 0.13	45.00 174.84m = 43.71m = 6 5) = 0.08m.	m : 6124.54m :128.41m.	
	0.15 0.55 0.40	recho =	6,129.70	3.00 un)m - 180r	d x 15.0 m = 5,94 n = 6,08 sardine A = (0.5 cuneta A = (0.4	9.70m - 4.70m + 55 x 0.13	45.00 174.84m = 43.71m = 6 5) = 0.08m.	m = 6124.54m = 128.41m.	
	0.15 0.55 0.40 Encofrado y desencofrado	recho = vierdo =	6,129.70	3.00 un)m - 180r	d x 15.0 m = 5,94 n = 6,08 sardine A = (0.5 cuneta A = (0.4	9.70m - 4.70m + 55 x 0.13	45.00 174.84m = 43.71m = 6 5) = 0.08m.	m : 6124.54m :128.41m.	M2
	0.15 0.55 0.40 Encofrado y desencofrado (Longitud Típica) L (m) = 0.5	recho = vierdo =	6,129.70	3.00 un - 180r	d x 15.0 m = 5.94 n = 6.08 sardine A = (0.5 cuneta A = (0.4 Area ta	9.70m - 4.70m + 55 x 0.13	45.00 174.84m = 6 43.71m = 6 5) = 0.08m: 5) = 0.06 14 m2	m = 6124.54m = 128.41m.	M2
	Encofrado y desencofrado (Longitud Típica) L (m) = 0.5 Lado Derecho 5.5	recho = vierdo =	6,129.70	3.00 un)m - 180r	d x 15.0 m = 5,94 n = 6,08 sardine A = (0.5 cuneta A = (0.4	9.70m - 4.70m + 55 x 0.13	45.00 174.84m = 43.71m = 6 5) = 0.08m.	m = 6124.54m = 128.41m.	Ma

05.01.03	Encofrado y desenc	ofrado					13,425.01	M2
	(Longitud Típica)	L (m) = 0.55						
	Lado Derecho	5,949.70 ml	2.00	5,949.70	0.55	6,544.66		
	Lado Izquierdo	6,084.70 ml	2.00	6,084.70	0.55	6,693.16		
	Juntas de dilataci	ón (Lt/9.00) =				+		
	Lado Derecho	Nº = 661.00	1.00	661.00	0.14	92.54		
	Lado Izquierdo	N° = 676.00	1.00	676,00	0.14	94.64		
05.01.04	Armadura de flerro @	3 3/8"					87,250.84	KG
	TRAMO PRINCIPAL					87,250.84		

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PART.	DESCRIPCIÓN	Nº DE		AENSION		PARCIAL	TOTAL	UN
Nº	0/ 4	•	LARGO	ANCHO	ALTO			
	(Ver hoja de metrado para mortero a	irmado)	-					\vdash
		1						
05.01.05	Relieno junta de dilatación de 1" a cad	la 9 m en					735.35	A
	cuneta y sardinel							
	TRAMO PRINCIPAL							L
	- Junta de dilatación							L
	Lado Derecho Nº = 661.00	1,00				363.55		L
	Lado tzquierdo Nº = 676.00	1.00	676.00	0.55		371.80		-
05.01.06	Tarrajeo pulido en sardinel	1					4,212.04	N
	(Longitud Típica) L (m) = 0.35							
	IRAMO PRINCIPAL							
	Lado Derecho № = 5,949,70	1.00	5,949.70	0.35		2,082.39		
	Lado Izquierdo Nº - 6,084,70	1.00	6.084.70	0.35		2,129.64		
05.01.07	Revestimineto pulido en cunetas TRAMO PRINCIPAL Lado Derecho Nº = 5,949.70 Lado Izquierdo Nº = 6.084.70		5,949.70 6,084.70	0.40		2.379.88	4,813.76	M
04.00.00	ALCANTARILLA DE PASE Y CABEZALES		6,064.70	0.40		2,433,66		
	Longitud total de alcan 12.40 m							
	Nº de Alcantarillas 11.00 und							
06.01.00	Nº de Alcantarillas 11.00 und						131.87	- AA
06.01.00		11.00	12.40	1,40	0.15	28.64	131.87	A
06.01.00	N° de Alcantarillas 11.00 und Mortero fc =175kg/cm2		12.40	1,40	0.15	28.64 54.56	131.87	AA
06.01.00	N° de Alcantarillas 11.00 und Mortero f'c =175kg/cm2 Losa Inferior	11.00			-		131.87	- M
06.01.00	N° de Alcantarillas 11.00 und Mortero l'c =175kg/cm2 Losa Inferior Muros laterales Losa Superior	11.00	12.40	0.20	1.00	54.56	131.87	A
06.01.00	N° de Alcantarillas 11.00 und Mortero fc =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales	11.00	12.40	0.20	1.00	54.56	131.87	A
04.01.00	N° de Alcantarillas 11.00 und Mortero fc =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales Ancho Prom. 2.10	11.00	12.40	0.20	1.00	54.56	131.87	- A
06.01.00	N° de Alcantarillas 11.00 und Mortero f'c =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales Ancho Prom. 2.10 Long. De muro 1.20	11.00	12.40	0.20	1.00	54.56	131.87	- AA
04.01.00	N° de Alcantarillas 11.00 und Mortero l'c =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales Ancho Prom. 2.10 Long. De muro 1.20 Altura Prom. de m 0.60	11.00	12.40	0.20	1.00	54.56	131.87	A
04.01.00	N° de Alcantarillas 11.00 und Mortero f'c =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales Ancho Prom. 2.10 Long. De muro 1.20	11.00	12.40	0.20	1.00	54.56	131.87	A
06.01.00	N° de Alcantarillas 11.00 und Mortero l'c =175kg/cm2 Losa Inferior Muros laterales Losa Superior Cabezales Ancho Prom. 2.10 Long. De muro 1.20 Altura Prom. de m 0.60	11.00	12.40	0.20	1.00	54.56	131.87	AA

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PART.		201611	Nº DE	DIA	AENSION	ES	Dancier		T
No	DESCRI	PCION			ANCHO		PARCIAL	TOTAL	UNI
	Muros laterales	A= 0.60	11.00	1.20		0.60	7.92		İ
06.02.00	Encotrado y desen	cofrado						818.40	M2
	Losa Inferior		22,00	12,40		0.15	40.92		
I I I STATE OF A STATE	Muros laterales		44.00	12.40		1.00	545.60		
	Losa Superior	Lateral	22.00	12.40		0.20	54.56		
		Longitudinal	11.00	12.40		1.00	136.40		
	Cabezales								
	Losa Inferior		11.00	5.60		0.15	9.24		
	Muros laterales		44.00	1.20		0.60	31.68		
06.03.00	Armadura de fierro	Ø 1/2"						10,653.39	KG
	(Ver hoja de metro	ido para mortero	armado	1					
			T						
06.04.00	Armadura de fierro	Ø 3/8"						2,003.96	KG
	(Ver hoja de metro	do para mortero	amado)					
			T						
	Relieno junta de dil	alación de 1" a							
04.05.00	cada 9 m							52.80	M
	Losa Inferior	1.00 Veces	11.00	1.40	1.00		15.40		
	Muros laterales	1.00 Veces	22.00	1.00	1.00		22.00)		
	Losa Superior	1.00 Veces	11.00	1.40	1.00		15.40		
00.30.30	Junta con Water sto	p Ø=6"						37.40	M
	Losa Inferior	1.00 Veces	11,00	1.40			15.40		
	Muros laterales	1.00 Veces	22,00	1.00			22.00		
06.07.00	Tarrajeo pulido en A	Auros laterales						288.64	M2
	Muros laterales		22.00	12.40	1.00		272.80		
	Cabezales		22.00	1,20		0.60	15.84		
06.08.00	Revestimiento pulid	o en Piso de cana	i l					153.45	M2
	Losa Interior		11.00	12.40	1.00		136,40		
					,,,,,,,				
	Cabezales		11.00	1.55		-	17.05		
			1	,,,,,		-			

HOJA DE METRADO PARA MORTERO ARMADO

"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA" DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS" TESIS

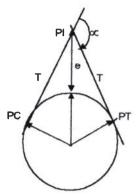
05.01.03 Armadu Cado de Lado de Cuneta	DE ARTE INCIDAL	PCION RENAJE			ELEM. VE	No ANCHILARGO ALTO M3	8	è	LONG	KG/ML	10,00		
05.01.00 SARDI 05.01.03 Armac TRAMO Lado (S DE ARTE Y D INEL Y CUNET, Iura de fierro (PRINCIPAL Jerecho 5,94	RENAJE		1			ACERO	VECES			3/8	Ø 1/2"	2/2
05.01.00 SARDI 05.01.03 Armac TRAMO Lado (INEL Y CUNET, Lura de fierro (PRINCIPAL Jerecho 5,94			+	Τ								
05.01.00 SARDI 05.01.03 Armac TRAMO Lado (INEL Y CUNET/ Lura de fierro (PRINCIPAL Jerecho 5,94	A		+	Т								
05.01.03 Armac	Iura de fierro (PRINCIPAL Jerecho 5,94			\vdash	Τ								
O5.01.03 Armac	Iura de fierro (PRINCIPAL Jerecho 5,94			-	Γ	August and a separate							
TRAMO Lado C	ARINCIPAL S.94 derecho 5,94	73/8"		-	Г								
Cunet	recho			-	Γ						87,250.84		
Cunet		5,949.70 ml		-	Г	0.20							
The state of the s				-		-							
fierro	fierro longitudinal =	3 und		1	1.8		3/8"	m	5,949.70	0.58	10,352.47		
fierro	fierro transversal =	0.65 ml	a cada	0.2	1.00	_	3/8"	29,749			11,215.55		
Sardinel	e el					· - -							
fierro	fierro longitudinal =	3 und		1	1.00	6.03	3/8"	m	5,949.70	0.58	10,352.47		
fierro	fierro vertical =	0.65 ml	a cada	0.2	8		3/8"	29,749	0.65	0.58	11,215.55		
				+	7								
Lado 1	Lado Izquierdo 6,06	6,084.70 ml											
Cuneta	(FE)												
fierro	fierro longitudinal =	3 und		1	1.00		3/8"	m	6,084.70	0.58	10,587.37		
fierro	fierro transversal =	0.65 ml	a cada	0.2	9:1		3/8"	30,424	0.65	C.58	11,470.03		
Sardine	الة ا												
fierro	fierro longitudinal =	3 und		1	8.		3/8"	(5)	6,084.70	0.58	10,587.37		
fierro	fierro vertical =	0.65 ml	a cada	0.2	1.0		3/8"	30,424	0.65	0.58	11,470.03		
				+	Т								
				+	Т								
				+	+								

HOJA DE METRADO PARA MORTERO ARMADO

"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA" DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS" TESIS

N. DE		°N		CONCRETO	RETO			ACI	ACERO				
PART.	DESCRIPCION	ELEM.	VECES	INCH LARGO ALTO	ALTO	E	ACERO	VECES	LONG.	KG/ML	Ø3/8"	\$ 1/2"	Ø 5/8"
		+		-									
		+											
06.00.00	06.00.00 ALCANTARILLA DE PASE												
06.03.00	Armadura de fierro Ø 1/2"											10,653.39	
	Losa inferior												
	longitudinal	11.00					1/2"	10.00	12.40	1.02		1,391.28	
	Transversal	11.00					1/2"	84.00	1.95	1.02		1,837.84	
	Muros Laterales												
	Vertical	11.00					1/2"	63.00	1.90	1.02		1,343.03	
	Losa Superior												
	longitudinal	11,00					1/2"	20.00	12.40	1.02		2,782.56	
	Transversal	11.00					1/2"	168.00	1.65	1.02		3,110.18	
	Cabezales												
	Losa Inferior												
	longitudinal	11.00					1/2"	12.00	1.00	1.02		134.64	
	Muros laterales	11.00					1/2"	4.00	1.20	1.02		53.86	

HOJA DE METRADO PARA MORTERO ARMADO


"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA" DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS" TESIS

PART. DESCRIPCION ELEM. VECES VECES ALTO M3 06.04.00 Armadura de flerro Ø 3/8" 11.00 11.00			è		CONCRETO	RETO			AC	ACERO				
11.00 de "U" 11.00	DESCR	IPCION	ELEM.	N° AN(CH LARGO	ALTO	M B	ACERO	Ne	LONG.	KG/ML	8/8/8	6 1/2"	Ø 5/8°
de "ا"														
de "ر"				_										
en forma de "U"	madura de flerro	Ø 3/8"										2,003.96		
en forma de "U"	Auros Laterales													
en forma de "U"	longitudinal		11.00					3/8"	24.00	12.40	0.58	1,898.69		
en forma de "U"														
en forma de "U"	Cabezales													
en forma de "U"	osa Inferior													
		forma de "U"	11.00					3/8"	5.00	3.30	0.58	105.27		

ANEXO III

- Información Topográfica

CALCULO DE ELEMENTOS DE CURVAS HORIZONTALES

Para calcular los elementos de curva se emplea las siguientes fórmulas:

Tangente (T):

T = RTG(00/2)

Longitud de Curva (Lc):

Lc = πR00/180

Externa (e):

e = R(1-COS(0C/2)/COS(0C/2)

INFORMACION DE CAMPO Tabla N°01

EST.	P.VIS.	Prog.	A	NG.HO	R.	ANG.DEF	R	E	T	Lc	PC	PT
			G	M	S	(RAD)	(m)	(m)	(m)	(m)	(m)	(m)
Pi1	PIO PI2	0+229.651	0 178	0 13	0 50	0.03	400.000	0.048	6.177	12.353	0+223.474	
PI2	PI1 PI3	0+437.717	0 163	0 58	0 21	0.28	80.000	0.789	11.263	22.379	0+426.454	0+448.833
PI3	PI2 PI4	0+550.250	0 122	0 53	0 39	1.00	75.000	10.385	40.811	74.751	0+509.439	0+584.190
PI4	PI3 PI5	0+868.229	0 83	0 26	0 20	1.69	33.732	16.956	37.834	56.849	0+830.395	0+887.244
PI5	PI4 P 16	0+949.929	0 115	0 50	0 10	1.12	100.000	18.023	62.686	111.987	0+887.243	0+999.230
PI6	PI5 PI7	1+191.355	0 128	0 36	0 10	0.90	75.000	8.233	36.093	67.279	1+155.262	1+222.541
PI7	PI6 PI8	1+359.448	0 154	0 42	0	0.44	75.000	1.866	16.833	33.118	1+342.615	1+375.732
PI8	PI7 PI9	1+576.099	0 144	0 12	0 40	0.62	80.000	4.067	25.831	49.971	1+550.268	1+600.239
PI9	PI8 PI10	1+744.948	0 165	0	0 10	0.26	150.000	1.277	19.611	39.001	1+725.337	1+764.338
PI10	PI9 PI11	1+891.557	0 137	0 12	0 20	0.75	115.000	8.513	45.062	85.894	1+846.495	1+932.389
PI11	Pi10 Pi12	1+961.128	0 160	0 18	0	0.34	165.516	2.476	28.738	56.909	1+932.390	1+989.299

EST.	P.VIS.	Prog.	Al	NG.HO	R.	ANG.DEF	R	E	T	Lc	PC	PT
			G	M	S	(RAD)	(m)	(m)	(m)	(m)	(m)	(m)
PI12	PI11 PI13	2+064.710	0 171	0 3 3	0 40	0.15	90.000	0.245	6.640	13.256	2+058.070	2+071.326
PI13	PI12 PI14	2+172.131	0 131	0 5	0 40	0.85	75.000	7.390	34.105	64.017	2+138.026	2+202.043
PI14	PI13 PI15	2+556.839	0 147	0 59	0 30	0.56	75.000	3.024	21.512	41.899	2+535.327	2+577.226
PI15	Pl14 Pl16	2+987.814	0 154	0	0 40	0.45	150.000	3.937	34.592	67.995	2+953.222	3+021.217
PI16	Pi15 Pi17	2+653.325	0 166	0 10	0 4 0		300.000	2.196	36.363	72.373	2+616.962	2+689.335
PI17	PI16 PI18	4+309.322	0 122	0 3	0		75.000	10.731	41.530	75.856	4+267.792	4+343.648
PI18	PI17 PI19	4+591.568	0 147	0 53	0		120.000	4.872	34.542	67.265	4+557.026	4+624.291
PI19	Pl18 Pl20	4+785.549	0 164	0 21	0 30		250.000	2.347	34.338	68.250	4+751.211	4+819.460
Pi20	Pl19 Pl21	4+871.622	0 164	0 23	0 10		380.446	3.559	52.162	103.677	4+819.460	4+923.137
PI21	Pl20 Pl22	5+853.946	0 117	0 7	0 3		45.000	7.744	27.513	49.388	5+826.433	5+875.821

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	ÁREA EN	M2	VOLUMEN M3.	
	DISTANCIA	AC	AR	VC	VR
PAVIMENTA	CIÓN				
	е terreno con maq.			9,660.08	
	a sub rasante con ma	Ι Δ-3		=	5,040.61
11011011011011011	T T				0,040.0
0 + 000	1	0.39	0.00		
0 + 020	20.00	0.39	0.00	7.80	0.0
0 + 040	20.00	0.39	0.00	7.80	0.00
0 + 060	20.00	0.35	0.00	7.40	0.0
0 + 080	20.00	0.35	0.00	7.00	0.0
0 + 100	20.00	0.00	0.00	3.50	0.00
0 + 120	20.00	0.00	0.00	0.00	0.00
0 + 140	20.00	0.00	0.00	0.00	0.00
0 + 160	20.00	7.10	0.00	71.00	0.00
0 + 180	20.00	7.10	0.00	142.00	0.00
0 + 200	20.00	6.88	0.00	139.80	0.00
0 + 220	20.00	6.88	0.00	137.60	0.00
0 + 223.47	3.47	4.68	0.00	20.06	0.00
0 + 235.83	12.36	0.27	0.18	30.59	1.11
0 + 240	4.17	0.27	0.18	1.13	0.75
0 + 260	20.00	0.21	0.00	4.80	1.80
0 + 280	20.00	0.21	0.00	4.20	0.00
0 + 300	20.00	1.14	0.00	13.50	0.00
0 + 320	20.00	1.14	0.00	22.80	0.00
0 + 340	20.00	1.14	0.00	22.80	0.00
0 + 360	20.00	5.77	0.00	69.10	0.00
0 + 380	20.00	5.77	0.00	115.40	0.00
0 + 400	20.00	3.34	0.00	91.10	0.00
0 + 420	20.00	3.34	0.00	66.80	0.00
0 + 426.45	6.45	3.69	0.00	22.67	0.00
0 + 440	13.55	3.69	0.00	50.00	0.00
0 + 448.83	8.83	2.44	0.00	27.06	0.00
0 + 460	11.17	2.38	0.00	26.92	0.00
0 + 480	20.00	2.38	0.00	47.60	0.00
0 + 500	20.00	0.95	0.00	33.30	0.00
0 + 509.44	9.44	1.18	0.00	10.05	0.00
0 + 520	10.56	1.18	0.00	12.46	0.00
0 + 540	20.00	1.18	0.00	23.60	0.00
0 + 560	20.00	1.84	0.00	30.20	0.00

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	ÁREA EN	M2	VOLUMEN M3.	
TROGRESIVA	DISTANCIA	AC	AR	VC	VR
0 + 580	20.00	1.84	0.00	36.80	0.00
0 + 584.19	4.19	1.11	0.09	6.18	0.19
0 + 600	15.81	1.51	0.01	20.71	0.79
0 + 620	20.00	1.51	0.01	30.20	0.20
0 + 640	20.00	1.51	0.01	30.20	0.20
0 + 660	20.00	1.61	0.32	31.20	3.30
0 + 680	20.00	1.61	0.32	32.20	6.40
0 + 700	20.00	0.41	0.00	20.20	3.20
0 + 720	20.00	0.41	0.00	8.20	0.00
0 + 740	20.00	0.41	0.00	8.20	0.00
0 + 760	20.00	0.00	2.01	4.10	20.10
0 + 780	20.00	0.00	2.01	0.00	40,20
0 + 800	20.00	0.83	1.13	8.30	31.40
0 + 820	20.00	0.83	1.13	16.60	22.60
0 + 830.40	10.40	0.00	2.56	4.32	19.19
0 + 840	9.60	0.00	2.56	0.00	24.58
0 + 860	20.00	0.00	0.17	0.00	27.30
0 + 880	20.00	0.00	0.17	0.00	3.40
0 + 887.24	7.24	0.98	0.00	3.55	0.62
0 + 900	12.76	1.44	0.00	15.44	0,00
0 + 920	20.00	1.44	0.00	28.80	0.00
0 + 940	20.00	1.44	0.00	28.80	0.00
0 + 960	20.00	7.48	0.00	89.20	0.00
0 + 980	20.00	7.48	0.00	149.60	0.00
0 + 999.23	19.23	3.13	0.00	102.02	0.00
1 + 000	0.77	3.13	0.00	2.41	0.00
1 + 020	20.00	3.13	0.00	62.60	0.00
1 + 040	20.00	3.13	0.00	62.60	0.00
1 + 060	20.00	6.12	0.00	92.50	0.00
1 + 080	20.00	6.12	0.00	122.40	0.00
1 + 100	20.00	2.29	0.00	84.10	0.00
1 + 120	20.00	2.27	0.00	45.80	0.00
1 + 140	20.00	2.29	0.00	45.80	0.00
1 + 155.26	15.26	3.92	0.00	47.38	0.00
1 + 160	4.74	3.92	0.00	18.58	0.00
1 + 180	20.00	3.92	0.00	78.40	0.00
1 + 200	20.00	3.57	0.00	74.90	0.00
1 + 220	20.00	3.57	0.00	71.40	0.00
1 + 222.54	2.54	6.71	0.00	13.06	0.00

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA ÁREA EN M2		M2	VOLUMEN M3.	
PROGRESIVA	DISTANCIA	AC	AR	VC	VR
1 + 240	17.46	6.71	0.00	117.16	0.00
1 + 260	20.00	2.15	0.00	88.60	0.00
1 + 280	20.00	2.15	0.00	43.00	0.00
1 + 300	20.00	0.00	2.46	21.50	24.60
1 + 320	20.00	0.00	2.46	0.00	49.20
1 + 340	20.00	0.00	2.46	0.00	49.20
1 + 342.61	2.61	0.00	3.22	0.00	7.41
1 + 360	17.39	0.00	2.98	0.00	53.91
1 + 375.73	15.73	0.05	2.13	0.39	40.19
1 + 380	4.27	0.05	2.13	0.21	9.10
1 + 400	20.00	0.15	1.63	2.00	37.60
1 + 420	20.00	0.15	1.63	3.00	32.60
1 + 440	20.00	0.15	1.63	3.00	32.60
1 + 460	20.00	0.40	0.13	5.50	17.60
1 + 480	20.00	0.40	0.13	8.00	2.60
1 + 500	20.00	2.42	0.00	28.20	1.30
1 + 520	20.00	2.42	0.00	48.40	0.00
1 + 540	20.00	2.42	0.00	48.40	0.00
1 + 550.27	10.27	2.48	0.00	25.16	0.00
1 + 560	9.73	2.48	0.00	24.13	0.00
1 + 580	20.00	2.48	0.00	49.60	0.00
1 + 600	20.00	6.17	0.00	86.50	0.00
1 + 600.24	0.24	6.19	0.00	1.48	0.00
1 + 620	19.76	6.19	0.00	122.31	0.00
1 + 640	20.00	6.19	0.00	123.80	0.00
1 + 660	20.00	0.01	0.96	62.00	9.60
1 + 680	20.00	0.01	0.96	0.20	19.20
1 + 700	20.00	0.00	2.89	0.10	38.50
1 + 720	20.00	0.00	2.89	0.00	57.80
1 + 725.34	5.34	0.00	7.10	0.00	26.67
1 + 740	14.66	0.00	7.10	0.00	104.09
1 : 760	20.00	0.00	5.14	0.00	122.40
1 + 764.34	4.34	0.00	3.73	0.00	19.25
1 + 780	15.66	0.00	3.73	0.00	58.41
1 + 800	20.00	1.15	0.00	11.50	37.30
1 + 820	20.00	1.15	0.00	23.00	0.00
1 + 840	20.00	1.15	0.00	23.00	0.00
1 + 846.50	6.50	2.49	0.00	11.83	0.00
1 + 860	13.50	2.33	0.00	32.54	0.00

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	ÁREA EN	M2	VOLUMEN M3.	
PROGRESIVA	DISTANCIA	AC	AR	VC	VR
1 + 880	20.00	2.33	0.00	46.60	0.00
1 + 900	20.00	0.22	0.00	25.50	0.00
1 + 920	20.00	0.22	0.00	4.40	0.00
1 + 932.39	12.39	2.98	0.00	19.82	0.00
1 + 940	7.61	2.98	0.00	22.68	0.00
1 + 960	20.00	1.92	0.00	49.00	0.00
1 + 980	20.00	1.92	0.00	38,40	0.00
1 + 989.30	9.30	1.68	0.00	16.74	0.00
2 + 000	10.70	1.40	0.00	16.48	0.00
2+020	20.00	1.40	0.00	28.00	0.00
2 + 040	20.00	1.40	0.00	28.00	0.00
2 + 058.07	18.07	4.22	0.00	50.78	0.00
2+060	1.93	4.22	0.00	8.14	0.00
2+071.33	11.33	3.91	0.00	46.06	0.00
2 + 080	8.67	3.91	0.00	33.90	0.00
2 + 100	20.00	2.63	0.00	65,40	0.00
2 + 120	20.00	2.63	0.00	52.60	0.00
2 + 138.03	18.03	0.00	1.81	23.71	16.32
2+140	1.97	0.00	1.81	0.00	3.57
2+160	20.00	0.00	2.71	0.00	45.20
2 + 180	20.00	0.00	2.71	0.00	54,20
2 + 200	20.00	0.00	2.41	0.00	51.20
2 + 202.04	2.04	0.00	2.66	0.00	5.17
2 + 220	17.96	0.00	2.66	0.00	47.77
2 + 240	20.00	0.00	2.66	0.00	53.20
2 + 260	20.00	2.61	0.02	26.10	26.80
2 + 280	20.00	2.61	0.02	52.20	0.40
2+300	20.00	2.49	0.00	51.00	0.20
2 + 320	20.00	2.49	0.00	49.80	0.00
2 + 340	20.00	2.49	0.00	49.80	0.00
2 + 360	20.00	2.69	0.00	51.80	0.00
2 + 380	20.00	2.69	0.00	53.80	0.00
2+400	20.00	1.58	0.00	42.70	0.00
2 + 120	20.00	1.58	0.00	31.60	0.00
2 + 440	20.00	1.58	0.00	31.60	0.00
2 + 460	20.00	1.24	0.00	28.20	0.00
2 + 480	20.00	1.24	0.00	24.80	0.00
2 + 500	20.00	2.33	0.00	35.70	0.00
2 + 520	20.00	2.33	0.00	46.60	0.00

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	DISTANCIA ÁREA EN M2		VOLUMEN M3.		
PROGRESIVA	DISTANCIA	AC	AR	VC	VR	
2 + 535.33	15.33	3.87	0.00	47.52	0.00	
2 + 540	4.67	3.87	0.00	18.07	0.00	
2 + 560	20.00	4.49	0.00	83.60	0.00	
2 + 577.23	17.23	1.28	0.27	49.71	2.33	
2 + 580	2.77	1.28	0.27	3.55	0.75	
2 + 600	20.00	5.81	0.00	70.90	2.70	
2 + 620	20.00	5.81	0.00	116.20	0.00	
2 + 640	20.00	5.81	0.00	116.20	0.00	
2 + 660	20.00	3.31	0.00	91.20	0.00	
2 + 680	20.00	3.31	0.00	66.20	0.00	
2 + 700	20.00	5.46	0.00	87.70	0.00	
2 + 720	20.00	5.46	0.00	109.20	0.00	
2 + 740	20.00	5.46	0.00	109.20	0.00	
2 + 760	20.00	0.00	0.96	54.60	9.60	
2 + 780	20.00	0.00	0.96	0.00	19.20	
2 + 800	20.00	0.03	1.18	0.30	21.40	
2 + 820	20.00	0.03	1.18	0.60	23.60	
2 + 840	20.00	0.03	1.18	0.60	23.60	
2 + 860	20.00	1.04	2.18	10.70	33.60	
2 + 880	20.00	1.04	2.18	20.80	43.60	
2 + 900	20.00	2.25	0.00	32.90	21.80	
2 + 920	20.00	2.25	0.00	45.00	0.00	
2 + 940	20.00	2.25	0.00	45.00	0.00	
2 + 953.22	13.22	0.80	0.00	20.16	0.00	
2 + 960	6.78	0.80	0.00	5.42	0.00	
2 + 980	20.00	0.80	0.00	16.00	0.00	
3+000	20.00	0.00	1.44	8.00	14.40	
3+020	20.00	0.00	1.44	0.00	28.80	
3 + 021.22	1.22	0.96	0.99	0.59	1.48	
3+040	18.78	0.96	0.99	18.03	18.59	
3 + 060	20.00	0.83	1.86	17.90	28.50	
3 + 080	20.00	0.83	1.86	16,60	37.20	
3 + 100	20.00	0.28	1.29	11.10	31.50	
3+120	20.00	0.28	1.29	5.60	25.80	
3 + 140	20.00	0.28	1.29	5.60	25.80	
3 + 160	20.00	0.00	3.93	2.80	52.20	
3 + 180	20.00	0.00	3.93	0.00	78.60	
3 + 200	20.00	0.00	1.07	0.00	50.00	
3 + 220	20.00	0.00	1.07	0.00	21.40	

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA ÁREA EN M2		M2	VOLUMEN M3.	
PROGRESIVA	DISTANCIA	AC	AR	VC	VR
3 + 240	20.00	0.00	1.07	0.00	21.40
3 + 260	20.00	0.00	3.75	0.00	48.20
3 + 280	20.00	0.00	3.75	0.00	75.00
3 + 300	20.00	0.00	0.81	0.00	45.60
3 + 320	20.00	0.00	0.81	0.00	16.20
3 + 340	20.00	0.00	0.81	0.00	16.20
3 + 360	20.00	0.77	0.00	7.70	8.10
3 + 380	20.00	0.77	0.00	15.40	0.00
3 + 400	20.00	4.12	0.00	48.90	0.00
3 + 420	20.00	4.12	0.00	82.40	0.00
3 + 440	20.00	4.12	0.00	82.40	0.00
3 + 460	20.00	2.45	0.00	65.70	0.00
3 + 480	20.00	2.45	0.00	49.00	0.00
3 + 500	20.00	1.37	0.00	38.20	0.00
3 + 520	20.00	1.37	0.00	27.40	0.00
3 + 540	20.00	1.37	0.00	27.40	0.00
3 + 560	20.00	2.08	0.48	34.50	4.80
3 + 580	20.00	2.08	0.48	41.60	9.60
3 + 600	20.00	0.00	7.62	20.80	81.00
3 + 616.96	16.96	0.00	9.06	0.00	141.45
3 + 620	3.04	0.00	9.06	0.00	27.54
3 + 640	20.00	0.00	9.06	0.00	181.20
3 + 660	20.00	0.00	9.43	0.00	184.90
3 + 680	20.00	0.00	9.43	0.00	188.60
3 + 689.34	9.34	0.00	8.37	0.00	83.13
3 + 700	10.66	0.00	4.52	0.00	68.70
3 + 720	20.00	0.00	4.52	0.00	90.40
3+740	20.00	0.00	4.52	0.00	90.40
3 + 760	20.00	3.31	0.00	33.10	45.20
3 + 780	20.00	3.31	0.00	66.20	0.00
3 + 800	20.00	3.23	0.00	65.40	0.00
3 820	20.00	3.23	0.00	64.60	0.00
3 + 840	20.00	3.23	0.00	64.60	0.00
3 + 860	20.00	1.21	0.03	14.40	0.30
3 + 880	20.00	1.21	0.03	24.20	0.60
3+900	20.00	1.93	0.00	31.40	0.30
3 + 920	20.00	1.93	0.00	38.60	0.00
3 + 940	20.00	1.93	0.00	38.60	0.00
3 + 960	20.00	2.37	0.00	43.00	0.00

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	ÁREA EN	M2	VOLUMEN M3.	
TROGRESIVA	DISTANCIA	AC	AR	VC	VR
3 + 980	20.00	2.37	0.00	47.40	0.00
4 + 000	20.00	6.66	0.00	90.30	0.00
4 + 020	20.00	6.66	0.00	133.20	0.00
4 + 040	20.00	6.66	0.00	133.20	0.00
4 + 060	20.00	0.45	1.42	71.10	14.20
4 + 080	20.00	0.45	1.42	9.00	28.40
4 + 100	20.00	1.51	0.00	19.60	14.20
4 + 120	20.00	1.51	0.00	30.20	0.00
4 + 140	20.00	1.51	0.00	30.20	0.00
4 + 160	20.00	0.42	1.09	19.30	10.90
4 + 180	20.00	0.42	1.09	8.40	21.80
4 + 200	20.00	0.58	0.00	10.00	10.90
4 + 220	20.00	0.58	0.00	11.60	0.00
4 + 240	20.00	0.58	0.00	11.60	0.00
4 + 260	20.00	0.14	1.08	7.20	10.80
4 + 280	20.00	0.28	0.72	4.20	18.00
4 + 300	20.00	1.38	0.00	16.60	7.20
4 + 320	20.00	1.38	0.00	27.60	0.00
4 + 340	20.00	1.38	0.00	27.60	0.00
4 + 343.65	3.65	1.91	0.00	6.00	0.00
4 + 360	16.35	2.03	0.00	32.21	0.00
4 + 380	20.00	2.03	0.00	40.60	0.00
4 + 400	20.00	2.52	0.00	45.50	0.00
4 + 420	20.00	2.52	0.00	50.40	0.00
4 + 440	20.00	2.52	0.00	50.40	0.00
4 + 460	20.00	1.01	0.00	35.30	0.00
4 + 480	20.00	1.01	0.00	20.20	0.00
4 + 500	20.00	0.23	0.05	12.40	0.50
4 + 520	20.00	0.23	0.05	4.60	1.00
4 ÷ 540	20.00	0.23	0.05	4.60	1.00
4 + 557.03	17.03	0.00	2.84	1.96	24.61
4 + 560	2.97	0.00	2.84	0.00	8.43
4 + 580	20.00	0.00	2.84	0.00	56.80
4 + 600	20.00	0.00	0.59	0.00	34.30
4 + 620	20.00	0.00	0.59	0.00	11.80
4 + 624.29	4.29	0.00	1.29	0.00	4.03
4 + 640	15.71	0.00	1.29	0.00	20.27
4 + 660	20.00	0.00	2.06	0.00	33.50
4 + 680	20.00	0.00	2.06	0.00	41.20

TESIS :
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	DISTANCIA ÁREA EN M2			VOLUMEN M3.	
T NOOKESIVA	DISTANCIA	AC	AR	VC	VR	
4 + 700	20.00	0.00	3.60	0.00	56.6	
4 + 720	20.00	0.00	3.60	0.00	72.0	
4 + 740	20.00	0.00	3.60	0.00	72.0	
4 + 751.21	11.21	0.00	2.88	0.00	36.3	
4 + 760	8.79	0.00	2.88	0.00	25.3	
4 + 780	20.00	0.00	2.88	0.00	57.60	
4 + 800	20.00	2.77	0.00	27.70	28.8	
4 + 819.46	19.46	2.94	0.00	55.56	0.0	
4 + 820	0.54	2.94	0.00	1.59	0.00	
4 + 840	20.00	2.94	0.00	58.80	0.00	
4 + 860	20.00	3.22	0.00	61.60	0.00	
4 + 880	20.00	3.22	0.00	64.40	0.00	
4 + 900	20.00	1.52	0.18	47.40	1.80	
4 + 920	20.00	1.52	0.18	30.40	3.60	
4 + 923.14	3.14	0.75	1.08	3.56	1.98	
4 + 940	16.86	0.75	1.08	12.64	18.21	
4 + 960	20.00	0.00	1.34	7.50	24.20	
4 + 980	20.00	0.00	1.34	0.00	26.80	
5 + 000	20.00	0.00	0.88	0.00	22.20	
5 + 020	20.00	0.00	0.88	0.00	17.60	
5 + 040	20.00	0.00	0.88	0.00	17.60	
5 + 060	20.00	0.00	1.35	0.00	22.30	
5 + 080	20.00	0.00	1.35	0.00	27.00	
5 + 100	20.00	0.00	2.45	0.00	38.00	
5 + 120	20.00	0.00	2.45	0.00	49.00	
5 + 140	20.00	0.00	2.45	0.00	49.00	
5 + 160	20.00	1.61	0.00	16.10	24.50	
5 + 180	20.00	1.61	0.00	32.20	0.00	
5 + 200	20.00	5.37	0.00	69.80	0.00	
5 + 220	20.00	5.37	0.00	107.40	0.00	
5 + 240	20.00	5.37	0.00	107,40	0.00	
5 260	20.00	1.31	0.00	55.80	0.00	
5 + 280	20.00	1.31	0.00	26.20	0.00	
5 + 300	20.00	1.03	0.85	23.40	8.50	
5 + 320	20.00	1.03	0.85	20.60	17.00	
5+340	20.00	1.03	0.85	20.60	17.00	
5 + 360	20.00	8.15	0.00	91.80	8.50	
5 + 380	20.00	8.15	0.00	163.00	0.00	
5 + 400	20.00	0.03	1.09	81.80	10.90	

TESIS:
"DISEÑO ESTRUCTURAL DEL PAVIMENTO Y DEL DRENAJE DE LA CARRETERA "SANTA CLARA"
DIST. SAN JUAN BAUTISTA - PROV. DE MAYNAS"

PROGRESIVA	DISTANCIA	ÁREA EN M2		VOLUMEN M3.	
PROGRESIVA	DISTANCIA	AC	AR	VC	VR
5 + 420	20.00	0.03	1.09	0.60	21.80
5 + 440	20.00	0.03	1.09	0.60	21.80
5 + 460	20,00	0.00	0.00	0.30	10.90
5 + 480	20.00	0.00	0.00	0.00	0.00
5 + 500	20.00	0.00	0.00	0.00	0.00
5 + 520	20.00	0.00	0.00	0.00	0.00
5 + 540	20.00	0.00	0.00	00,0	0.00
5 + 560	20.00	0.89	0.00	8.90	0.00
5 + 580	20.00	0.89	0.00	17.80	0.00
5 + 600	20.00	0.00	1.05	8.90	10.50
5 + 620	20.00	0.00	1.05	0.00	21.00
5 + 640	20.00	0.00	1.05	0.00	21.00
5 + 660	20.00	0.42	1.69	4.20	27.40
5 + 680	20.00	0.42	1.69	8.40	33.80
5 + 700	20.00	0.00	2.78	4.20	44.70
5 + 720	20.00	0.00	2.78	0.00	55.60
5 + 740	20,00	0.00	2.78	0.00	55.60
5 + 760	20.00	0.00	3.82	0.00	66.00
5 + 780	20.00	0.00	3.82	0.00	76.40
5 + 800	20.00	2.48	0.00	24.80	38.20
5 + 820	20.00	2.48	0.00	49.60	0.00
5 + 840	20.00	0.00	0.00	24.80	0.00
5 + 860	20.00	0.00	0.00	0.00	0.00
5 + 880	20.00	0.00	0.00	0.00	0.00
5 + 900	20.00	0.00	0.00	0.00	0.00
5 + 920	20.00	0.00	0.00	0.00	0.00
5 + 940	20.00	0.00	0.00	0.00	0.00
5 + 960	20.00	0.00	0.00	0.00	0.00
5 + 980	20.00	0.00	0.00	0.00	0.00
6 + 000	20.00	0.00	0.00	0.00	0.00
6 + 020	20.00	0.00	0.00	0.00	00.0
6 040	20.00	0.00	0.00	0.00	0.00
6 + 060	20.00	0.00	0.00	0.00	0.00
6 + 080	20.00	0.00	0.00	0.00	0.00
6 + 100	20.00	0.00	0.00	0.00	0.00

ANEXO IV

- Información Hidrológica

Precipitaciones Máximas diarias anuales (mm)

AÑOS	SAN ROQUE	PUERTO ALMENDRAS	SANTA MARIA DE
			NANAY
1994	153.0	66.0	30.0
1995	110.0	12.2	49.0
1996	167.0	85.6	24.0
1997	138.0	100.5	48.0
1998	93.0	71.7	45.0
1999	117.2	70.6	127.6
2000	155.6	107.0	92.2
2001	137.7	166.1	73.4
2002	123.6	132.8	49.9
2003	85.8	74.9	52.8

Comandanté FAP
Hildebrasse Castille Guerrero
Director Regional
SENIAMENT LORETO

RESUMEN DE INTESIDAD MÁXIMA DE LAS ESTACIONES ESTUDIADAS

1.- CÁLCULO DEL TIEMPO DE CONCENTRACIÓN

Datos Para toda la cuenca

S = 0.29% m/m L = 6,400 m A = 128 Ha C_m = 0.34

t_c = 2.26 horas

t_c = 135.51 min

2.- CÁLCULO DE LA INTENSIDAD

$$i_t^T = (0.21 \text{ T} + 0.52)(0.54t^{-0.25} + 0.50)P_{60}^{10}$$

T = 25 años

 $P^{10}_{60} = 41.29 \text{ mm}$

 $t_c = 135.51 \text{ min}$

i_{max} = 156.84 mm/h

3.- CÁLCULO DEL CAUDAL MÉTODO RACIONAL

$$Q = \frac{\text{CiA}}{360} \text{m}^3/\text{s}$$
 $C = 0.343$
 $A = 128 \text{ Ha}$
 $Q = \frac{19.13}{3} \text{m}^3/\text{s}$

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN PLU SAN ROQUE

CUADRO Nº 01

AÑO	PREC.MAX
	(mm)
1990	152
1991	185
1992	112
1993	113
1994	153
1995	110
1996	167
1997	138
1998	90
1999	117
2000	101
2001	138
2002	124

MÉTODO DE BELL - ESPILDORA

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN CP SAN ROQUE

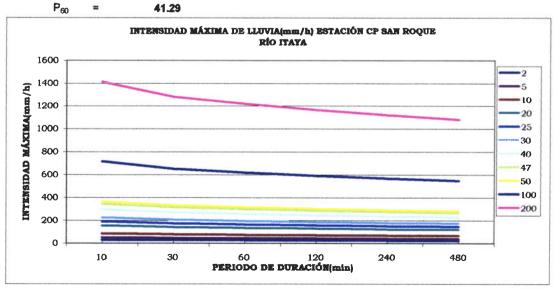
CUADRO	Nº 02-A
m	PREC.MAX
	(mm)
7	
1	185
1 2:	167
3	153
4	152
5	138
6	138
7	124
8	117
9	113
10	112
11	110
12	101
13	90
MEDIA	130.7
DESVEST	27.7

CUADRO Nº 03

Т	PREC.MAX
Años	(mm)
2	126.19
5	150.63
10	166.82
20	182.34
25	187.27
30	191.28
40	197.57
47	201.09
50	202.44

100

200


CUADRO Nº 04

			IAXIMA(mm/l		
			URACIÓN(m		
10	30	60	120	240	480
31.19	28.36	26.94	25.74	24.73	23.89
52.10	47.37	44.99	42.99	41.31	39.89
86.94	79.05	75.08	71.74	68.93	66.57
156.63	142.42	135.26	129.25	124.19	119.93
191.48	174.10	165.35	158.00	151.81	146.61
226.32	205.78	195.44	186.75	179.44	173.29
296.01	269.15	255.62	244.25	234.69	226.6
344.79	313.50	297.75	284.51	273.37	264.0
365.70	332.51	315.81	301.76	289.95	280.0
714.14	649.33	616.71	589.28	566.21	546.8
1411.01	1282.97	1218.52	1164.32	1118.74	1080.4

217.50

232.50

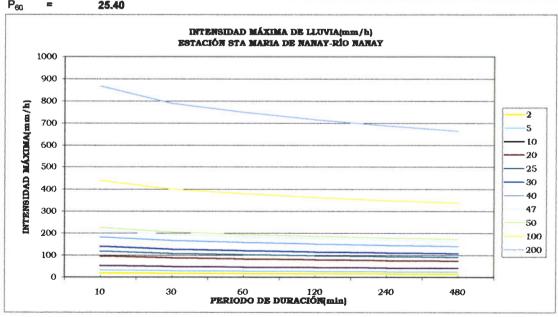
PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN PLU SANTA MARIA DE NANAY CUADRO Nº 01

AÑO	PREC.MAX	1
	(mm)	
		1
1994	30	
1995	49	1
1996	24	1
1997	48	1
1998	45	
1999	128	
2000	92	
2001	73	
2002	50	

MÉTODO DE BELL - ESPILDORA

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN SANTA MARIA DE NANAY

RO Nº 02
PREC.MAX
(mm)
30
49
24
48
45
128
92
73
50
59.9
32.7


CUADRO	Nº 02-A
m	PREC.MAX
	(mm)
1	128
2	92
3	73
4	50
5	49
6	48
7	45
8	30
9	24
MEDIA	59.9
DESVEST	32.7

CUADRO Nº 03

CUADRO Nº 04

	T
Т	PREC.MAX
Años	(mm)
2	54.52
5	83.45
10	102.61
20	120.98
25	126.81
30	131.55
40	139.01
47	143.17
50	144.77
100	162.59
200	180.35
Pen =	25.40

40			URACIÓN(mir		400
10	30	60	120	240	480
19.19	17.45	16.57	15.83	15.21	14.69
32.05	29.14	27.67	26.44	25.41	24.54
53.48	48.63	46.18	44.13	42.40	40.95
96.34	87.60	83.20	79.50	76,39	73.77
117.78	107.09	101.71	97.18	93.38	90.18
139.21	126.58	120.22	114.87	110.37	106.59
182.07	165.55	157.23	150.24	144.36	139.41
212.08	192.83	183.15	175.00	168.15	162.39
224.94	204.53	194.25	185.61	178.35	172.24
439.26	399.40	379.34	362.46	348.28	336.35
867.91	789.15	749.51	716.17	688.14	664.56

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN PLU PUERTO ALMENDRAS CUADRO Nº 01

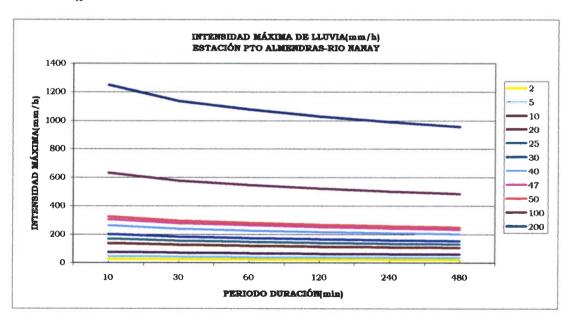
AÑO	PREC.MAX
	(mm)
1994	66
1995	12
1996	86
1997	101
1998	72
1999	71
2000	107
2001	166
2002	133

MÉTODO DE BELL - ESPILDORA

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN PLU PUERTO ALMENDRA

CUADRO Nº 0	2
AÑO	PREC.MAX
	(mm)
1994	66
1995	12
1996	86
1997	101
1998	72
1999	71
2000	107
2001	166
2002	133
MEDIA	90.3
DESVEST	43.9

CUADRO Nº 02	2-A
m	PREC.MAX
	(mm)
1	166
2	133
2 3	107
4	101
5	86
6	72
7	71
8	66
9	12
MEDIA	90.3
DESVEST	43.9


CUADRO Nº 03

CUADRO Nº 04

T Años	PREC.MAX (mm)
2	83.10
5	121.91
10	147.60
20	172.25
25	180.06
30	186.42
40	196.42
47	202.01
50	204.15
100	228.05
200	251.87

	PER	IODO DE DU	RACIÓN(mir	1)	
10	30	60	120	240	480
27.60	25.10	23.83	22.77	21.88	21.1
46.10	41.91	39.81	38.04	36.55	35.3
76.93	69.95	66.43	63.48	60.99	58.9
138.59	126.01	119.68	114.36	109.88	106.1
169.42	154.04	146.30	139.80	134.32	129.7
200.25	182.07	172.93	165.24	158.77	153.3
261.91	238.14	226.18	216.12	207.66	200.5
305.07	277.38	263.45	251.73	241.88	233.5
323.57	294.20	279.42	266.99	256.54	247.7
631.86	574.52	545.66	521.39	500.98	483.8
1248.46	1135.16	1078.14	1030,18	989.86	955.9

P₆₀ = **36.53**

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm) ESTACIÓN PLU MORONA CUADRO Nº 01

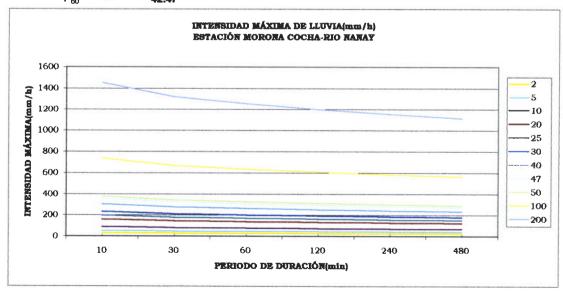
AÑO	PREC.MAX
	(mm)
1990	152
1991	185
1992	112
1993	113
1994	153
1995	110
1996	167
1997	138
1998	90
1999	117
2000	101
2001	138
2002	124

MÉTODO DE BELL - ESPILDORA

PRECIPITACIÓN MÁXIMA EN 24 HORAS (mm)

ESTACIÓN CP MORONA

CUADRO Nº 02								
AÑO	PREC.MAX							
	(mm)							
1990	112							
1991	72							
1992	136							
1993	107							
1994	88							
1995	148							
1996	88							
1997	109							
1998	87							
1999	90							
2000	73							
2001	169							
2002	221							
MEDIA	115.3							
DESVEST	43.1							


CUADR	O Nº 02-A
m	PREC.MAX
	(mm)
1	221
2	169
2 3 4 5 6	148
4	136
5	112
6	109
7	107
8	90
9	88
10	88
11	87
12	73
13	72
MEDIA	115.3
DESVEST	43.1

CUADRO № 03

CUADRO Nº 04

			INTENSIDAD MÅXIMA(mm/h)									
T	PREC.MAX		PERIODO DE DURACIÓN(min)									
Años	(mm)	10	30	60	120	240	480					
2	108.23	32.08	29.17	27.71	26.47	25.44	24.57					
5	146.34	53.58	48.72	46.27	44.22	42.48	41.03					
10	171.57	89.42	81.31	77.22	73.79	70.90	68.47					
20	195.77	161.09	146.47	139.12	132.93	127.73	123.35					
25	203.45	196.93	179.06	170.06	162.50	156.14	150.79					
30	209.70	232.77	211.64	201.01	192.07	184.55	178.23					
40	219.52	304.44	276.81	262.91	251.21	241.38	233.11					
47	225.00	354.61	322.43	306.23	292.61	281.16	271.53					
50	227.11	376.11	341.98	324.80	310.35	298.21	287.99					
100	250.58	734.48	667.83	634.28	606.06	582.34	562.39					
200	273.97	1451.21	1319.51	1253.22	1197.48	1150.61	1111.19					

ANEXO V

- Información de Mecánica de Suelos.

UNIVERSIDAD PARTICULAR DE IQUITOS

LABORATORIO DE MECÁNICA DE SUELOS Y TECNOLOGÍA DE LOS MATERIALES

CARACTERÍSTICA GRANULOMÉTRICA RECOMENDABLE PARA MEZCLA D CONCRETO CEMENTO - ARENA

: PAVIMENTACIÓN CARRETERA SANTA CLARA **OBRA**

UBICACIÓN : DIST. SAN JUAN BAUTISTA SUPERVISOR


FECHA

Análisis Granilométrico por Tamizado ASTM D-422

Prog. (Km.):	
Cantera :	
Calicata :	***
Muestra :	ARENA BLANCA
Acceso :	••
Fecha :	
Datos de Ensayo:	

Peso de muestra seca 525.69 Peso de muestra lavada : 503.05

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Limites de (Consistencia		
2"	50.800					L. Líquido	: NF		
1 1/2"	38.100	A	CROSS - 1 to at 1 to a 1 to out 1011 - 1			L. Plástico	: NF		
1"	25.400	The second second				Ind. Plástico	: NF		
3/4"	19.050					Clas. SUCS	: SF		
1/2"	12.700					Clas. AASHTO	: A-3		
3/8"	9.525					Humedad (%)	: 4.5		
1/4"	6.350								
Nº4	4.760				100.00				
N°8	2.380	0.64	0.00	0.00	100.00	1			
Nº16	1.180	7.79	1.48	1.48	98.52	1			
N°30	0.590	62.84	11.97	13.45	86.55	1			
N°50	0.297	199.00	37.90	51.35	48.65	M.F	1.56		
Nº100	0.149	199.84	38.06	89.41	10.59	1			
Nº200	0.074	32.94	6.27	95.69	4.31	1			
Pasa		22.64	4.31	100.00		1			

ESPECIFICACIONES: El Analisis Granolumétrico por tamizado se realizó según Norma ASTM D 422 Norma Técnica

Nacional ITINTEC 400.012

Los Tamices cumplen con los requisitos establecidos en la Norma ITINTEC 350,01 OBSERVACIONES:

El material granular empleado en este ensayo, corresponde a Arena blanca

recepcionado en elLaboratorio por el solicitante.

ENSAYOS DE LABORATORIO

Granulometría - Sub rasante

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara UBICACIÓN : Perfil Estratigráfico

PROGRESIVA

: Del Km. 0+000 al Km. 6+300

OPERADOR : Bach. Maira M. Quispe Pinedo

CANTERA

: Terreno Natural

FECHA : 06/07/2003

CUADRO DE RESULTADOS DE ENSAYOS REALIZADOS PARA PERFIL ESTRATIGRAFICO

PROGRESIVAS	BAA - UPI	BM - UPI	0 + 050	0+050	0+500	1+000
SONDAJES	C-1	C-1	C - 2	C - 2	<i>C</i> -3	C-4
MUESTRAS	M -1	M-2	M - 1	M-2	M-1	M-1
PROFUNDIDAD	0.20	1.10	0.40	1.00	0.60	0.20
(M.)	1.10	1.50	1.00	1.50	1.50	0.50
LADOS	L. IZQUIERDO	L. IZQUIERDO	EJE	EJE	L. DERECHO	L. IZQUIERDO

	%		%	%	%		%				%
% RET.	PASA	% RET	PASA	RET	PASA	% RET	PASA	% RET	% PASA	% RET	PASA
											100
										2	98
	100		100							1	97
1	99	1	99		100		100			1	96
1	98	1	98	1	99	1	99		100	7	89
4	94	2	96	1	98	1	98	1	99	8	81
2	92	2	94	1	97	2	96	1	98	46	35
2	90	3	91	2	95	3	93	1	97	16	19
7	83	4	87	3	92	2	91	1	96	8	11
83		87		92		91		96		11	
39	.00	41	.00	4	6.00	41	.00	79	9.00	15	5.00
23	.00	22	2.00	2.	4.00	20).00	37	7.00	N	1.P.
16.	.00	19	.00	2:	2.00	21	.00	42	2.00	N	1.P.
28	.00	30).50	3	2.10	36	5.00	38	3.60	13	3.60
A-6	(10)	Α-	6 (8)	A - 7	' - 6(11)	A-	7 - 5	A-7	' - 5(6)	/	1-3
C	:L	(CL		CL		CL		ЭН		SP
	1 1 4 2 2 7 83 39 23 16. 28 A - 6	% RET. PASA 100 1 99 1 98 4 94 2 92 2 90 7 83	% RET. PASA % RET 100 1 99 1 1 98 1 4 94 2 2 92 2 2 90 3 7 83 4 83 87 39.00 41 23.00 22 16.00 19 28.00 30 A - 6 (10) A -	% RET. PASA % RET PASA 100 100 1 99 1 99 1 98 1 98 4 94 2 96 2 92 2 94 2 90 3 91 7 83 4 87 83 87 39.00 41.00 23.00 22.00 16.00 19.00 28.00 30.50 A - 6 (10) A - 6 (8)	% RET. PASA % RET PASA RET 100 100 100 100 1 99 1 99 1 98 1 98 1 98	% RET. PASA % RET PASA RET PASA 100 100 100 100 100 100 100 100 100 10	% RET. PASA % RET PASA RET PASA % RET 100	% RET. PASA % RET PASA RET PASA % RET PASA 100 100 100 100 100 100 100 100 100 10	% RET. PASA % RET PASA RET PASA %	% RET. PASA % RET PASA RET PASA % RET PASA % RET PASA % RET PASA % RET % RET % PASA 100 <td>% RET. PASA % RET PASA RET PASA % RET PASA % RET PASA % RET % RET</td>	% RET. PASA % RET PASA RET PASA % RET PASA % RET PASA % RET % RET

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara UBICACIÓN : Perfil Estratigráfico

PROGRESIVA

: Del Km. 0+000 al Km. 6+300

OPERADOR

: Bach. Maira M. Quispe Pinedo

CANTERA

: Terreno Natural

FECHA

: 06/07/2003

CUADRO DE RESULTADOS DE ENSAYOS REALIZADOS PARA PERFIL ESTRATIGRAFICO

PROGRESIVAS	1+000	1+500	1+500	2+000	2+500	3+000
SONDAJES	C-4	C-5	C-5	C-6	C-7	<i>C</i> -8
MUESTRAS	M-2	M-1	M-2	M-1	M-1	M-1
PROFUNDIDAD	0.50	0.20	0.60	0.20	0.80	0.10
(M.)	1.50	0.60	1.50	1.50	1.50	0.70
LADOS	L. IZQUIERDO	EJE	EJE	L. DERECHO	EJE	L. IZQUIERDO

		%		%	%	%		%				%
TAMIZ N°	% RET.	PASA	% RET	PASA	RET	PASA	% RET	PASA	% RET	% PASA	% RET	PASA
10				100								
16			1	99				100				
20			1	98			0.3	99.7		100		100
30		100	4	94			0.32	99.38	1	99	1	99
40	1	99	8	86			1.15	98.23	1	98	1	98
50	8	91	10	76					2	96	8	90
80	34	57	38	38		100			8	88	8	82
100	12	45	16	22	1	99	5.05	93.18	6	82	7	75
200	28	17	10	12	1	98	4.93	88.25	6	76	9	66
-200	17		12		98		88.25		76		66	
L.L.	18	.00	14	.00	4	2.00	41	.60	30	0.00	24	1.00
L.P.		-		-	2	6.00	23	.98	18	3.00	17	' .00
I.P.	N	l.P	N	1. P	10	5.00	17	.62	12	2.00	7	.00
Hum. Nat. (%)	15	.40	12	.00	2	4.00	28	3.00	19	0.60	13	3.60
CLASIF. HRB	A-2	- 4 (0)	1	\-3	A - 7	- 5(18)	A -	7 - 5	Α-	6 (7)	Α-	4 (5)
CLASIF. SUCS	5	W		SP		MH	(CL		CL	CL	- ML

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara UBICACIÓN : Perfil Estratigráfico

PROGRESIVA

: Del Km. 0+000 al Km. 6+300

OPERADOR : Bach. Maira M. Quispe Pinedo

CANTERA

: Terreno Natural

FECHA

: 06/07/2003

CUADRO DE RESULTADOS DE ENSAYOS REALIZADOS PARA PERFIL ESTRATIGRAFICO

PROGRESIVAS	3+000	3+500	4+000	4+000	4+500	4+500
SONDAJES	C-8	C-9	C-10	C-10	C-11	C-11
MUESTRAS	M-2	M-1	M-1	M-2	M-1	M-2
PROFUNDIDAD	0.70	0.10	0.10	0.70	0.10	0.60
(M.)	1.50	1.50	0.70	1.50	0.60	1.50
	L. IZQUIERDO	L. IZQUIERDO	EJE	EJE	L. DERECHO	L. DERECHO

		%		%	%	%		%				%
TAMIZ N°	% RET.	PASA	% RET	PASA	RET	PASA	% RET	PASA	% RET	% PASA	% RET	PASA
10												
16		100										
20	2	98		100		100						
30	6	92	1	99	1	99				100		
40	16	76	1	98	1	98			1	99		100
50	28	48	2	96	4	94		100	1	98	1	99
80	24	24	6	90	8	86	1	99	4	94	5	94
100	6	18	4	86	10	76	1	98	6	88	4	90
200	7	11	10	76	8	68	1	97	6	82	6	84
-200	11		76		68		97		82		84	
L.L.	16	.00	28	3.00	20	6.20	60	0.00 4		4.00	41	.00
L.P.		l.P	16	.00	17	7.20	31	.00	20	5.00	25	5.00
I.P.	_	I.P	12	2.00	9	.00	29	0.00	16	3.00	16	.00
Hum. Nat. (%)	_	.50	_	1.00	10	8.00	24	1.00	21	8.00	26	5.00
CLASIF. HRB	_	- 4 (6)	_	6 (7)	A-	4 (5)	A-7	- 5 (19)	A-7	- 6 (10)	A-7	- 6(8)
CLASIF. SUCS	_	SP SP	_	CL	CL	- ML	1	۸H		CL		CL

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara UBICACIÓN : Perfil Estratigráfico

PROGRESIVA

: Del Km. 0+000 al Km. 6+300

OPERADOR

: Bach. Maira M. Quispe Pinedo

CANTERA

: Terreno Natural

FECHA

: 06/07/2003

CUADRO DE RESULTADOS DE ENSAYOS REALIZADOS PARA PERFIL ESTRATIGRAFICO

PROGRESIVAS	5+000	5+000	5+500	6+000	6+300	
SONDAJES	C-12	C-12	C-13	C-14	C-15	
MUESTRAS	M-1	M-2	M-1	M-1	M-1	
PROFUNDIDAD	0.10	1.00	0.10	0.10	0.10	
(M.)	1.00	1.50	1.50	1.50	1.50	
LADO5	EJE	EJE	L. IZQUIERDO	EJE	EJE	

		%		%	%	%		%				%
TAMIZ N°	% RET.	PASA	% RET	PASA	RET	PASA	% RET	PASA	% RET	% PASA	% RET	PASA
10		100		100								
16	1	99	1	99								
20	1	98	3	96				100		100		
30	2	96	6	90		100	1	99	1	99		
40	20	76	2	88	1	99	1	98	2	97		
50	28	48	3	85	1	98	3	95	7	90		
80	19	29	3	82	2	96	8	87	10	80		
100	16	13	2	80	2	94	6	81	7	73		
200	5	8	6	74	12	82	7	74	10	63		
-200	8		74		82		74		63			
L.L.	13.	.50	44	1.00	40	0.00	29	.00	44	1.00		
L.P.	N	.P	26	5.00	23	3.00	19	.00	26	5.00		
I.P.	N	l.P	18	.00	17	7.00	10	.00	18	3.00		
Hum. Nat. (%)	12.	.00	28.50		26.00		21.00		28.00			
CLASIF. HRB	A-	. 3	A-6 (10)		A - 6 (8)		A - 6 (8)		A - 4 (5)			
CLASIF. SUCS	S	P	(CL		<i>C</i> L		CL	CL	- ML		

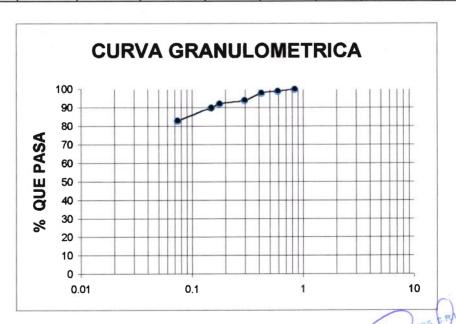
LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA : Pavimentación de la Carretera a Santa Clara

CALICATA

: C-1


MUESTRA : M-1

: AA-1

PROFUNDIDAD OPERADOR : 0.20 - 1.10m. : Bach. Maira M. Quispe Pinedo

MATERIAL : Sub rasante - BM-UPI FECHA : 06/06/2003

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACION	ES TAMAÑO MAXIMO DESCRIP. MUESTRA
3"						
2 1/2"						
2"						Arcilla arenosa color
1 1/2"						anaranjado oscuro, media-
1"						namente plastico
3/4"						
1/2"						
3/8"						
N° 4						L.L 39.00
N° 8						L.P 23.00
N° 10						I.P. 16.00
N° 16						sucs a.
N° 20				100		AASTHO A - 6 -(10)
N° 30	2.00	1.00	1.00	99.00		
N° 40	2.00	1.00	2.00	98.00		
N° 50	8.00	4.00	6.00	94.00		
N° 80	4.00	2.00	8.00	92.00		
N° 100	4.00	2.00	10,00	90.00		OBSERACIONES
N° 200	14.00	7.00	17.00	83.00		
-200	166.00	83.00	100.00			Humedad = 28.00%
TOTAL	200.00					
PESO INIC.	200.00					

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

: Pavimentación de la Carretera a Santa Clara

CALICATA

: *C*-2

MUESTRA : M-1

PROFUNDIDAD

: 0.40 - 1.00m.

OBSERACIONES

Humedad = 32.10%

FECHA

N° 30

N° 40

N° 50

N° 80

N° 100

N° 200

-200

TOTAL

PESO INIC.

MATERIAL : Sub rasante - Km. 0+050 : 06/06/2003

2.00

2.00

2.00

4.00

6.00

184.00

200.00

200.00

1.00

1.00

1.00

2.00

3.00

92.00

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC	ACIONES	TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							1
2"							Arcilla arenosa color
1 1/2"		100					anaranjado oscuro, media-
1"							namente plastico
3/4"							1
1/2"							1
3/8"							1
N°4							L.L 46.00
N° 8							L.P 24.00
N° 10			74				I.P. 22.00
N° 16							sucs a
N° 20							AASTHO A - 7 - 6 (11)

100.00

99.00

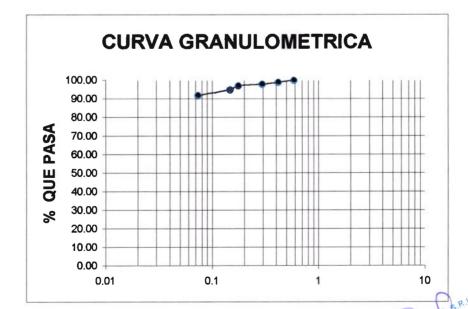
98.00

97.00

95.00

92.00

1.00


2.00

3.00

5.00

8.00

100.00

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

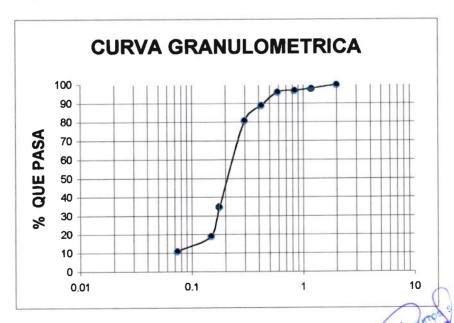
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-4

MUESTRA : M-1

PROFUNDIDAD


: 0.20 - 0.50m.

MATERIAL : Sub rasante - Km. 1+000

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA	
3"								
2 1/2"								
2"							Arena blanca con pintas	
1 1/2"							negras, gran porcentaje de	
1"							finos, no plástico	
3/4"								
1/2"]	
3/8"								
N° 4							L.L 15.00	
N° 8							L.P N.P.	
N° 10				100			I.P. N.P.	
N° 16	4.00	2.00	2.00	98.00			SUCS SP	
N° 20	2.00	1.00	3.00	97.00			AASTHO A - 3	
N° 30	2.00	1.00	4.00	96.00			1	
N° 40	14.00	7.00	11.00	89.00]	
N° 50	16.00	8.00	19.00	81.00			1	
N° 80	92.00	46.00	65.00	35.00]	
N° 100	32.00	16.00	81.00	19.00			OBSERACIONES	
N° 200	16.00	8.00	89.00	11.00]	
-200	22.00	11.00	100.00				Humedad = 13.60%	
TOTAL	200.00]	
PESO INIC.	200.00							

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

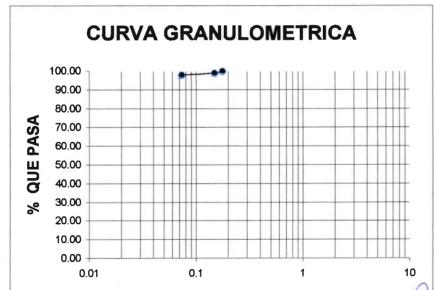
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-5

MUESTRA : M-2

PROFUNDIDAD


: 0.60 - 1.50m.

MATERIAL : Sub rasante - Km. 1+500

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"]
2"							Arcilla color grisásea
1 1/2"							de gran plasticidad y
1"							buena compacidad
3/4"							
1/2"							
3/8"							
N° 4							L.L 42.00
N° 8							L.P 26.00
N° 10							I.P. 16.00
N° 16							SUCS MH
N° 20							AASTHO A - 7 - 5 (18)
N° 30							1
N° 40							
N° 50							1
N° 80				100.00			
N° 100	2.00	1.00	1.00	99.00			OBSERACIONES
N° 200	2.00	1.00	2.00	98.00			
-200	196.00	98.00	100.00				Humedad = 24.00%
TOTAL	200.00						
PESO INIC.	200.00						1

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

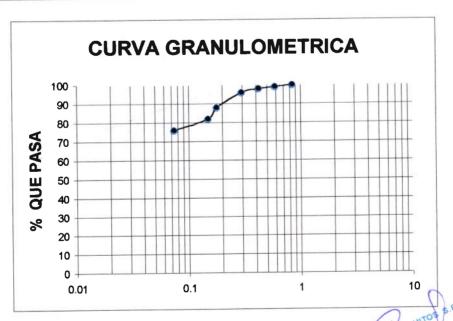
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-7

MUESTRA

PROFUNDIDAD


: 0.80 - 1.50m.

MATERIAL : Sub resente - Km. 2+500

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							227.00.40.00.40.00.00.00.00.00.00.00.00.00
2"							Arcilla limosa arenosa
1 1/2"							color anaranjado,
1"							mediana plasticidad y
3/4"							buena compacidad
1/2"							4
3/8"							4
N° 4							L.L 30.00
N° 8							L.P 18.00
N° 10							I.P. 12.00
N° 16							sucs a.
N° 20				100.00			AASTHO A - 6 (7)
N° 30	2.00	1.00	1.00	99.00			
N° 40	2.00	1.00	2.00	98.00			1
N° 50	4.00	2.00	4.00	96.00			1
N° 80	16.00	8.00	12.00	88.00			
N° 100	12.00	6.00	18.00	82.00			OBSERACIONES
N° 200	12.00	6.00	24.00	76.00			
-200	152.00	76.00	100.00				Humedad = 19.60%
TOTAL	200.00						1
PESO INIC.	200.00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

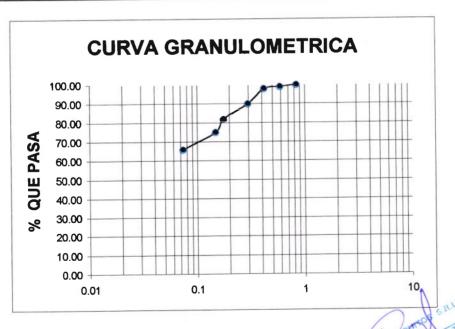
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-8

MUESTRA : M-1

PROFUNDIDAD


: 0.10 - 0.70m.

MATERIAL : Sub rasante - Km. 3+000

OPERADOR

: Bach. Maira M. Quispe Pinedo

							VIII-CONTRACTOR OF THE PROPERTY OF THE PROPERT
TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							
2"							Limo arenoso color
1 1/2"							gris, con regular
1"							contenido de humedad,
3/4"							mediana plasticidad.
1/2"							1
3/8"							
N° 4							L.L 24.00
N° 8							L.P 17.00
N° 10							I.P. 7.00
N° 16							SUCS al-ML
N° 20				100.00			AASTHO A - 4 (5)
N° 30	2.00	1.00	1.00	99.00			
N° 40	2.00	1.00	2.00	98.00			1
N° 50	16.00	8.00	10.00	90.00]
Nº 80	16.00	8.00	18.00	82.00			
N° 100	14.00	7.00	25.00	75.00			OBSERACIONES
N° 200	18.00	9.00	34.00	66.00			
-200	132.00	66.00	100.00				Humedad = 13.60%
TOTAL	200.00						1
PESO INIC.	200.00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

: Pavimentación de la Carretera a Santa Clara

CALICATA

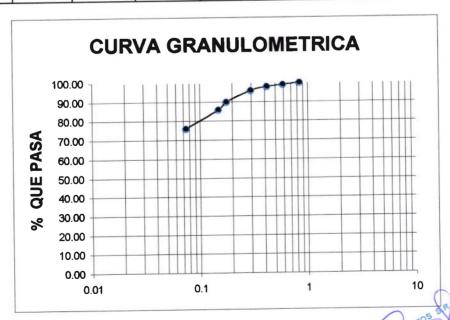
: C-9

MUESTRA

PROFUNDIDAD

: 0.10 - 1.50m.

MATERIAL : Sub rasante - Km. 3+500


OPERADOR

: Bach. Maira M. Quispe Pinedo

FECHA

: 06/06/2003

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							Arcilla limo arenosa
2"							color rojo de mediana
1 1/2"							plasticidad y buena
1"							compacidad.
3/4"							- compactada.
1/2"							1
3/8"							L.L. 28.00
N° 4					7		L.P 16.00
N° 8							
N° 10							I.P. 21.00
N° 16							sucs a
N° 20				100.00			AASTHO A - 6 (7)
N° 30	2.00	1.00	1.00	99.00			1
N° 40	2.00	1.00	2.00	98.00			
N° 50	4.00	2.00	4.00	96.00			1
N° 80	12.00	6.00	10.00	90.00			
N° 100	8.00	4.00	14.00	86.00			OBSERACIONES
N° 200	20.00	10.00	24.00	76.00			
-200	152.00	76.00	100.00				Humedad = 21.00%
TOTAL	200.00						1
PESO INIC.	200.00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

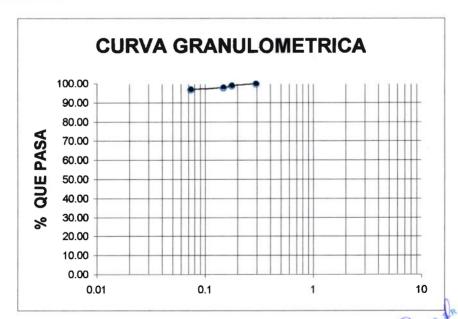
ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA : Pavimentación de la Carretera a Santa Clara CALICATA

: C-10

MUESTRA : M-2

PROFUNDIDAD


: 0.70 - 1.50m.

MATERIAL : Sub resente - Km. 4+000

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"		6			-		
2 1/2"							1
2"							Arcilla color grisasea
1 1/2"							con pintas rojas, buena
1"							compacidad regular contenido
3/4"							de humedad
1/2"							1
3/8"]
N° 4							L.L 60.00
N° 8							L.P 31.00
N° 10							I.P. 29.00
N° 16							SUCS MH
N° 20							AASTHO A - 7 - 5 (19)
N° 30					7		1
N° 40							1
N° 50				100.00			1
N° 80	2.00	1.00	1.00	99.00			1
N° 100	2.00	1.00	2.00	98.00			OBSERACIONES
N° 200	2.00	1.00	3.00	97.00			1
-200	194.00	97.00	100.00				Humedad = 24.00%
TOTAL	200.00						1
PESO INIC.	200.00						1

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-11

MUESTRA : M-1

PROFUNDIDAD

: 0.10 - 0.60m.

MATERIAL : Sub rasante - Km. 4+500

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"						1	
2 1/2"							1
2"							Arcilla color rojiza
1 1/2"							mediana plasticidad,
1"							semi compacto
3/4"							
1/2"							1
3/8"							1
N° 4							L.L 44.00
N° 8							L.P 26.00
N° 10							I.P. 18.00
N° 16							sucs a.
N° 20							AASTHO A - 7 - 6 (10)
N° 30				100.00			
N° 40	2.00	1.00	1.00	99.00			1
N° 50	2.00	1.00	2.00	98.00			1
N° 80	8.00	4.00	6.00	94.00			
N° 100	12.00	6.00	12.00	88.00			OBSERACIONES
N° 200	12.00	6.00	18.00	82.00			
-200	164.00	82.00	100.00				Humedad = 28.00%
TOTAL	200.00						20
PESO INIC.	200.00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

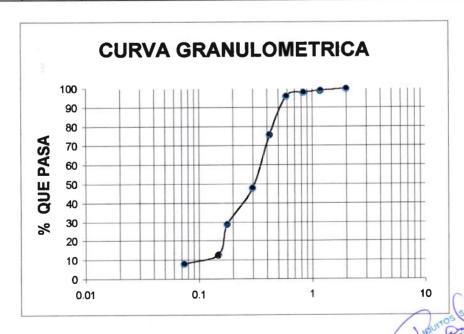
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-12

MUESTRA : M-1

PROFUNDIDAD


: 0.10 - 1.00m.

MATERIAL : Sub rasante - Km. 5+000

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	ACIONES	TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							
2"							Arena color gris
1 1/2"							blanquesino, estructura
1"							granular.
3/4"							1
1/2"							1
3/8"							4
N° 4							L.L 13.50
N° B							L.P N.P.
N° 10				100			I.P. N.P.
N° 16	2.00	1.00	1.00	99.00			SUCS SP
N° 20	2.00	1.00	2.00	98.00			AASTHO A-3
N° 30	4.00	2.00	4.00	96.00]
N° 40	40.00	20.00	24.00	76.00]
N° 50	56.00	28.00	52.00	48.00]
N° 80	38.00	19.00	71.00	29.00]
N° 100	32.00	16.00	87.00	13.00			OBSERACIONES
N° 200	10.00	5.00	92.00	8.00		7	
-200	16.00	8.00	100.00				Humedad = 12.00%
TOTAL	200.00						
PESO INIC.	200.00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

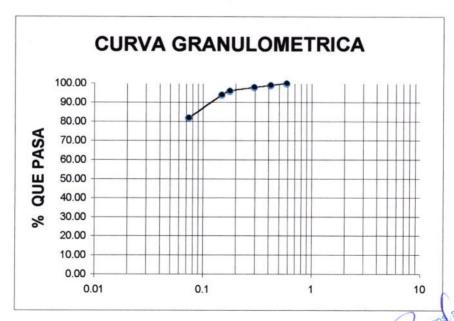
: Pavimentación de la Carretera a Santa Clara

CALICATA

: C-13

MUESTRA : M-1

PROFUNDIDAD


: 0.10 - 1.50m.

MATERIAL : Sub rasante - Km. 5+500

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA
3"							
2 1/2"							1
2"							Arcilla limo arenosa
1 1/2"							color anaranjado, media-
1"							namente plástico.
3/4"							1
1/2"							1
3/8"							1
N° 4							L.L 40.00
N° 8							L.P 23.00
N° 10							I.P. 17.00
N° 16							sucs a.
N° 20							AASTHO A - 6 (8)
N° 30				100.00			1
N° 40	2.00	1.00	1.00	99.00			1
N° 50	2.00	1.00	2.00	98.00			1
N° 80	4.00	2.00	4.00	96.00			1
N° 100	4.00	2.00	6.00	94.00			OBSERACIONES
N° 200	24.00	12.00	18.00	82.00			1
-200	164.00	82.00	100.00			-	Humedad = 26.00%
TOTAL	200.00						1
PESO INIC.	200.00						1

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

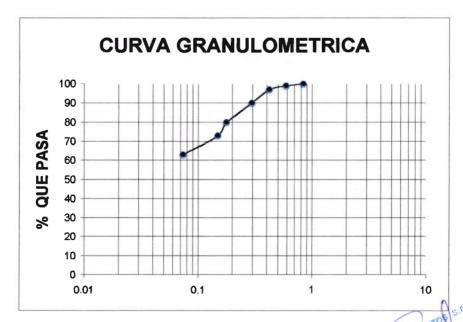
ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA : Pavimentación de la Carretera a Santa Clara CALICATA

: C-15

MUESTRA

PROFUNDIDAD


: 0.10 - 1.50m.

MATERIAL : Sub rasante - Km. 6+500

OPERADOR

: Bach. Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES		TAMAÑO MAXIMO DESCRIP. MUESTRA	
3"								
2 1/2"								
2"							Limo arenoso color	
1 1/2"							anaranjado con vetas de	
1"							color gris, mediana	
3/4"							plasticidad	
1/2"								
3/8"								
N° 4							L.L 26.00	
N° 8							L.P 18.00	
N° 10							I.P. 8.00	
N° 16							SUCS aML	
N° 20				100.00			AASTHO A - 4 (5)	
N° 30	2.00	1.00	1.00	99.00			1	
N° 40	4.00	2.00	3.00	97.00			i	
N° 50	14.00	7.00	10.00	90.00			1	
N° 80	20.00	10.00	20.00	80.00				
N° 100	14.00	7.00	27.00	73.00			OBSERACIONES	
N° 200	20.00	10.00	37.00	63.00				
-200	126.00	63.00	100.00		-		Humedad = 14.80%	
TOTAL	200.00							
PESO INIC.	200.00						1	

Ensayos Generales

Sub rasante - Calicata Nº 03

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA

: Pavimentación de la Carretera a Santa Clara

CALICATA

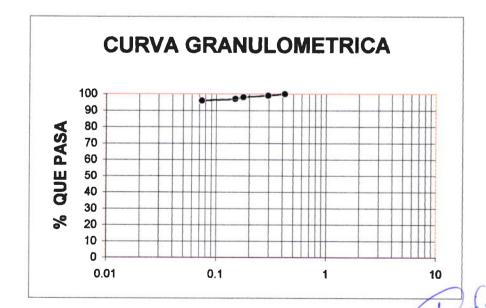
: C-3

MUESTRA

PROFUNDIDAD

: 0.60 - 1.50m.

MATERIAL : Sub rasante - KM, 0+500


OPERADOR

: Bach. Maira M. Quispe Pinedo

FECHA

: 06/06/2003

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES	S TAMAÑO MAXIMO DESCRIP. MUESTRA
3"						
2 1/2*						
2"						Arcilla color gris de
1 1/2"						alta plasticidad y baja
1"						compacidad, blando e
3/4"						inestable.
1/2"						
3/8"						
N° 4						L.L 79.00
N° 8						L.P 37.00
Nº 10						I.P. 42.00
№ 16						SUCS OH
№ 20						AASTHO A-7-5(6)
Nº 30						
№ 40				100,00		7
№ 50	2.00	1.00	1.00	99.00		
№ 80	2.00	1,00	2,00	98.00		7
№ 100	2.00	1,00	3.00	97.00		OBSERACIONES
№ 200	2.00	1.00	4.00	96.00		7
-200	192.00	96,00	100,00			Humedad = 38,60%
TOTAL	200.00					7
PESO INIC.	200.00					

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

FECHA : 06/06/2003

MUESTRA

: Sub rosante M1

UBICACIÓN : Km. 0+500

MATERIAL

: Arcilla color gris

OPERADOR : Bach, Maira M. Quispe Pinedo

LIMITE LIQUIDO	5
----------------	----------

MUESTRA				
PROFUNDIDAD				
RECIPIENTE Nº	05	09		
Nº GOLPES	22	27		
R+S,HUMEDO	26.5	26.9		
R + 5.5ECO	19.12	19.36		
PESO DEL AGUA	7.38	7.537		
PESO DEL RECIP.	9.82	9.78		
PESO DEL S.SECO	9.3	9.583		
% DE HUMEDAD	79.35	78.65		

LIMITE PLASTICO

MUESTRA				
PROFUNDIDAD				
RECIPIENTE N°	01	02		
R+5,HUMEDO	14.99	15,533		
R + S.SECO	14.1	14.65		
PESO DEL AGUA	0.89	0,883		
PESO DEL RECIP.	11.8	12,15		
PESO DEL S.SECO	2.3	2.5		
% DE HUMEDAD	38,70	35,32		

MUESTRA Nº		
LL	79	
L.P	37	T
I,P	42	

OBSERVACIONES

ANIE AL RAMIREZ CIVIL

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ENSAYO DE COMPACTACION

PROCTOR MODIFICADO

PROYECTO

: Pavimentación de la Carretera a

UBICACIÓN : C-3 Km. 0+500 N° CAPAS

: 05

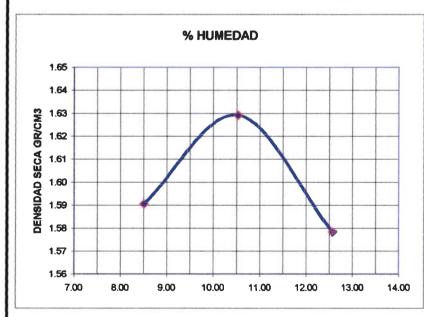
Santa Clara

: Arcilla color gris

FECHA

: 06/06/2,003

N° GOLPES


: 56 : 18*

MUESTRA MATERIAL : Terreno de Fundación - Sub rasante OPERADOR : Bach, Maira M. ALTURA DE CAIDA

Quispe Pinedo P. DEL MARTILLO

: 10 LB

13 Volumen del Molde	cc	2102	2102	2102	
1 Peso del Suelo Húmedo + Molde	gr.	6800	6980	6930	
2 Peso Molde	gr.	3195	3195	3195	
3 Peso del Suelo Húmedo	gr.	3605	3785	3735	
4 Capsula Nº		09	02	03	
5 Peso Húmedo + cápsula	gr.	145,81	151,81	142.27	
6 Peso Suelo Seco + cápsula	gr.	137.8	141,5	131	
7 Peso del Agua	gr.	8,01	10.31	11,27	
8 Peso de la cápsula	gr	43.67	43.58	41,37	
9 Peso del Suelo Seco	gr	94.13	97.92	89.63	
10 % de Humedad	%	8.51	10.53	12.57	
11 Densidad del Suelo Húmedo	gr.	1.72	1.80	1.78	
12 Densidad del Suelo Seco	gr./cc	1,59	1,63	1.58	

Método

Max. Densidad Optima Humedad

1.63 gr/cm3 10,50%

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

: Pavimentación de la Carretera a Santa Clara

UBICACIÓN : Km. 0+500

MUESTRA

: Terreno de Fundación - Sub rasante

FECHA

: 07/06/2003

MATERIAL

: Arcilla color gris

OPERADOR

: Bach, Maira M. Quispe Pinedo

ENSAYO CBR

Malde N°		01			0	2			03	
Golpes por Capa Nº		12			2!	5		56		3,000
COND.DE LA MUESTRA		Sin Mojar		Mojada	Sin Mojar		Mojada	Sin Mojar		Mojada
Paso molde + suelo húmedo		847	O O		873	35		882	20	
Peso del Molde	gr	471	0		471	10		466	50	
Peso del suelo húmedo	gr	376	0		402	25		416	0	
Volumen del suelo	cc.	231	9		235	53		23:	11	
Densidad de Humedad	gr.cc.	1,62			1,71			1.8	0	
cc Humedad		10,48			10,42			10.6	52	
Densidad Seca	gr./cc.	1,47	7		1.55			1.6	3	
Tarro Nº		01	02		03	04		05	06	
Tarro + suelo húmedo	gr	119.06	117,22		125,14	119,55		123.8	125,39	
Tarro + suelo seco	gr	108,78	107.36		114,55	109,33		113,02	114.55	
Agua	gr	10,28	9.86		10.59	10,22		10,78	10.84	
Peso del Tarro	gr	11.90	12,10		12,10	12,00		11.90	12.10	
Peso del suelo seco	gr	96.88	95.26		102,45	97,33		101.12	102.45	
% humedad		10.61	10.35		10,34	10,50		10,66	10,58	
Promedio de Humedad	%	10.48			10,42			10.62		

EXPANSION

FECHA	ECHA HORA		TIEMPO LECTURA		EXPANSION		LECTURA EXPANS		LECTURA	EXPANSION	
			DIAL	M.M.	%	DIAL	M.M.	%	DIAL	MM.	%
07/06/03	09:00 a.m.	0	186	186	0	520	520	0	340	340	(
08/06/03	09:00 a.m.	24	372	186	1.59	702	182	1,56	505	185	1,41
09/06/03	09:00 a.m.	48	458	272	2,33	774	254	2,17	564	224	192
10/06/03	09:00 a.m.	72	504	318	2,72	802	282	2,41	588	248	2,12
11/06/03	09:00 a.m.	96	526	340	2.91	825	305	2.60	600	260	2,22

PENETRACION

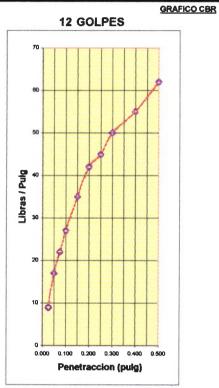
		WOLDE	Nº		MOLDE	No	WOLDE No		
PENETRACION	Lectura	CORRECCION		Lectura	COR	RECCION	Lectura	CORRECCION	
PULGADAS	Dial	Libs.	Libss/plg2	Dial	Libs.	Libss/plg2	Dial	Libs.	Libs/pulg2
0.025	11	28	9	15	38	13	19	48	16
0.050	20	51	17	25	64	21	27	69	23
0.075	26	66	22	31	79	26	37	96	32
0,100	32	81	27	39	100	33	44	114	38
0.150	42	106	35	44	113	38	57	147	49
0,200	50	126	42	56	144	48	68	174	58
0.250	53	134	45	64	164	55	77	198	66
0.300	59	149	50	68	174	58	82	210	70
0.400	65	165	55	78	200	67	94	241	80
0,500	73	185	62	87	223	74	1		

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

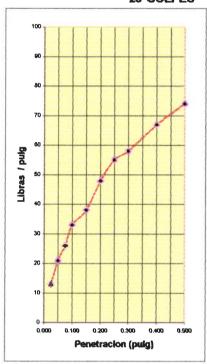
MUESTRA

: Pavimentación de la Carretera a Santa Clara FECHA

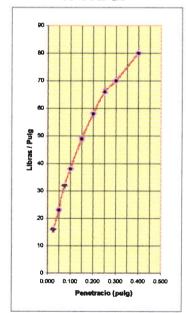
: 12-06-03

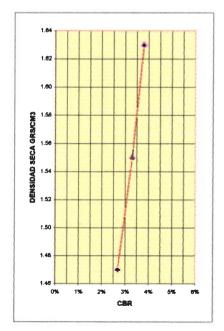

: Terreno de Fundación - Sub rasante : Arcilla color gris MATERIAL

UBICACIÓN : C-3 Km. 0+500 OPERADOR


: Bach. Maira M. Quispe Pinedo

ENSAYO CBR


Max, Dens, P. Mod, 1, 63%



25 GOLPES

56 GOLPES

GOLPES	WO%	XAM.d	HINCH %	COMP.%	CBR (0.1")	CBR (0.2")	CBR		
12	10,48	1,47	2.92	90%	2.7%		95%		
25	25 10.42		10.42 1.55 2.62		2,62	94% 3.3%			3.36%
56	10,62	1,63	2.23	100%	3.8%				

Ensayos Generales

Sub rasante - Calicata Nº 06

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

: Pavimentación de la Carretera a Santa Clara

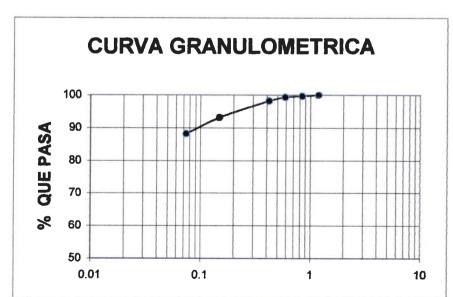
CALICATA

: C-6

MUESTRA

PROFUNDIDAD

: 0,20 - 1,50m.


MATERIAL : Sub rasante - KM, 2+000

OPERADOR

: Bach, Maira M. Quispe Pinedo

: 06/06/2003

				2000-011-00		Allowed the Control	
TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFI	CACIONES	TAMAÑO MAXIMO DESCRIP, MUESTRA
3"							
2 1/2"							1
2"							Arcilla limosa color rojizo
1 1/2"							con pintos plomizas claras.
1"							Mediana plasticidad, Buena
3/4"							compacidad
1/2"							1
3/8"							1
N° 4							L.L 41.60
Nº 8							L.P 23.98
№ 10							I.P. 17,62
N° 16				100			SUCS OH
№ 20	0,60	0.30	0.30	99.70			AASTHO A-7-5
Nº 30	0,65	0.33	0,63	99.38			1
№ 40	2.30	1,15	1,78	98.23			1
№ 100	10,10	5.05	6.83	93,18			OBSERACIONES
№ 200	9.85	4.93	11.75	88,25			Humedad = 28,00%
-200	176,50	88,25	100,00				In situ se localiza compacto y
TOTAL	200,00						con buen cimiento
PESO INIC.	200,00						

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

FECHA : 06/06/2003

MUESTRA

: Sub rasante M1

UBICACIÓN : Km. 2+000

MATERIAL

: Arcilla rojiza

OPERADOR : Bach, Maira M. Quispe Pinedo

	_				
L	MI	TE	LI	OU	IDO

03										
01	02									
20	28									
29.65	31.4									
24.34	25.84									
5,31	5.56									
11.9	12,12									
12,44	13.72									
42.68	40,52									
	01 20 29.65 24.34 5.31 11.9	01 02 20 28 29.65 31.4 24.34 25.84 5.31 5.56 11.9 12.12 12.44 13.72	01 02 20 28 29.65 31.4 24.34 25.84 5.31 5.56 11.9 12.12 12.44 13.72	01 02 20 28 29.65 31.4 24.34 25.84 5.31 5.56 11.9 12.12 12.44 13.72	01 02 20 28 29.65 31.4 24.34 25.84 5.31 5.56 11.9 12.12 12.44 13.72					

LIMITE PLASTICO

MUESTRA	03		
PROFUNDIDAD			
RECIPIENTE Nº	04	05	
R+S.HUMEDO	18,39	17.81	
R + S.SECO	17.13	16.69	
PESO DEL AGUA	1.26	1,12	
PESO DEL RECIP.	11.90	12.00	
PESO DEL S.SECO	5.23	4.69	
% DE HUMEDAD	24.09	23,88	

MUESTRA Nº		
LL	41.60	
L.P	23,98	
I.P	17.62	T

OBSERVACIONES

ANIBA	DUITOS S.R.LTDA REMIREZ AZANERO REMIERO CIVIL
11	CIP 6716

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ENSAYO DE COMPACTACION

PROCTOR MODIFICADO

PROYECTO

: Pavimentación de la Carretera a

UBICACIÓN : C-6 Km, 2+000 N° CAPAS

: 05 : 56

MUESTRA

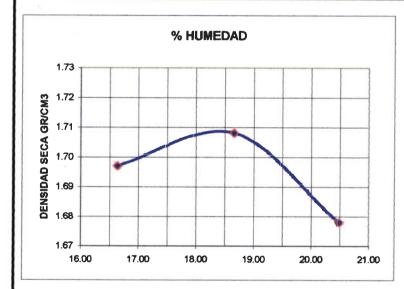
Santa Clara

FECHA

: 06/06/2,003 N° GOLPES

: Terreno de Fundación - Sub rasante OPERADOR : Bach, Maira M. ALTURA DE CAIDA

: 18"


MATERIAL

: Arcilla Rojiza

Quispe Pinedo P. DEL MARTILLO

: 10 LB

14	Volumen del Molde	сс	23	2338		38	2338		
1	Peso del Suelo Húmedo + Malde	gr.	93	9330		9450		140	
2	Peso Molde	gr.	47	710	47	7 10	47	710	
3	Peso del Suelo Húmedo	gr.	46	20	47	40	47	'30	
4	Capsula Nº		01	02	04	05	11	12	
5	Peso Húmedo + cápsula	gr.	87,14	82.14	83.35	84.60	89.25	85,56	
6	Peso Suelo Seco + cápsula	gr.	76.45	76.45 72.05 72.10 73.20 76		76.05	73,08		
7	Peso del Agua	gr.	10.69	10.09	11,25	11.40	13,20	12.48	
8	Peso de la cápsula	gr.	11.45	12,10	11.90	12.00	11.90	11,90	
9	Peso del Suelo Seco	gr.	65.00	59.95	60,20	61.20	64.15	61,18	
10	% de Humedad	%	16.45	16.83	18.69	18.63	20,58	20.40	
11	Promedio de Humedad	%	16.64 18.66		20.49				
12	Densidad del Suelo Húmedo	gr.	1,98 2,03		2.02				
13	Densidad del Suelo Seco	gr./cc	1.70 1.71		71	1,68			

Método

"D"

Max. Densidad Optima Humedad 1.71 gr/cm3

18,40%

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

UBICACIÓN

: Km, 2+000

MUESTRA

: Terreno de Fundación - Sub rasante

FECHA

: 07/06/2003

MATERIAL

: Arcilla Rojiza

OPERADOR

: Bach, Maira M. Quispe Pinedo

ENSAYO CBR

Molde Nº		01			02	2			03	
Golpes por Capa Nº		12			25	5			56	
COND. DE LA MUES	TRA	Sin Mojar		Mojada	Sin M	lojar	Mojada	Sin N	lojar	Mojada
Paso molde + suelo húmedo		898	8985		9230			941	80	West Name
Peso del Molde	gr _'	4660	4660		4710			4710		
Peso del suelo húmedo	gr _'	432	4325		4520			477	70	
Volumen del suelo	cc.	233	3		232	29		23:	38	
Densidad de Humedad	gr.cc.	1,85	1,85		1.94			2.04		
cc Humedad		18,5	18,58		18.5	57		18.4	40	
Densidad Seca	gr./cc.	1,56	0.000		1,6	4		1,7	1 .	
Tarro Nº		01	02		03	04		11	12	
Tarro + suelo húmedo	gr	80,42	82.6		79,20	85,72		80.13	83,33	
Tarro + suelo seco	gr	69.70	71,54		68.72	74,1		69.5	72.25	
Agua	gr	10.72	11,06		10.48	11,62		10.63	11,08	
Peso del Tarro	gr	11.90	12,10		11.90	12.00		11.90	11.90	
Peso del suelo seco	gr	57.80	59.44		56,82	62,1		57.6	60.35	
% humedad		18.55	18,61		18.44	18,71		18.45	18.36	
Promedio de Humedad	%	18,58			18,58	***************************************		18.41		

EXPANSION

and the second s		A CONTRACTOR OF THE PARTY OF TH									A SOCIETY OF THE PROPERTY.
FECHA	HORA	TIEMPO	LECTURA	EXPAN	EXPANSION		EXPAN	SION	LECTURA	EXPA	NSION
			DIAL	M.M.	%	DIAL	M.M.	%	DIAL	M.M.	%
07/06/03	10:00 a.m.	0	353	0	0	535	0	0	854	0	O
08/06/03	10:00 a,m.	24	758	405	3,47	847	312	2,67	1052	198	1,70
09/06/03	10:00 a.m.	48	878	525	4,50	991	456	3.91	1199	345	2.96
10/06/03	10:00 a.m.	72	991	638	5,47	1077	542	4,65	1288	434	3,72
11/06/03	10:00 a.m.	96	1018	665	5,70	1120	585	4.97	1336	482	4.13

PENETRACION

		MOLDE	Nº		MOLD	E Nº			MOLDE N	•
PENETRACION	Lectura CORRECCION		Lectura	COF	RECCION		Lectura	CORRECCION		
PULGADAS	Diał	Libs.	Libss/pl	g2 Dial	Libs.	Libss/p	olg2	Dial	Libs.	Libs/pulg2
0.025	13	33	11	18	46	15		20	51	17
0,050	27'	68	23	34	86	29		38	96	32
0.075	34	86	29	45	114	38		56	142	47
0,100	47	119	40	58	147	49		69	176	59
0.150	62	157	52	75	190	63		92	233	78
0.200	71	180	60	86	218	73		108	274	91
0,250	88	223	74	97	246	82		127	324	108
0.300	100	253	84	106	268	89		141	357	119
0.400										
0.500										

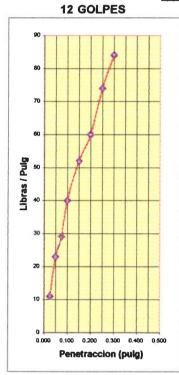
ANIBAL CAMIREZ AZANERO

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

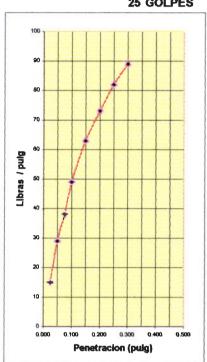
AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

: Pavimentación de la Carretera a Santa Clara FECHA

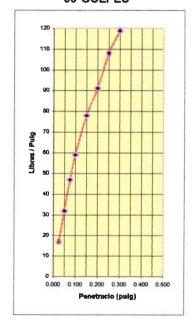
: 12-06-03

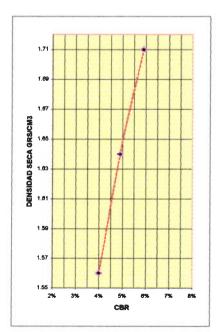

MUESTRA : Terreno de Fundación - Sub rasante MATERIAL : Arcilla Rojiza

UBICACIÓN : C-6 Km. 2+000 **OPERADOR**


: Bach. Maira M. Quispe Pinedo

ENSAYO CBR Max. Dans. P. Mod. 1.71%


GRAFICO CBR



25 GOLPES

56 GOLPES

GOLPES	WO%	D.MAX	HINCH %	COMP.%	CBR (0.1")	CBR (0.2")	CBR
12	18.58	1,56	5.70	91%	4,0%		95%
25	18.58	1.64	4.97	96%	4.9%		4.80%
56	18.41	1.71	4,13	101%	5.9%		

Ensayos Generales

Sub rasante - Calicata Nº 14

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

: Pavimentación de la Carretera a Santa Clara

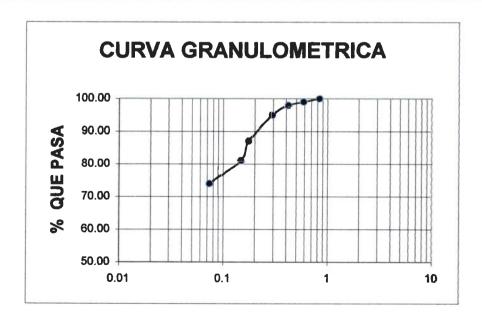
CALICATA

: C-14

MUESTRA

PROFUNDIDAD

: 0,10 - 1,50m.


MATERIAL : Sub rasante - KM 6+000

OPERADOR

: Bach, Maira M. Quispe Pinedo

: 06/06/2003

TAMI <i>C</i> ES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES	TAMAÑO MAXIMO DESCRIP, MUESTRA
3"						
2 1/2"]
2*						Arcilla limosa color
1 1/2"						anaranjado, mediana
1"						plasticidad,
3/4"]
1/2"]
3/8"						1
N° 4						L.L 29.00
Nº 8						L.P 19.00
№ 10						I.P. 19.00
№ 16						sucs a.
Nº 20				100.00		AASTHO A-6-(7)
№ 30	2.00	1,00	1,00	99.00		1
№ 40	2.00	1,00	2,00	98.00		1
№ 50	6.00	3.00	5,00	95.00		1
Nº 80	16.00	8,00	13,00	87.00		1
N° 100	12,00	6,00	19.00	81,00		OBSERACIONES
N° 200	14.00	7.00	26.00	74.00		Humedad = 21,00%
-200	148.00	74.00	100.00			1
TOTAL	200,00					1
PESO INIC.	200,00					1

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ENSAYO DE COMPACTACION

PROCTOR MODIFICADO

: Pavimentación de la Carretera a PROYECTO

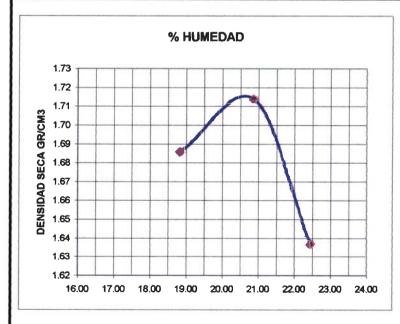
UBICACIÓN : C-6 Km. 6+000 Nº CAPAS

: 05

Santa Clara

FECHA

: 06/06/2,003 N° GOLPES


: 56 : 18"

MUESTRA MATERIAL : Terreno de Fundación - Sub rasante OPERADOR : Bach, Maira M. ALTURA DE CAIDA : Arcilla limosa color anaranjado

Quispe Pinedo P. DEL MARTILLO

: 10 LB

13 Volumen del Molde	cc	2310	2310	2310	
1 Peso del Suelo Húmedo + Molde	gr.	9310	9495	9340	
2 Peso Molde	gr.	4710	4710	4710	
3 Peso del Suelo Húmedo	gr.	4600	4785	4630	
4 Capsula N°		07	03	01	
5 Peso Húmedo + cápsula	gr.	117.30	114.50	115.03	
6 Peso Suelo Seco + cápsula	gr.	100.60	96.80	96.10	
7 Peso del Agua	gr.	16.70	17,70	18.93	
8 Peso de la cápsula	gr.	11.95	11.95	11,8	
9 Peso del Suelo Seco	gr.	88,65	84.85	84.3	
10 % de Humedad	%	18.84	20.86	22.46	
11 Densidad del Suelo Húmedo	gr.	1.99	2.07	2.00	
12 Densidad del Suelo Seco	gr./cc	1.69	1.71	1,64	

Método

Max. Densidad

1.71 gr/cm3

Optima Humedad

20,70%

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA : Pavimentación de la Carretera a Santa Clara UBICACIÓN : Km. 6+000
MUESTRA : Terreno de Fundación - Sub rasante FECHA : 07/06/2003

MATERIAL : Arcilla limosa color anaranjado OPERADOR : Bach, Maira M. Quispe Pinedo

ENSAYO CBR

Molde N°		01			02	2			03	
Golpes por Capa Nº		12			25	5			56	
COND. DE LA MUEST	RA	Sin Mojar		Mojada	Sin Mojar		Mojada	Sin Mojar		Mojada
Paso molde + suelo húmedo		894	8940		927	70		9540		
Peso del Molde	gr	466	4660		4710			4710		
Peso del suelo húmedo	gr	428	4280		4560			483	0	
Volumen del suelo	cc.	231	l		231	19		235	3	
Densidad de Humedad	gr.cc.	1,85			1.97			2.05		
cc Humedad		19.91			20.5	57		20,5	7	
Densidad Seca	gr./cc.	1.54	2.100.200.0000		1,6	3		1,70		
Tarro Nº	Г	01	02		03	04		05	06	
Tarro + suelo húmedo	gr	102,50	104.5		112,50	109.14		113,30	100,25	
Tarro + suelo seco	gr	87.40	89.20		95.50	92,30		96.60	84.60	
Ag ua	gr	15,10	15.30		17.00	16.84		16.70	15.65	
Peso del Tarro	gr	11.80	12.15		11.95	11,90		12.10	11,45	
Peso del suelo seco	gr	75,60	77.05		83.95	80.40		84,50	73,15	
% humedad		19.97	19.85		20,25	20.89		19.76	21.39	
Promedio de Humedad	%	19.91			20,57			20.57		

EXPANSION

FECHA	HORA	TIEMPO	LECTURA	EXPAN	SION	LECTURA	EXPAN	SION	LECTURA	EXPAN	SION
			DIAL	.M.M.	%	DIAL	M.M.	%	DIAL	MM	%
07/06/03	09:30 a.m.	0	365	365	0	359	359	0	696	696	0
08/06/03	09:30 a,m,	24	485	365	2.24	496	359	2,12	725	462	1,05
09/06/03	09:30 a.m.	48	598	475	3.25	684	389	3,04	865	352	1.96
10/06/03	09:30 a.m.	72	802	565	4.90	825	425	4.25	960	255	2,23
11/06/03	09:30 a,m,	96	960	595	5.10	835	476	4.80	980	282	2.42

PENETRACION

				-20-01-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-					
		WOLDE Nº			MOLD	E Nº		MOLDE N	•
PENETRACION	Lectura	CO	RRECCION	Lectura	CO	RRECCION	Lectura	CORRECCION	
PULGADAS	Dial	Libs.	Libss/plg2	Dial	Libs.	Libss/plg2	Dial	Libs.	Libs/pulg2
0.025	19	21,85	7.28	45	51,80	17.30	56	64.40	21,50
0,050	37	42.60	14.20	70	80.50	26,80	111	127,70	42.60
0.075	54	62.10	20.70	97	111.60	37.20	162	186.30	62,10
0.100	70	80,50	26.80	120	138,00	46.00	205	235.80	78,60
0.150	92	105,80	35.30	160	184.00	61,00	274	316,10	105,40
0.200	102	117.30	39.10	185	212.80	70.90	318	366.70	122,20
0,250	122	140,30	46.80	208	239,20	79.70	353	412,70	137,60
0.300	135	155.30	51.80	226	259.90	86,60	388	447.20	149.00
0.400	157	180.60	60,20	260	300.00	100.00	436	502,40	167,50
0,500									

SIM COULTOS S.R.LTDA
ANIBAL RAMIREZ AZ ANERO
CIP 4716

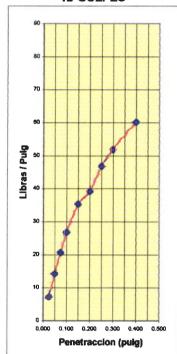
MUESTRA

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA : Pavimentación de la Carretera a Santa Clara FECHA : Terreno de Fundación - Sub rasante

: 12-06-03


UBICACIÓN : C- 14 Km. 6+000

: Arcilla limosa color anaranjado OPERADOR : Bach. Maira M. Quispe Pinedo

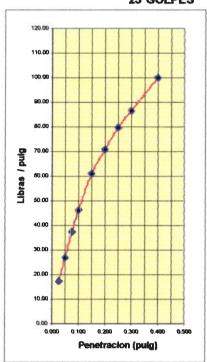
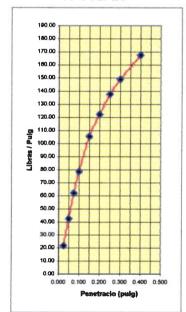
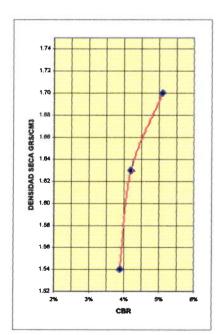

ENSAYO CBR x, Dens.P. Mod.1,70%

GRAFICO CBR


12 GOLPES



25 GOLPES

56 GOLPES

60LPES	WO%	XAM.d	HINCH %	COMP.%	CBR (0.1")	CBR (0,2")	CBR
12	19.91	1,54	5,10	92%	3.9%		95%
25	20,57	1,63	4,80	96%	4.2%		5.00%
56	20.57	1,70	2,42	100%	5,1%		

Ensayos Generales

"Sub Base - Anticontaminante"

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

PROYECTO: Pavimentación de la Carretera a Santa Clara

UBICACIÓN

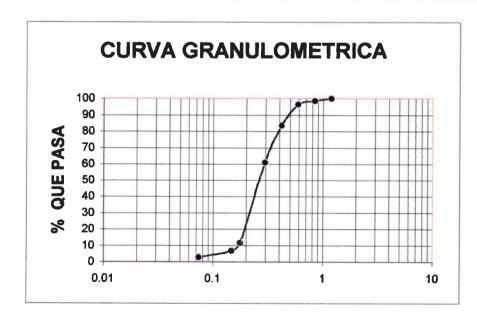
: Km. 11+160 L. Izquierdo

: Sub Base o Anticontaminante

: Cielo Abierto

Carretera Iquitos - Nauta

FECHA


MATERIAL : Arena fina color crema

: 16/08/2003

PROFUNDIDAD **OPERADOR**

: Bach, Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES	TAMAÑO MAXIMO DESCRIP. MUESTRA
3"						
2 1/2"						7
2"						Arena Fina
1 1/2"						color crema
1"]
3/4"						
1/2"]
3/8"]
N° 4						L.L 19.78
N° 8						L.P N.P.
№ 10						I.P. N.P.
№ 16				100,00		SUCS SP
Nº 20	4,50	1,50	1,50	98.50		AASTHO A-3
Nº 30	6.20	2.07	3,57	96.43		1
№ 40	38.70	12.90	16,47	83.53		1
№ 50	67,70	22.57	39.03	60.97		1
№ 80	148,10	49,37	88,40	11.60		1
№ 100	14.10	4.70	93.10	6.90		OBSERACIONES
N° 200	12,40	4,13	97.23	2.77		1
-200	8,30	2.77	100.00			1
TOTAL	300,00					1
PESO INIC.	300.00					1

CANTERA

MUESTRA

PROFUNDIDAD

RECIPIENTE N°

N° GOLPES

R + S.HUMEDO

R + S.SECO

PESO DEL AGUA

PESO DEL RECIP.

PESO DEL S.SECO

% DE HUMEDAD

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA : Pavimentación de la Carretera a Santa Clara

UBICACIÓN : Km. 11+160 L.Izquierdo

OPERADOR

: Sub Base o Anticontaminante

20,98

Carretera Iquitos - Nauta

MATERIAL : Arena fina color crema

: Bach, Maira M. Quispe Pinedo

FECHA : 16/08/2003

	LIMITE LI	QUIDO		
	01			
06	07	08		
16	25	33		
17.18	15.55	15.78		
15,21	13.92	14.22		
197	1.63	1,56		
5,82	5,70	5.80		
9.39	8,22	8.42		٦

18,53

PROFUNDIDAD					
MUESTRA					
PROFUNDIDAD					
RECIPIENTE N°					
R + S.HUMEDO					
R + S.SECO					
PESO DEL AGUA					
PESO DEL RECIP.					
PESO DEL 5.SECO					
% DE HUMEDAD					

19,83

MUESTRA Nº		
L.L	19.78	
L.P	NP	
I.P	NP	

OBSERVACIONES

ANIGAL RAMPER AZANERO

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

UBICACIÓN

: Km, 11+160 L.Izquierdo

CANTERA

: Sub Base o Anticontaminante

_

Carretera Iquitos - Nauta

MATERIAL

: Arena fina color crema

OPERADOR

: Bach, Maira M. Quispe Pinedo

FECHA

: 17/08/2003

ENSAYO	CBR
--------	-----

Molde Nº		09			08			10		
Golpes por Capa Nº		12			25	5		56		
COND. DE LA MUES	TRA	Sin M	lojar	Mojada	Sin M	lojar	Mojada	Sin Mojar Mojad		
Paso molde + suelo húmedo		883	. 7	9100	907	70	9250	917	25	9200
Peso del Molde	9r [493	2	4932	501	10	5010	492	28	4928
Peso del suelo húmedo	9r _	390	5	4168	406	50	4240	419	7	4272
Volumen del suelo	cc.	217	9	2179	216	57	2167	218	14	2184
Densidad de Humedad	gr.cc.	1,79	9	1.91	1,87		1.96	1.9	2	1.96
cc Humedad		16.9	8	23	17		21.22	16.	9	18.96
Densidad Seca	gr./cc.	1,53	3	1.56	1,6		1.61	1.6	4	1.64
Tarro Nº		01	12	01	06	17	17'	03	04	13
Tarro + suelo húmedo	gr	108.12	109.83	95.08	98.72	106.99	89.00	108.93	109.15	100.00
Tarro + suelo seco	gr	95,55	97.44	81,88	87.68	94.97	77.66	96.81	96,93	88,02
Agua	gr	12.57	12,39	13,20	11.04	12.02	11.34	12.12	12.22	11.99
Peso del Tarro	9r _	21,50	24.50	24,50	22.80	24.20	24.20	25.00	24,81	24.80
Peso del suelo seco	gr	74.05	72,94	57,38	64.88	70,77	53.46	71,81	72.12	63,22
% humedad		16.98	16.99	23,00	17,02	16.98	21.21	16.88	16.94	18,96
Promedio de Humedad	%	16.98		23.00	17.00		21,21	16.91		18.96

EXPANSION

FECHA	HORA	TIEMPO	LECTURA	EXPANSION		LECTURA	EXPANSION		LECTURA	EXI	PANSION
			DIAL	M.M.	%	DIAL	M.M.	%	DIAL	M.M.	%
17/08/03	02:00 p.m.	02:00	0.038	0.9652	0	0.083	2,1082	0.00	0.046	1.1684	0,00
18/08/03	02:00 p.m.	24	0,040	1,0160	0.04	0.084	2,1336	0.02	0.046	1,1684	0.00
19/08/03	02:00 p.m.	48	0.041	1,0414	0.07	0.084	2.1336	0.02	0,046	1,1684	0,00
20/08/03	02:00 p.m.	72	0,041	1.0414	0.07	0.084	2,1336	0.02	0.046	1,1684	0.00
21/08/03	02:00 p.m.	96	0.041	1,0414	0.07	0.084	2.1336	0.02	0.046	1,1684	0.00

PENETRACION

		MOL	DE Nº			MOLD		MOLDE N°				
PENETRACION	Lectura		CORRECCIO	N	Lectura	CO	RECCIO	N	Lectura CORRECCIO			ON
PULGADAS	Dial	Libs.	Libss/	plg2	Dial	Libs.	Libss	Libss/plg2		Libs.	Libs/pulg2	
0,025	0.0011	64	21		0.0014	88	29		0.0016	104	35	
0.050	0.0021	143	48		0.0031	233	74		0,0042	310	103	
0.075	0,0034	246	82		0.0048	357	119		0,0075	570	190	
0.100	0.0043	318	106	10,59	0.0069	523	174	17.44	0,0111	854	285	28,47
0,150	0.0064	484	161		0.0102	783	261		0.0182	1411	470	
0,200	0,0081	618	206	13.73	0.0123	949	316	21.08	0.0240	1864	621	41,43
0,250	0.0091	697	232		0,0136	1051	350					
0,300												
0.400												
0.500			Chaco has									

ANIE AL RANGAZ AZANERO

Ensayos Generales

"Base"

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMETRICO POR TAMIZADO

OBRA : Pavimentación de la Carretera a Santa Clara

UBICACIÓN

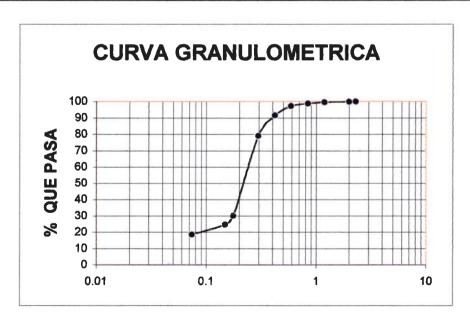
: Km, 11+160 L.Izquierdo

Carretera Iquitos - Nauta

MUESTRA : Canter

MATERIAL : Arena Limosa de Color rojizo

PROFUNDIDAD


: Cielo Abierto

FECHA : 14/08/2003

OPERADOR

: Bach, Maira M. Quispe Pinedo

TAMICES ASTM	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFICACIONES	TAMAÑO MAXIMO DESCRIP. MUESTRA
3 _n						
2 1/2"						
2"						Arena Limosa
1 1/2"						calor rojiza.
1"						
3/4"						
1/2"						
3/8"						
№ 4						L.L 22,16
Nº 8				100		L.P 20,56
№ 10	0,50	0.17	0.17	99.83		I.P. 1,60
№ 16	1,00	0.33	0.50	99.50		SUCS SM
№ 20	2,20	0.73	1.23	98.77		AASTHO A-2-4
N° 30	4.80	1,60	2.83	97.17		7
№ 40	16.70	5,57	8.40	91.60		1
№ 50	37.60	12,53	20.93	79.07		7
№ 80	147,50	49.17	70.10	29.90		
№ 100	16,20	5.40	75.50	24.50		OBSERACIONES
№ 200	17,70	5,90	81,40	18,60		7
-200	55,80	18,60	100,00			7
TOTAL	300,00					
PESO INIC.	300.00					1

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

UBICACIÓN : Km. 11+200 L. Izquierdo

CANTERA

: Base Roja

Carretera Iquitos - Nauta

MATERIAL

: Arena Limosa color rojizo

OPERADOR : Bach, Maira M. Quispe Pinedo

FECHA : 14/08/2003

LIMITE LIQUIDO										
MUESTRA		01								
PROFUNDIDAD										
RECIPIENTE N°	01	02	03							
Nº GOLPES	16	22	33							
R+S.HUMEDO	19.25	19.10	17.67							
R + S.SECO	17.38	17.22	16,22							
PESO DEL AGUA	1.87	1.88	1.45							
PESO DEL RECIP.	9.35	8.80	9.27							
PESO DEL S.SECO	8.03	8.42	6.95							
% DE HUMEDAD	23,29	22,33	20,86							

	L	LIMITE PLASTICO 01 Cielo Abierto 04 05 9.60 9.54 8.93 8.89 0.67 0.65 5.66 5.74			
MUESTRA	01				
PROFUNDIDAD	Cielo Abier	to			
RECIPIENTE Nº	04	05			
R+5.HUMEDO	9.60	9.54			
R + S.SECO	8.93	8.89			
PESO DEL AGUA	0,67	0,65			
PESO DEL RECIP.	5.66	5,74			
PESO DEL S.SECO	3.27	3.15			
% DE HUMEDAD	20.49	20.63			

MUESTRA Nº		
L.L	22.16	
L.P	20,56	
I.P	1.60	

OBSERVACIONES

SIMA DUITOS S.R.LTDA

AMAIAL RAMMERO
INSCRIPTION GIVII

CIP 5716

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

ENSAYO DE COMPACTACION

PROCTOR MODIFICADO

PROYECTO

: Pavimentación de la Carretera a

FECHA

UBICACIÓN : C-3 Km, 0+500 N° CAPAS : 15/08/2,003

N° GOLPES

: 05 : 56

CANTERA

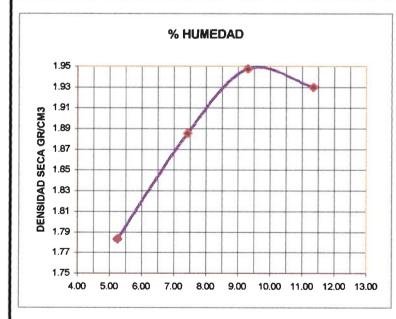
Santa Clara : Base Roja

OPERADOR : Bach, Maira M. ALTURA DE CAIDA

: 18"

MATERIAL

: Arena Limosa de color rojizo


Quispe Pinedo P. DEL MARTILLO

: 10 LB

UBICACIÓN

: Km. 11+200 L. Izquierdo Carretera Iquitos-Nauta

13 Volumen del Molde	cc	2126	2126	2126	2126	
1 Peso del Suelo Húmedo + Molde	gr.	7340	7656	7876	7928	
2 Peso Molde	gr.	3350	3350	3350	3350	
3 Peso del Suelo Húmedo	gr.	3990	4306	4526	4578	
4 Capsula Nº		26	20	23	28	
5 Peso Húmedo + cápsula	gr.	107.59	83,25	79,75	81,65	
6 Peso Suelo Seco + cápsula	gr.	103,70	79.15	74.85	75.8	
7 Peso del Agua	gr.	3.89	4,10	4.90	5.85	
8 Peso de la cápsula	gr.	29.60	23,95	22,20	24.25	
9 Peso del Suelo Seco	gr.	74.10	55,20	52.65	51.55	
0 % de Humedad	%	5.25	7.43	9.31	11.35	
Densidad del Suelo Húmedo	gr.	1,88	2,03	2,13	2.15	
12 Densidad del Suelo Seco	gr./cc	1.78	1.89	1.95	1.93	

Max, Densidad 1.95 gr/cm3 9.60% Optima Humedad

SERVICIO INDUSTRIAL DE LA MARINA DE IQUITOS S.R.LTDA

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

OBRA

: Pavimentación de la Carretera a Santa Clara

UBI*CAC*IÓN

: Km. 11+200 L.Izquierdo

CANTERA

: Base Roja

Carretera Iquitos - Nauta

MATERIAL

: Arena Limosa de color rojizo

OPERADOR

: Bach, Maira M. Quispe Pinedo

FECHA

: 15/08/2003

			(ENSAY	O CE	R				
Molde No		09			0	В			10	
Golpes por Capa Nº		12			2!	5			56	
COND. DE LA MUES	STRA	Sin Ma	ojar	Mojada	Sin N	lojar	Mojada	Sin N	lojar	Mojada
Paso molde + suelo húmea	do	9149	9	9313	94	05	9525	93	37	9375
Peso del Molde	gr	493	2	4932	50	00	5000	47:	30	4730
Peso del suelo húmedo	gr g	4217	7	4381	440	05	4525	460	07	4645
Volumen del suelo	cc.	2179)	2179	210	57	2167	21!	58	2158
Densidad de Humedad	gr.cc.	1.94		2,01	2.0)3	2.09	2,1	.3	2,15
cc Humedad		10,17	2	14.31	9.9	2	13.64	9,4	41	10.96
Densidad Seca	gr./cc.	1,76		1.76	1,8	5	1.84	1.9	5	1.94
Tarro Nº	[14	05	24	ОВ	09	12	01	02	13
Tarro + suelo húmedo	gr[80,30	64.30	104,53	80,70	71.40	82.65	78,10	78.00	75,29
Tarro + suelo seco	gr	75.00	60.40	95,20	75,60	67.10	75,01	73,30	73,30	69.29
Agua	gr	5.30	3.90	9.33	5.10	4.30	7.64	4.80	4.70	5.99
Peso del Tarro	gr[22.40	22.00	30,00	24.00	23.90	18,58	21.50	24.10	14.60
Peso del suelo seco	gr	52.60	38.40	65,20	51,60	43.20	56,43	51,80	49.20	54.69
% humedad		10,08	10,16	14.31	9.88	9.95	13.54	9.27	9.55	10,96
Promedio de Humedad	%	10.12		14,31	9.92		13,54	9.41		10.96

EXPANSION

FECHA	HORA	TIEMPO	LECTURA	EXPA	NSION	LECTURA	EXPAN	ISION	LECTURA	EXP	ANSION
			DIAL	M.M.	%	DIAL	M.M.	%	DIAL	M.M.	%
15/08/03	05:45 p.n	0	0.023	0.584	0	0,04	1.016	0.00	0.083	2,1082	0,00
16/08/03	05:45 p.n	24	0.023	0.584	0.00	0.041	1,0414	0.02	0.087	2,2098	0.09
17/08/03	05:45 p.n	48	0,023	0.584	0.00	0.042	1,0668	0,04	0,087	2,2098	0.09
18/08/03	05:45 p.n	72	0.024	0,610	0,02	0.042	1.0668	0,04	0.087	2.2098	0.09
19/08/03	05:45 p.r	96	0.025	0,635	0.04	0.042	1,0668	0.04	0.090	2,2860	0.15

PENETRACION

		MO	LDE Nº			MOLD	E N°			MOLDE	1°	
PENETRACION	Lectura		CORRECCIO	N	Lectura	co	RRECCIO	N	Lectura	COR	RECCIO	N
PULGADAS	Dial	Libs.	Libss/	plg2	Dial	Libs.	Libss	/plg2	Dial	Libs.	Libs	/pulg2
0.025	0.0030	215	72		0.0027	191	64		0.0019	128	43	
0,050	0.0065	492	164		0,0062	468	156		0,0040	294	98	
0.075	0.0110	846	282		0.0100	768	256		0,0055	413	138	
0.100	0,0160	1239	413	41.30	0.0142	1098	366	36.59	0.0072	547	182	18,23
0.150	0.0235	1825	608		0.0210	1630	543		0,0105	807	269	
0.200	0.0329	2556	852	56.79	0.0270	2098	699	46.62	0.0133	1027	342	22,83
0.250	0.0435	3373	1124		0.0330	2564	655		0.0160	1239	413	
0,300	0.0535	4138	1379						0.0185	1435	478	
0.400									0.0220	1708	569	
0.500												

ANIBAL PANIREZ AZANERO

SERVICIO INDUSTRIAL DE LA MARINA DE IQUITOS S.R.LTDA

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES

AREA MECANICA DE SUELOS, CONCRETO Y ASFALTO

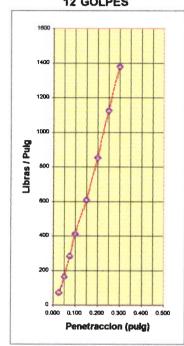
: Pavimentación de la Carretera a Santa Clara UBICACIÓN : Km. 11+200 L.Izquierdo

CANTERA : Base Roja

Carretera Iquitos - Nauta

ENSAYO CBR

MUESTRA FECHA


: Arena Limosa color rajizo : 20/08/2003

: Bach. Maira M. Quispe Pinedo OPERADOR

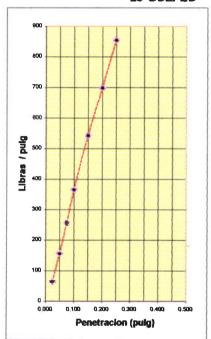
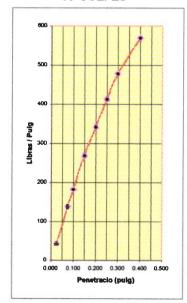
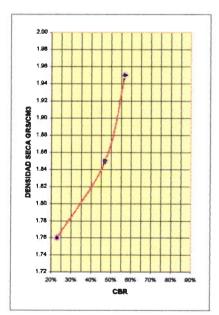

ax. Dens.P. Mod. 1,95%

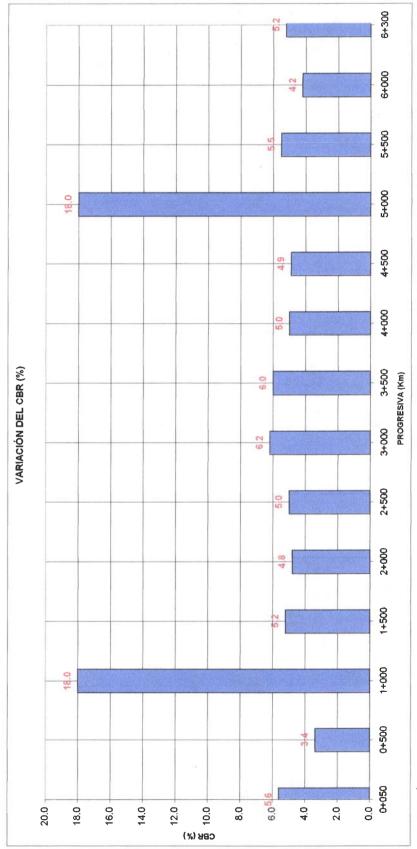
GRAFICO CBR


12 GOLPES

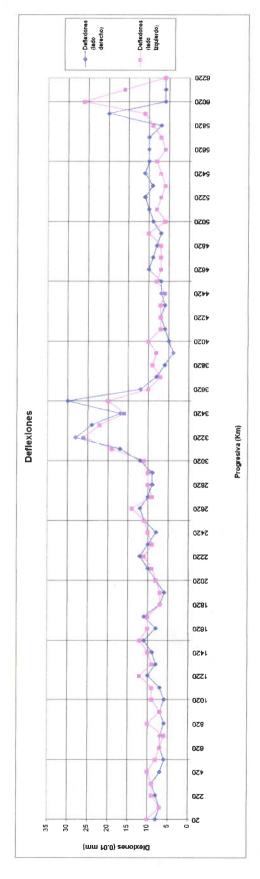


25 GOLPES

56 GOLPES



GOLPES	WO%	D.MAX	HINCH %	COMP.%	CBR (0.1")	CBR (0.2")	CBR
12	10,12	1.76	0,15	92%	23.0%		95%
25	9.92	1,85	0.04	97%	47.0%		46.62%
56	9.41	1.95	0,04	100%	57.0%		


ANEXO VI

- Información Viga Benkelman

INTERPRETACIÓN:

- 1.- La presente gráfica es el resultado de la variación del CBR(%) de la sub rasante a lo largo de la vía, sin embargo no es una gráfica que represente matematicamente los valores del CBR(%) en progresivas estudiadas. Es sugerible que las muestras provengan de los dos carriles y del eje de la vía.
- 2.- Se muestran los valores del CBR(%) obtenidos en Laboratorio, los mismos que son puntuales, no necesariamente son representativos del tramo graficado.
- 3.- Se observa que la variación del CBR(%) depende directamente de las características físicas y su comportamiento mecánico del suelo de fundación.
- 3 El CBR(%) es un parametro para determinar la capacidad de soporte de la subrasante, previo al diseño estructural del pavimento.
- 4 Para el presente Trabajo de Investigación los resultados del CBR(%), se han utilizado para el diseno de la estructura del pavimento

INTERPRETACIÓN:

- 1.- La presente gráfica es el resultado de la variación de las deflexiones de la sub rasante a lo largo de la vía
- 2.- Se muestran los valores de las deflexiones obtenidas en el campo.
- 3.- Las medidas de deflexión, se realizan durante las etapas de diseño, construcción, reparación, servicio o refuerzo del pavimento, pero no antes del diseño del pavimento.
- 4. Para el presente Trabajo de Investigación, las pruebas de deflectometría no son aplicables, ni se han utilizado, en razón a que no representan parametros de diseño.

EN CONCLUSION:

- 1.- No hemos encontrado referencias bibliográficas que relacione el CBR(%) y las deflexiones determinadas por medio de la viga Benkelman en campo.
- 2.- Para intentar correlacionar el CBR(%) va Deflexiones (0.01mm), sabiendo que estos valores son puntuales y variados de acuerdo al tipo y estado del suelo, consideramos que se requiere de muchos trabajos de Investigación sofisticados y muy minuciosos, con Ingenieros de Experiencia Profesional en la especialidad y con los equipos de campo, equipos de laboratorios
 - estandarizados v normalizados. 3- No se recomienda realizar ensayos de deflexiones a traves de la viga Benkelman para el diseño estructural de pavimentos, por que no existe Norma Tecnica alguna que lo recomiende.
- 4 Las medidas de las deflexiones debieron efectuarse siguendo los dos carriles y el eje central.

Y TECNOLOGÍA DE LOS MATERIALES LABORATORIO DE MECÁNICA DE SUELOS

SANTA CLARA CARRETERA

0+000 AL 2+020

TRAMO

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

CARGA POR EJE: 8,200 KG	JE: 8,20	DX OC		PRESI	ON DE	INFLAD	PRESION DE INFLADO: 80 psi		CARRIL DERECHO	FRECHO		PAVIME	PAVIMENTO: A NIVEL SUB-RASANTE	NIVEL S	SUB-RA	SANTE										
PROGRESIVA	_	1 0.25	10-0 10-25 10-30 10-40 10-50 10-75	10.40	10.50			T (°C)	T (°C)	AGOH	ш	50.	DEFLI	DEFLEXIONES		(0.01 mm)				DEFLE	DEFLEXIONES CORREGIDAS (mm)	CORRE	GIDAS	(mm)		
	-						REP	PAVI.	AMBI.		cm	Po	D25 D	D30 D40	40 DS0	0 D75	-	D500 Factor correc	DKO	DK25	DK30	DK40	DK50	DK75	DK500	Rc(m)
+20	100	96 (97	96	92	94	92					00	9	5 4	1 3	2	0	1,000	8,0	6,0	5.0	4.0	3.0	2.0	0'0	1563
+120	100	16 (96	95	94	93	93					7	4	3 2	2 1	0	0	1,000	7,0	4.0	3.0	2,0	1.0	0.0	0'0	1042
+220	100	98	96	92	94	93	92					00	9	4 3	3 2	-	0	1,000	8,0	6,0	4,0	3.0	2.0	1.0	0.0	1563
+320	100	96 (96	94	93	. 92	91					6	7	5 3	3 2	-	0	1,000	0'6	7.0	5,0	3.0	2.0	1.0	0.0	1563
+420	100	66 (6	96	95	94	93					7	9	4 3	3 2	-	0	1,000	0'2	0.9	4.0	3.0	2.0	1.0	0.0	3125
+520	100	66 (98	97	96	92	94					9	5	4 3	3 2	-	0	1,000	0'9	5.0	4.0	3.0	2.0	1.0	0.0	3125
+620	100	96 (97	96	95	94	93					7	2	4 3	3 2	-	0	1,000	7.0	5.0	4.0	3.0	2.0	1.0	0.0	1563
+720	100	98	97	96	95	94	93	*				7	5	4 3	3 2	-	0	1,000	7,0	5.0	4.0	3.0	2.0	1.0	0.0	1563
+820	100	66 (98	97	96	92	94	•				9	2	4 3	3 2	-	0	1,000	0'9	5,0	4.0	3.0	2.0	1.0	0.0	3125
+920	100	96 (97	96	92	94	93					7	5	4 3	3 2	-	0	1,000	7.0	5,0	4.0	3.0	2.0	1.0	0.0	1563
1+020	100	66 (98	26	96	95	94					9	2	4	3	-	0	1,000	6,0	5.0	4.0	3.0	2.0	1.0	0.0	3125
1+120	100	98	6	96	95	94	93				14	7	5	4	3 2	_	0	1,000	7.0	5,0	4.0	3.0	2.0	1.0	0.0	1563
1+220	100	96 (94	93	95	91	06					10	9	4	3 2	-	0	1,000	10,0	0.9	4.0	3.0	2.0	1.0	0.0	781
1+320	100	16 (96	95	94	93	92					80	ro v	4 3	3 2	-	0	1,000	8,0	5.0	4.0	3.0	2.0	1.0	0.0	1042
1+420	100	96 (92	93	95	91	91					6	2	4 2	-	0	0	1.000	9.0	5.0	4.0	2.0	1.0	0.0	0.0	781
11500	100	90	70	00	5	00	00					**	1		((000								

Tco Alberto Navarro Salazar

9,03 998 Laboratorio de Mecdaica de Suelos 8,0 111,0 111,0 7,0 6,0 7,8 1,5

က္မွတ္လုပ္သ

Promedio

Desviación Standard Coeficiente de Variación Valor Caracteristico

INIVERSIDA PARTICULAR DE IQUITOS

1042 781 781 1042 781

1,0

1,0 2,0 2,0 2,0 2.0

2,0 4,0 3,0 3,0

3,0 2,0 4,0 4,0 4.0

0,0

2,0

3,0

4,0

1,000 1,000 000

5,0

1563 3125 1563

0,0

5,0

1,000 000

2222

4000

0 2 2

2 4

80778708

92 93 93 94 95

93 95 95 93

95 95 95 95

96 94 95 97 98 98

96 96 96 96 96 96 96 96 96 96

100

1+820 1+920 2+020

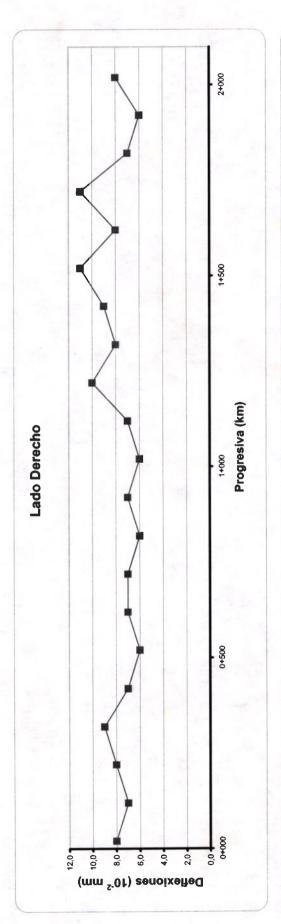
100

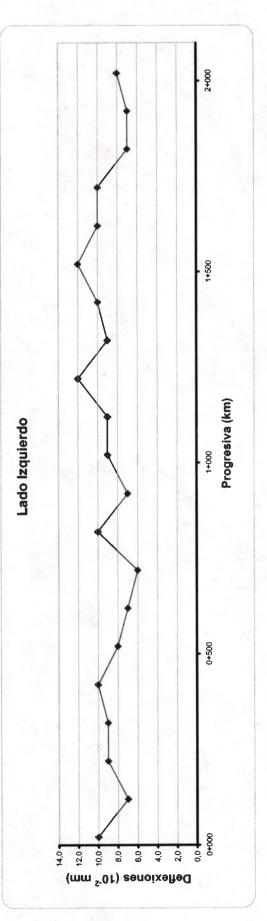
100

1+520 1+620 1+720

00000000

200


0,0


1.0 1,0 1.0

ANALISIS DEFLECTOMETRICO SUB-RASANTE

Tramo: +20

20 2+020

UNIVERSIBAD PARTICULAR DE IQUIFOS
LEBORETATION DE MACCOLOGICO de Sueles
y Technologie de materiales

Ing. Card Garcia Langer

LABORATORIO DE MECÁNICA DE SUELOS Y TECNOLOGÍA DE LOS MATERIALES

CARRETERA:

SANTA CLARA

0+020-2+020

TRAMO:

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

	ચા
Ca	18
ċ	از
4	ł
DE INE! ADD	:
u	il
5	1
Š	įĮ
MOISTON	3
q	
	ſ
	1
	ı
200 KG	2
2	ì
0	
ü	iŀ
u	1
AL A GOO	ś١
à	
- 2	١٤

BDOCBESIVA 10.0 10.35 10.30 10.40 10.50 10.75	0	20.01	0 0	0 40	0 50	37.01	-i	T (°C)	T (°C)	Yach	ш		DEI	DEFLEXIONES	SHI	(0.01 mm)	m)	
TROGRESIVA	-0-0	LU-23	20-30	1	20-20	2/-07	MAX	PAVI.	AMBI.	A A A	E	°	D25	D30	D40	D50	D75	D500
+20	100	26	92	94	93	91	06					10	7	2	4	3	-	0
+120	100	66	86	6	96	92	93					7	9	2	4	3	2	0
+220	100	98	97	96	92	93	91					o	7	9	2	4	7	0
+320	100	66	86	96	94	92	53					o	œ	7	2	3	-	0
+420	100	98	96	95	94	92	06					10	80	9	2	4	7	0
+520	100	86	96	95	94	93	92					00	9	4	e	7	-	0
+620	100	66	86	26	96	94	93					7	9	S	4	3	-	0
+720	100	66	98	26	96	92	94					9	2	4	3	7	-	0
+820	100	96	95	95	93	92	06					10	9	2	4	3	2	0
+920	100	98	97	96	92	94	93					7	2	4	8	2	-	0
1+020	100	98	97	95	94	92	91					0	7	9	4	က	-	0
1+120	100	98	26	92	94	92	91					6	7	9	4	က	-	0
1+220	100	97	95	93	91	88	88					12	თ	_	2	က	-	0
1+320	100	66	86	96	94	92	91					0	∞	7	2	3	-	0
1+420	100	98	96	94	93	91	06					10	∞	9	4	3	-	0
1+520	100	95	93	91	90	83	88					12	7	2	3	2	-	0
1+620	100	97	96	92	94	93	06					10	7	9	2	4	က	0
1+720	100	96	95	94	93	92	06					10	9	ß	4	3	2	0
1+820	100	86	6	96	92	94	93					7	2	4	8	7	-	0
1+920	100	66	86	97	96	94	93					7	9	Ŋ	4	3	-	0
2+020	100	00	80	70	90	20	00		-			0	7	Q	u	V	·	C

EJE	EJE: 8,200 KG	KG KG		PRESI	ON DE	INFLAD	PRESION DE INFLADO: 80 psi		CARRIL IZQUIERDO	COUIERDO	0	PAVIM	ENTO:	PAVIMENTO: A NIVEL SUB-RASANTE	r SUB-	RASAN	TE										A second
47	0.0	10.25	10.30	10.40	10-01 0-25 0-30 0-40 0-50 0-75		-0-	T (°C)	T (°C)	Vach	ш	0 2	DE	DEFLEXIONES		(0.01 mm)	(1				DEFL	EXIONE	S CORR	DEFLEXIONES CORREGIDAS (mm)	(mm)		2000
		20-0-	200	2	2		MAX	PAVI.	AMBI.		E	O	D25	D30	D40	D50	D75 C	3000 F	D500 Factor correc	рко	DK25	5 DK30	DK40	DK50	DK75	DK500	Rc(m)
	100	26	92	94	93	91	06					10	7	5	4	3	-	0	1,000	10,0	7,0	5,0	4,0	3,0	1,0	0,0	1042
	100	66	86	26	96	92	93					7	9	2	4	3	2	0	1,000	7,0	0'9		4,0	3,0	2,0	0,0	3125
	100	98	97	96	92	93	91					0	7	9	2	4	7	0	1,000	0'6	7,0	6,0	5,0	4,0	2,0	0,0	1563
	100	66	98	96	94	92	51					თ	œ	7	2	က	-	0	1,000	9,0	8,0	7,0	5,0	3,0	1,0	0,0	3125
	100	98	96	95	94	92	06					10	00	9	2	4	7	0	1,000	10,0	8,0	6,0	5,0	4,0	2,0	0,0	1563
	100	86	96	92	94	93	92					00	9	4	က	2	-	0	1,000	8,0	6,0	4,0	3,0	2,0	1,0	0,0	1563
	100	66	86	97	96	94	93					7	9	2	4	က	-	0	1,000	7,0	6,0		4,0	3,0	1,0	0,0	3125
	100	66	98	97	96	95	94					9	2	4	8	2	-	0	1,000	0'9	5,0	4,0	3,0	2,0	1,0	0,0	3125
	100	96	95	94	93	92	06					10	9	Ω.	4	က	2	0	1,000	10,0	6,0	5,0	4,0	3,0	2,0	0'0	781
	100	98	26	96	92	94	93					7	2	4	က	2	-	0	1,000	7,0	5,0	4,0	3,0	2,0	1,0	0'0	1563
	100	98	97	92	94	92	91					o	7	9	4	က	-	0	1,000	0,6	7,0	0'9	4,0	3,0	1,0	0'0	1563
	100	98	26	92	94	92	91					0	7	မ	4	က	-	0	1,000	9,0	7,0	0'9	4,0	3,0	1,0	0,0	1563
	100	97	95	93	91	89	88					12	თ	_	2	က	-	0	1,000	12,0	0,6	7,0	5,0	3,0	1,0	0,0	1042
	100	66	86	96	94	92	91					တ	∞	7	2	3	-	0	1,000	0,6	8,0	7,0	5,0	3,0	1,0	0,0	3125
	100	98	96	94	93	91	06					10	∞	9	4	8	-	0	1,000	10,0	8,0	0,9	4,0	3,0	1,0	0,0	1563
	100	95	93	91	90	89	88					12	7	2	8	2	,	0	1,000	12,0	7,0	5,0	3,0	2,0	1,0	0,0	625
	100	26	96	95	94	93	06					10	7	9	2	4	က	0	1,000	10,0	7,0	0,9	5,0	4,0	3,0	0,0	1042
	100	96	95	94	93	92	06					10	9	S	4	3	2	0	1,000	10,0	6,0	5,0	4,0	3,0	2,0	0,0	781
	100	86	6	96	95	94	93					7	5	4	8	2	-	0	1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	1563
	100	66	86	97	96	94	93	0				7	9	Ŋ	4	က	-	0	1,000	7,0	0'9	5,0	4,0	3,0	1,0	0,0	3125
	100	66	86	497	96	92	92					∞	7	9	2	4	3	0	1,000	8,0	7,0	N. B.A.	5.0	Picet. D.	3.0	0.0	3125
																	Promedio	oibe	A	8,9		Laboratorie	×	Mecánico	de Suela	96	1890
															Desvi	Desviación Standard	Stand	lard	້ິ້	1,7		y. J.	plaining	y l'acraiegla de Meteriales	eriaies		942
				,										ပိ	ficien	Coeficiente de Variación	Variac	ión	ပဲ	18,6			0	-			3440
		1	F												Valo	Valor Caracteristico	cteris	tico	2	11.6			12	3			6600
	1	1	1	1															,			F	1				

Tco Alberto Navarro salazar

Ing. Coxal Garcin Langer
V°b° Jefelde Laboratorio

LABORATORIO DE MECÁNICA DE SUELOS Y TECNOLOGÍA DE LOS MATERIALES

2+120 AL 4+120 SANTA CLARA CARRETERA TRAMO

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

and an analysis of the state of	3	100	000	1	T -07 -07 -07 -07 -07 -07 -07 -07 -07 -07	27.0	-07	T (°C)	T (°C)	T (°C)	ш		DEFLEXIONES (0.01 mm)	DEFLEXIONES	VES (0	(0.01 mm)			N. S. S.	DEF	LEXIO	NES CC	DEFLEXIONES CORREGIDAS (mm)	MS (mr	ê		
PROGRESIVA	2	L0-25 L0-30 L0-40 L0-30 L0-73	L0-30	0-40	06-07	c/-0-	REP	PAVI.	AMBI.	K 20 0	Cm	å	D25	D30	D40 [D50 C	D75 D	D500 Factor correc	e DKO	DK25		DK30 D	DK40 D	DK50 C	DK75 [DK500	Rc(m)
2+120	100	66	86	96	94	92	06					19	6	8	9	4	2	0 1,000	10,0	0,6 0		8,0	6,0	4,0	2,0	0,0	3125
2+220	100	86	26	94	92	06	88					12	10	6	9	4	2	0 1,000	12,0	0 10,0		9'0'6	6,0	4.0	2,0	0,0	1563
2+320	100	96	94	93	92	91	06					10	9	4	3	2	-	0 1,000	10,0	0,0	0 4	0'1	3,0	2,0	1,0	0,0	781
2+420	100	86	26	96	95	94	92					∞	9	2	4	3	2	0 1,000	8,0	0,9		5,0 4	4,0	3,0	2,0	0,0	1563
2+520	100	95	93	92	91	06	89					7	9	4	3	2	-	0 1,000	11,0	0,0	0 4	0,1	3,0	2,0	1,0	0,0	625
2+620	100	96	94	92	91	06	88					12	00	9	4	3	2	0 1,000	12,0	0,8,0	-	6,0	4,0	3,0	2,0	0,0	781
2+720	100	86	96	98	93	91	06					10	00	9	2	3	-	0 1,000	10,0	0,8,0		6,0	5,0 3	3,0	1,0	0,0	1563
2+820	100	66	86	97	96	92	91					6	80	7	9	2	4	0 1,000	0,6	0,8		7,0	6,0	2,0	4,0	0,0	3125
2+920	100	86	96	95	94	93	91					6	7	2	4	3	2	0 1,000	0.6	0,7 (5,0 4	4,0	3,0	2,0	0,0	1563
3+020	100	96	94	92	06	68	88					12	80	9	4	2	-	0 1,000	12,	0,8,0		6,0	4,0	2,0	1,0	0,0	781
3+120	100	92	06	88	98	84	83					17	6	7	2	3	-	0 1,000	17,0	0'6 0		3 0'2	5,0	3,0	1,0	0,0	391
3+220	100	91	88	98	19	75	72					28	19	16	14	7	e	0 1,000	28,0	0 19,0		16,0 1	_	0,7	3,0	0,0	347
3+320	100	88	98	82	81	78	92					24	13	10	9	2	2	0 1,000	24,	0 13,0	1800	10,0	6,0	2,0	2,0	0,0	284
3+420	100	06	88	85	84	83	83					17	7	2	2	-	0	0 1,000	17,0	0,7 0		5,0	2,0	1,0	0,0	0'0	313
3+520	100	91	89	98	80	92	70					30	21	19	16	10	9	0 1,000	30,0	.,		19,0 1	16,0 1	0,01	0,0	0,0	347
3+620	100	96	94	92	06	68	88					12	80	9	4	2	-	0 1,000	12,0	0,8,0		6,0	4,0	2,0	1,0	0,0	781
3+720	100	86	26	96	92	94	92					00	9	2	4	8	2	0 1,000	8,0	0'9 (-	5,0		3,0	2,0	0,0	1563
3+820	100	97	26	96	92	94	94					9	က	က	2	_	0	0 1,000	0,9	3,0	0	3,0	2,0	1,0	0,0	0,0	1042
3+920	100	86	86	26	26	96	96					4	2	2	-	-	0	0 1,000	4,0	2,(0	0,5	1,0	1,0	0,0	0,0	1563
4+020	100	66	86	26	96	95	98					2	4	3	2	-	0	0 1,000	5,0	0,4	0 3	3,0	2,0	1,0	0,0	0,0	3125
The second secon	-	-	The second secon	-		-																					

Tco Alberto Navarro Salazar

1563

3,0 2,0 1,0 0,0 0,0 0,0 UNIVERSIDAD PARTICULAR DE IQUITOS Laboratorio de Macénico de Suelos y Teckelogie de Moteriales

71,7 914

12,4 7,1 57,7 24,1

ပဲ ထိ

Valor Caracteristico

S S

Desviación Standard

Coeficiente de Variación

Promedio

0

4+120

UNIVERSIDAD PARTICULAR DE IQUITOS LABORATORIO DE MECÁNICA DE SUELOS Y TECNOLOGÍA DE LOS MATERIALES

SANTA CLARA CARRETERA

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

2+020 - 4+120 TRAMO:

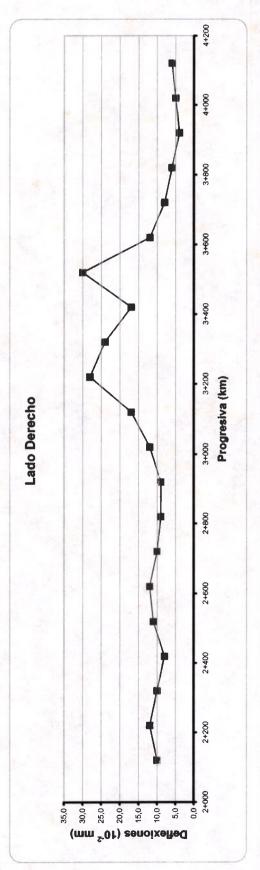
PROGRESIVA LO-2 LO-3 LO-4 LO-5 LO-5 LO-7 MAX PAN. AMBI. HORA E-M. PAN. AMBI. HORA E-M. Def Data (CM) Def Data (CM)	CARGA POR EJE: 8,200 KG	8,200) KG		PRESI	ON DE	INFLAL	PRESION DE INFLADO: 80 psi	osi	CARRIL I	CARRIL IZQUIERDO	_	PAVIN	ENTO:	PAVIMENTO: A NIVEL
100 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 98 97 98 98 99 99 98 98 91 90 98 91 90 91 90 91 90 91 90 91 90 91 90 91 90	PBOGBESIVA	0	10.05	10.00	0 70	0.60	10.75	ė	T (°C)	T (°C)	AGOH	ш		DE	FLEXIO
100 98 96 94 93 91 98 96 96 95 92 89 111 9 88 100 98 97 96 95 93 91 111 9 7 100 98 96 94 92 91 89 88 86 111 7 100 97 96 95 94 92 91 80 91 90 91 90<	PROGRESIVA	201	C7-07	L0-30		20-20	2	MAX	PAVI.	AMBI.		cm	Do	D25	D30
100 98 97 96 95 92 89 11 9 100 98 97 96 95 93 91 10 8 7 10 8 94 92 91 90 7 10 8 96 94 92 91 80 88 86 11 7 10 8 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 11 11 11 11 11 11 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	2+120	100	66	86	95	94	93	91					6	8	7
100 98 97 96 95 93 91 90 7 10 88 96 94 92 91 90 11 7 10 98 96 94 92 91 89 96 94 92 91 89 11 7 11 11 11 11 11 12 11 11 12 12 11 12 <td>2+220</td> <td>100</td> <td>86</td> <td>97</td> <td>96</td> <td>95</td> <td>92</td> <td>89</td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>6</td> <td>00</td>	2+220	100	86	97	96	95	92	89					11	6	00
100 98 96 94 92 91 90 91 90 91 92 91 89 91 90 91 92 91 90 92 91 90 92 91 90	2+320	100	86	97	96	92	93	9					6	7	9
100 96 95 94 92 91 89 86 11 7 100 97 96 95 94 92 91 90 91 90 91 90<	2+420	100	86	96	94	92	91	06					10	00	9
100 93 92 90 88 86 96 97 96 95 94 92 91 90 90 90 90 94 92 91 90	2+520	100	96	92	94	92	91	88				3.	11	7	9
100 97 96 95 94 92 91 100 98 96 94 93 91 90 100 97 95 93 91 90 89 100 90 88 85 83 82 81 100 88 86 83 80 76 74 100 90 87 84 83 80 78 100 97 96 94 93 86 84 10 100 96 95 94 93 92 91 90 100 96 95 94 93 92 91 90 90 100 96 95 94 93 92 90	2+620	100	93	92	8	89	88	98					14	7	9
100 98 96 94 93 91 90 90 91 90 90 90 90 89 10 7 10 7 10 90 88 85 83 80 80 80 11 6 11 6 11 6 11 6 11 6 14 10 7 10 90 88 85 81 80 78 80 80 14 90 80 14 90 80 14 90 90 14 90 80 90 14 90 90 90 14 90 90 90 14 90 90 14 90 90 90 14 90	2+720	100	97	96	92	94	92	91					6	9	2
100 97 95 93 92 91 90 89 10 7 100 96 88 85 83 82 81 81 81 81 81 81 81 81 81 81 81 81 81 82 84 83 80 78<	2+820	100	86	96	94	93	9	06					10	00	9
100 95 93 92 91 90 89 11 6 100 90 88 85 83 82 81 19 9 100 90 87 84 83 80 78 14 19 9 100 97 96 94 89 86 84 16 13 100 96 95 94 93 92 90 10 6 11 6 100 96 95 94 93 92 91 9 5 9 5 9 10 6 9 10 6 9 10 6 9 10 9 9 10 9 9 10 9 <td>2+920</td> <td>100</td> <td>97</td> <td>95</td> <td>93</td> <td>92</td> <td>9</td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>7</td> <td>2</td>	2+920	100	97	95	93	92	9	90					10	7	2
100 90 88 85 83 80 76 74 19 9 100 88 86 83 80 76 74 26 14 100 90 87 84 83 80 78 22 12 100 91 90 89 86 84 16 13 100 96 95 94 93 90 10 6 100 96 95 94 93 92 91 9 5 100 96 95 94 93 92 90 9 </td <td>3+020</td> <td>100</td> <td>92</td> <td>93</td> <td>92</td> <td>91</td> <td>96</td> <td>89</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>9</td> <td>4</td>	3+020	100	92	93	92	91	96	89					-	9	4
100 88 86 83 80 76 74 26 14 100 90 87 84 83 80 78 12 12 12 12 12 12 10 10 91 90 84 89 86 84 16 13 16 13 10 10 10 10 10 10 11 10 10 11 10 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 11 10 6 10 11 10 6 10 10 8 5 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 10 10 6 1	3+120	100	90	88	85	83	82	81					19	6	7
100 90 87 84 83 80 78 22 12 12 12 12 12 10 10 97 96 94 89 86 84 16 13 16 13 16 13 16 13 10 10 10 10 10 10 6 10 10 6 11 6 12 11 6 11 6 12 12 12 12 12 12 12 12 12 12 12	3+220	100	88	86	83	80	9/	74					26	14	12
100 97 96 94 89 86 84 16 13 100 91 90 89 87 86 80 10 20 11 100 96 95 94 93 92 90 10 6 7 5 100 96 95 94 93 92 91 9 5 9 5 9 5 9 10 6 9 5 10 6 9 10 6 9 9 9 10 9 <td>3+320</td> <td>100</td> <td>ļ</td> <td>87</td> <td>84</td> <td>83</td> <td>80</td> <td>78</td> <td></td> <td></td> <td></td> <td></td> <td>22</td> <td>12</td> <td>0</td>	3+320	100	ļ	87	84	83	80	78					22	12	0
100 91 90 89 87 86 80 10 96 95 94 93 92 90 10 6 10 10 6 10 10 6 10 10 10 10 10 10 10 10 10 10 10	3+420	100	97	96	94	89	86	84					16	13	12
100 96 95 94 93 92 90 10 6 100 98 97 96 95 94 93 7 5 100 96 95 94 93 92 91 9 5 100 97 96 95 94 93 92 90 10 6 100 98 97 96 95 94 93 7 5	3+520	100	91	90	89	87	86	80					20	=	10
100 98 97 96 95 94 93 92 91 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 9 5 9 9 5 9 <td< td=""><td>3+620</td><td>100</td><td>96</td><td>95</td><td>94</td><td>93</td><td>92</td><td>06</td><td></td><td></td><td></td><td></td><td>10</td><td>ဖ</td><td>2</td></td<>	3+620	100	96	95	94	93	92	06					10	ဖ	2
100 96 95 94 93 92 91 100 97 96 95 94 93 92 100 96 95 94 93 92 8 5 100 96 95 94 93 93 7 5	3+720	100	86	97	96	95	94	93					7	2	4
100 97 96 95 94 93 92 100 96 95 94 93 92 90 10 6 100 98 97 96 95 94 93 7 5	3+820	100	96	95	94	93	92	9					တ	ß	4
100 96 95 94 93 92 90 100 98 97 96 95 94 93	3+920	100	97	96	95	94	93	92					∞	2	4
100 98 97 96 95 94 93	4+020	100	96	95	94	93	92	96					10	9	2
	4+120	100	98	97	96	95	94	93					7	2	4

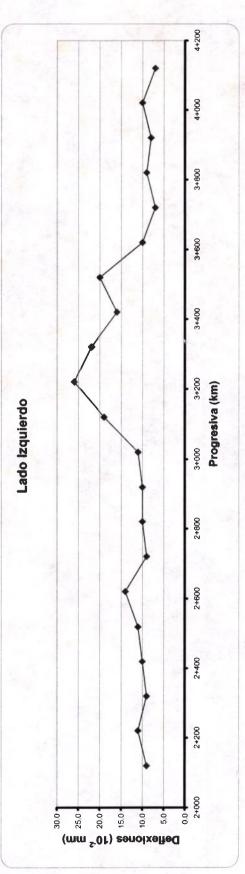
LA	-LADO: 80 psi	psi	CARRIL	CARRIL IZQUIERDO	_	PAVIM	PAVIMENTO: A NIVEL SUB-RASANTE	A NIVE	L SUB-	RASAN	TE			100	1000						
1		T (°C)	T (°C)	Adon	ш		DEF	DEFLEXIONES		(0.01 mm)	1				DEFLE	DEFLEXIONES CORREGIDAS (mm)	CORRE	GIDAS (mm)		
C).	MAX	PAVI.	AMBI.	K K C C	E S	o	D25	D30	D40	D50 I	D75 D	500 F	D500 Factor correc	DKO	DK25	DK30	DK40	DK50	DK75	DK500	Rc(m)
33	91					6	00	7	4	က		0	1,000	0,6	8,0	0,7	4,0	3,0	2,0	0,0	3125
25	89					7	6	00	7	9	က	0	1,000	11,0	0'6	8,0	0'2	0,9	3,0	0,0	1563
33	9					6	7	9	2	4	2	0	1,000	0'6	0'2	0,9	2,0	4,0	2.0	0,0	1563
7	06					10	œ	9	4	2	-	0	1,000	10,0	8,0	6,0	4,0	2,0	1,0	0,0	1563
7	89				6.	11	7	9	2	က	2	0	1,000	11,0	7,0	0,9	2,0	3,0	2,0	0,0	781
82	98					41	7	9	4	က	2	0	1,000	14,0	0'2	6,0	4,0	3,0	2,0	0,0	446
22	91					0	9	2	4	က	-	0	1,000	0'6	0'9	2,0	0,4	3,0	1,0	0,0	1042
7	06					10	80	9	4	က	-	0	1,000	10,0	8,0	0,9	4,0	3,0	1,0	0,0	1563
7	06					10	7	2	3	2	-	0	1,000	10,0	0,7	2,0	3,0	2,0	1,0	0,0	1042
8	89					-	9	4	က	2	-	0	1,000	11,0	0'9	4,0	3,0	2,0	1,0	0,0	625
22	81				5	19	6	7	4	2	-	0	1,000	19,0	0'6	7,0	4,0	2,0	1,0	0,0	313
9,	74					26	14	12	6	9	2	0	1,000	26,0	14,0	12,0	0,6	6,0	2,0	0,0	260
200	78					22	12	6	9	2	2	0	1,000	22,0	12,0	0,6	0,9	2,0	2,0	0,0	313
36	84					16	13	12	10	2	2	0	1,000	16,0	13,0	12,0	10,0	5,0	2,0	0,0	1042
98	80					20	1	10	6	7	9	0	1,000	20,0	11,0	10,0	9,0	7,0	0'9	0'0	347
35	96					10	9	2	4	8	2	0	1,000	10,0	0,9	2,0	4,0	3,0	2,0	0'0	781
4	93					7	2	4	က	2	-	0	1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	1563
32	91					တ	S	4	က	2	-	0	1,000	0,6	2,0	4,0	3,0	2,0	1,0	0,0	781
33	92					∞	2	4	က	2	-	0	1,000	8,0	2,0	4,0	3,0	2,0	1,0	0,0	1042
32	90					10	9	2	4	3	2	0	1,000	10,0	6,0	2,0	4,0	3,0	2,0	0,0	781
4	93					7	2	4	က	7	-	0	1,000	2,0	5,0	4,0	3,0	2,0	1,0	0,0	1563
			9								Promedio	양	A _G	12,3	3	DISHBAIND		ARTICULA	0 W	SOME	1052
									Desvi	ación	Desviación Standard	ard	້ິ້	5,3		Laboratorio de	v Tacanta		ice de Su	Sueips	899
								(•	400			-				24.54

Tco Alberto Nav

2151 4206 899

5,3 42,8 20,9


လွ် လွှဲ ဇွဲ


Coeficiente de Variación Valor Caracteristico Desviación Standard

ANALISIS DEFLECTOMETRICO SUB-RASANTE

2+120 Tramo:

4+120

UNIVERSIDAD PARTICULAR DE IQUITOS Laboratorio de Mecánico de Suelos y Tecnofegia de Materioles

Ing. Card Careta Langer

LABORATORIO DE MECÁNICA DE SUELOS Y TECNOLOGÍA DE LOS MATERIALES

SANTA CLARA CARRETERA:

4+220-6+220

TRAMO:

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

CARGA FOR EJE: 8,200 NG	9	200	6	9	0	10.75	ė	1 (°C)	T (°C)	4000	В		DEFL	DEFLEXIONES		(0.01 mm)			0	DEFLE	DEFLEXIONES CORREGIDAS (mm)	CORF	EGIDAS	(mm)		
PROGRESIVA		LG-0 LG-29 LG-30 LG-40 LG-30 LG-73	L0-30	L0-40	nc-07	c/-0-	REP	PAVI.	AMBI.	ANOF	E	8	D25 [D30 E	D40 D	D20 D	D75 D50	D500 Factor correc	DKO	DK25	DK30	DK40	DK50	0 DK75	5 DK500	Rc(m)
4+220	100	66	86	26	96	94	93			100		7	9	5	4	3	0	1,000	7,0	0'9	5,0	4,0	3,0	1,0	0'0	3125
4+320	100	66	86	97	96	95	94					9	2	4	3	2	0	1,000	0'9	5,0	4,0	3,0		1,0	0,0	3125
4+420	100	86	26	96	92	94	93	1		1			2	4	3	2	0	1,000	0'2	5,0	4,0	3,0	2,0	1,0	0,0	1563
4+520	100	86	26	96	95	84	93					7	2	4	3	2	0	1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	1563
4+620	100	96	95	94	93	91	06					10	9	2	4	3	1 0	1,000	10,0	0,9	5,0	4,0		1,0	0,0	781
4+720	100	96	95	94	93	92	91					0	2	4	3	2	1 0	1,000	0,6	5,0	4,0	3,0		1,0	0,0	781
4+820	100	-97	96	- 95	94	93	92			4		00	2	4	3	2	0	1,000	8,0	5,0	4,0	3,0		1,0	0,0	1042
4+920	100	98	26	96	92	94	93				1	7	2	4	3	2	1 0		7,0	5,0	4,0	3,0		1,0	0'0	1563
5+020	100	96	95	94	93	92	91			3		0	2	4	3	2	1 0		0,6	5,0	4,0	3,0		1,0	0,0	781
5+120	100	95	94	93	92	91	06				1	10	5	4	8	2	1 0		10,0		4,0	3,0		1,0		625
5+220	100	94	93	92	91	06	89					11	2	4	8	2	1 0		11,0	5,0	4,0	3,0	2,0	1,0	0'0	521
5+320	100	86	97	96	95	94	91					6	7	9	2	4	3 0		0,6	7,0	6,0	5,0		3,0		1563
5+420	100	66	96	94	92	06	89					11	9	7	2	3	0		11,0	,	7,0	5,0		1,0	0,0	3125
5+520	100	66	96	94	93	92	06					10	6	9	4	8	2 0		10,0	0,6	0'9	4,0		2,0		3125
5+620	100	98	26	92	92	91	06					10	80	7	5	2	1 0	1,000	10,0	8,0	7,0	5,0		1,0		1563
5+720	100	98	96	94	92	91	06					10	8	9	4	,	1 0	1,000	10,0	8,0	0,9	4,0		1,0		1563
5+820	100	86	97	96	95	94	93					7	5	4	3	2	1 0	1,000	7,0	2,0	4,0	3,0		1,0		1563
5+920	100	94	90	87	85	82	80					20	4	10	7	5	2 0	1,000	20,0	14,0	10,0	7,0		2,0	0,0	521
6+020	100	66	98	97	96	92	94					9	2	4	3	2	1 0	1,000	0,9	5,0	4,0	3,0	2,0	1,0	0,0	3125
6+120	100	66	86	97	96	92	94					9	2	4	3	2	1 0	1,000	0,9	5,0	4,0	3,0		1,0	0,0	3125
6+220	100	66	86	26	96	95	94					9	5	4	3	2	1 0	1,000	6,0	5,0	4,0	3,0	28	1,0	0,0	3125
																٩	Promedio	io R	8,9	7	SMALE	DADP	4	RTICULAR DE IQUIT	SOUR	1803
																					Laboratorio de	OLIO GE			-	

Tco Aberto Navarro Salazar

y Tecnologia de Materiales 3,1 3,1 34,9 13,9 က္မွီလို့လို့သို့ Desviación Standard Coeficiente de Variación Valor Caracteristico

1025 56,9

V°b° Jefe de leaboratorio

Y TECNOLOGÍA DE LOS MATERIALES LABORATORIO DE MECÁNICA DE SUELOS

SANTA CLARA CARRETERA:

ENSAYO DEFLECTOMETRICO CON VIGA BENKELMAN

4+120 - 6+220 TRAMO:

AVISAGOOGG	0		0.00	9	0	1 27 0	Lo- T (°C)	-	(°C)	E E		DE	DEFLEXIONES		(0.01 mm)	,		100	DEFL	EXIONE	S CORR	DEFLEXIONES CORREGIDAS (mm)	(mm)		
PROGRESIVA	_		-0-30		00-00	_	MAX PAVI.		AMBI.	Cm	οQ	D25	D30	D40	D20 [D75 D	D500 Factor correc	DKO	DK25	DK30	DK40	DK50	DK75	DK500	œ
4+120	100	86	97	96	95	94	93	4			7	5	4	8	2	-	0 1,000	7.0	5,0	4,0	3,0	2,0	1,0	0,0	_
4+220	100	86	26	96	95	94	93				7	S	4	က	7	-	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	_
4+320	100	66	86	26	96	95	94				9	2	4	3	2	-	0 1,000	6,0	5,0	4,0	3,0	2,0	1,0	0'0	က
4+420	100	97	96	95	94	93	92				00	2	4	က	2	-	000'1 0	8,0	5,0	4,0	3,0	2,0	1,0	0,0	-
4+520	100	86	26	96	95	94	93				7	5	4	က	2	-	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	_
4+620	100	86	97	96	92	94	93				7	2	4	က	2	-	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	-
4+720	100	86	26	96	95	94	93				7	2	4	3	2	-	0001 0	7,0	5,0	4,0	3,0	2,0	1,0	0,0	-
4+820	100	95	94	93	92	91	06				10	2	4	က	2	-	0 1,000	10,0	5,0	4,0	3,0	2,0	1,0	0,0	-
4+920	100	66	86	26	96	95	94				9	2	4	က	2	1	0 1,000	6,0	5,0	4,0	3,0	2,0	1,0	0,0	က
5+020	100	97	96	92	94	93	92				ω	ა	4	က	2	-	000'1	8,0	5,0	4,0	3,0	2,0	1,0	0,0	-
5+120	100	86	26	96	95	94	93				7	2	4	8	2	-	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0'0	_
5+220	100	66	86	26	96	92	94				9	2	4	8	2	-	0 1,000	0,9	5,0	4,0	3,0	2,0	1,0	0,0	က
5+320	100	86	26	96	95	94	93				7	2	4	8	2	-	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	_
5+420	100	97	96	92	94	93	92				00	2	4	3	2	-	0 1,000	8,0	5,0	4,0	3,0	2,0	1,0	0,0	_
5+520	100	66	86	26	96	95	94	-			9	2	4	က	2	-	0 1,000	6,0	5,0	4,0	3,0	2,0	1,0	0'0	സ
5+620	100	86	26	96	95	94	93				7	2	4	8	2	_	0 1,000	7,0	5,0	4,0	3,0	2,0	1,0	0,0	-
5+720	100	96	92	94	93	92	91				6	2	4	8	2	_	0 1,000	9,0	5,0	4,0	3,0	2,0	1,0	0'0	
5+820	100	96	98	93	92	06	68				11	7	9	4	3	-	0 1,000	11,0	7,0	6,0	4,0	3,0	1,0	0'0	
5+920	100	88	87	85	80	78	74				26	15	13	11	9	4	0 1,000	26,0	15,0	13,0	11,0	0,9	4,0	0'0	
6+020	100	91	06	88	98	85	84				16	1	9	4	2	-	0 1,000	16,0	7,0	6,0	4,0	2,0	1,0	0'0	1
6+120	100	66	98	26	96	95	94				9	2	4	3	2	-	000'1 0	6,0	5,0	4,0	3,0	2,0	1,0	0,0	m
															"	Promedio	a cit	2		**	54	VIICULA	R DE IQU	ITOS	٦

3190 6200

> V°b° Jefe de leapogatorio no. Carol García

1622 953

de mecánica de Suefas

y recyclogia de N

52,9 16,2 4,6

လို့ ကို

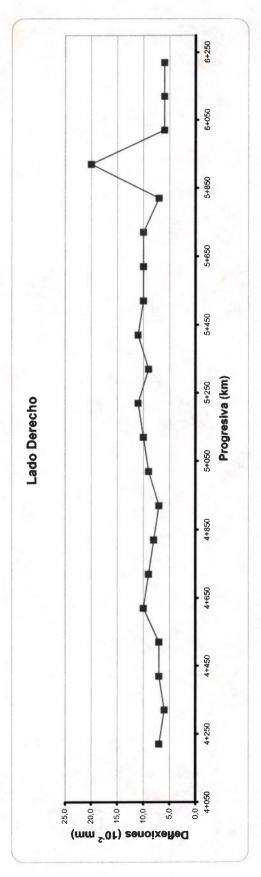
S. S.

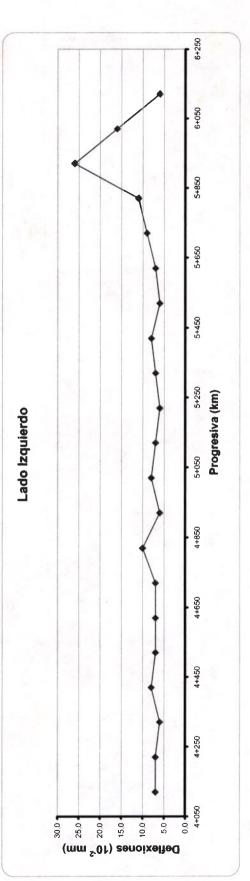
Promedio

Desviación Standard Coeficiente de Variación Valor Caracteristico

Rc(m)

1563


1563

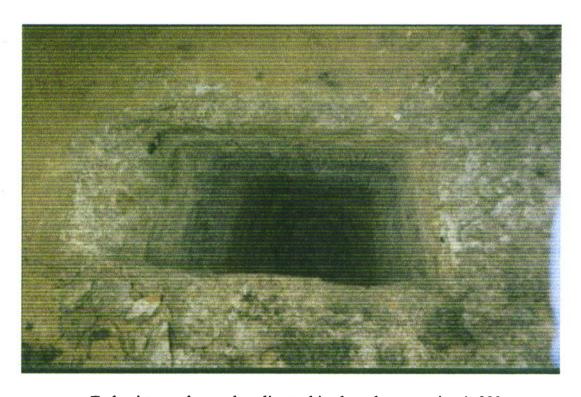

Tco Alberto Navarro Salazar

ANALISIS DEFLECTOMETRICO SUB-RASANTE

4+220 Tramo:

6+220

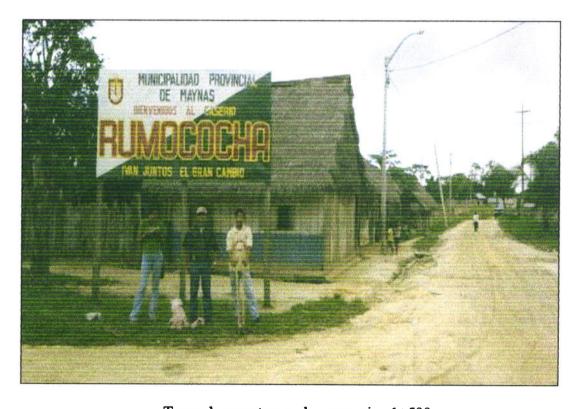
Usa redicito, Particular De Iguitos Laboratorio de Mecánico de Suelos y Tecnérogía de Materioles


ANEXO VII

- Panel Fotográfico.

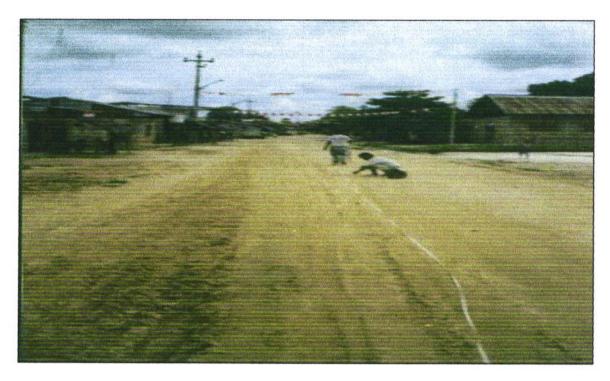
ESTUDIO DE SUELOS

Material que predomina en el terreno de fundación.



En la vista se observa la calicata ubicada en la progresiva 4+000.

ESTUDIO DE SUELOS



Descripción de material, para su posterior clasificación.

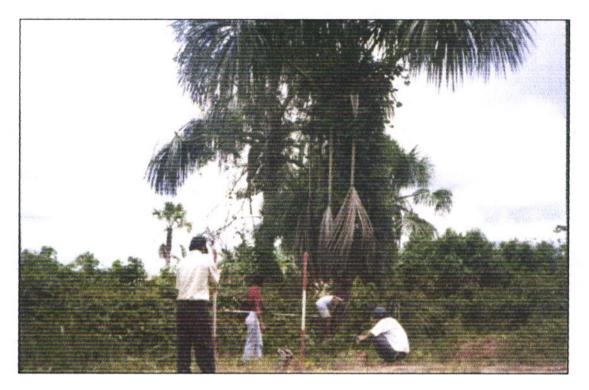
Toma de muestras en la progresiva 1+500

LEVANTAMIENTO TOPOGRÁFICO

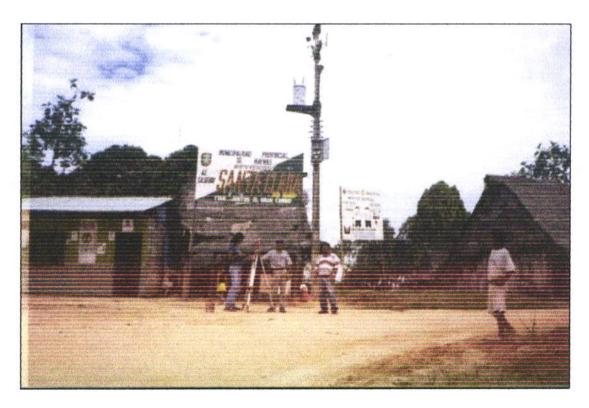
Estacado en las progresivas de la vía cada 20.00m. en tangente.

Estacado de las progresivas de la vía cada 10.00m. en curva.

LEVANTAMIENTO TOPOGRÁFICO



Nivelación del eje de la vía.



Colocación de BM.

LEVANTAMIENTO TOPOGRÁFICO



Seccionamiento en las progresivas de la vía.

Medición del ángulo horizontal en la curva.

ENSAYO VIGA BENKELMAN

Medición de deflexiones.

Verificando que el dial de la viga se encuentre en cero.

ALCANTARILLAS

Alcantarilla deteriorada en la progresiva 0+010.

Alcantarilla marco C°A° en la progresiva 3+900, se proyecta cambiar.

ALCANTARILLAS

Alcantarilla de la progresiva 5+385, se proyecta construir sus cabezales.

Progresiva 5+997, donde se proyecta construir una alcantarilla de 1.00x1.00m