

FACULTAD DE CIENCIAS E INGENIERÍA

PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL TESIS:

"INFLUENCIAS DE LOS ADITIVOS INCORPORADOR DE AIRE Y SUPERPLASTIFICANTE EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO CEMENTO - ARENA LIVIANO, ELABORADO CON PERLAS DE POLIESTIRENO EXPANDIDO Y AGREGADO FINO. IQUITOS, 2018"

Tesis presentada para optar el título profesional de Ingeniero Civil.

Autores:

Br. Pérez Murrieta Tatiana

Br. Flores Ramírez Frank Antonio

Asesores:

Ing. Mario Amador Vela Rodríguez
Ing. Claudia de Jesús Morales Aquituari

San Juan Bautista-Maynas - Loreto-2019

DEDICATORIA

A Dios, por permitirme llegar a este momento especial en mi vida; y, por los triunfos y los momentos difíciles, a través de los cuales me ha fortalecido.

A mis queridos padres: Jorge y Susana, por su comprensión, consejos y apoyo. Me formaron en valores y dieron todo lo que soy como persona.

Tatiana.

A Dios, por todo. Por haberme brindado valor en el esfuerzo, las tristezas y alegrías de toda mi vida.

A mi Madre, por ser mi inspiración; siempre está cuando la necesito dándome su apoyo incondicional en todas mis decisiones. Todo lo que soy es por ella.

Frank Antonio.

AGRADECIMIENTO

Agradecemos a las personas e instituciones que nos apoyaron durante el desarrollo de la tesis:

- ♣ A Dios. A nuestros padres, quienes son el motivo para despertarnos llenos de fuerzas para seguir adelante. A nuestros hermanos, por todo el cariño y comprensión que siempre nos brindan.
- ♣ A la Universidad Científica del Perú y sus docentes por todas las enseñanzas impartidas en nuestra formación profesional.
- ♣ A nuestros asesores, y a los distinguidos miembros del jurado calificador, por compartir sus experiencias y por los consejos recibidos para el desarrollo y culminación de la tesis.
- ♣ Al Laboratorio de Mecánica de Suelos y Ensayo de Materiales de la Universidad Científica del Perú, donde realizamos los respectivos ensayos.
- ♣ A los estudiantes de ingeniería civil que estuvieron realizando sus prácticas en el mencionado laboratorio y que contribuyeron en la preparación de las muestras.
- ♣ A la empresa ECOPOR, por donación de las perlitas de poliestireno expandido de tamaño máximo nominal 1/4".
- ♣ A la empresa AMAZON INVERSIONES & TURISMO por la donación del aditivo superplastificante "NEOPLAST 8500 HP".
- ♣ A los Técnicos: Karol Cisowski y Jack Edwar Sarmiento Morris por el apoyo brindado en la elaboración de los diseños y ejecución de los ensayos.

UNIVERSIDAD CIENTÍFICA DEL PERÚ - UCP

"Año de la lucha contra la corrupción e impunidad"

FACULTAD CIENCIAS E INGENIERÍA

FACULTAD DE CIENCIAS E INGENIERÍA PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN DE TESIS

Con Resolución Decanal N°023-2019-UCP-FCEI del 17 de enero de 2019, la FACULTAD DE CIENCIAS E INGENIERÍA DE LA UNIVERSIDAD CIENTÍFICA DEL PERÚ - UCP designa como Jurado Evaluador y Dictaminador de la Sustentación de Tesis a los Señores:

Ing. Ulises Octavio Irigoin Cabrera, M.Sc.

Presidente

Ing. Félix Wong Ramírez, M. Sc.

Miembro

• Ing. Marco Antonio Rodríguez Luna, Mg.

Miembro

En la ciudad de Iquitos, siendo las 17:30 horas del día viernes 12 de julio de 2019, en las instalaciones de la UNIVERSIDAD CIENTÍFICA DEL PERÚ - UCP, se constituyó el Jurado para escuchar la sustentación y defensa de la Tesis: "INFLUENCIAS DE LOS ADITIVOS INCORPORADOR DE AIRE Y SUPERPLASTIFICANTE EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO CEMENTO – ARENA LIVIANO, ELABORADO CON PERLAS DE POLIESTIRENO EXPANDIDO Y AGREGADO FINO, IQUITOS, 2018"

Presentada por los sustentantes:

TATIANA PÉREZ MURRIETA y FRANK ANTONIO FLORES RAMÍREZ

Asesor (es): Ing. Mario Amador Vela Rodríguez

Co-asesor (a): Ing. Claudia de Jesús Morales Aquituari

Como requisito para optar al título profesional de: Ingeniero Civil

Luego de escuchar la Sustentación y formuladas las preguntas las que fueron: Ch Sue Hag

El jurado después de la deliberación en privado llegó a la siguiente conclusión: N

La Sustentación es: Who Sallas For U

En fe de lo cual los miembros del jurado firman el acta.

Presidente

Miembro

CALIFICACIÓN

Aprobado (a) Excelencia Aprobado (a) Unanimida

Desaprobado (a)

19-20

: 13 - 1

Av. Abelardo Quiñones Km. 2.5. San Juan Bautista

Teléf. (065) 261092 - 261088

MU

Miembro

APROBACIÓN

TESIS:

"INFLUENCIAS DE LOS ADITIVOS INCORPORADOR DE AIRE Y
SUPERPLASTIFICANTE EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL
CONCRETO CEMENTO -ARENA LIVIANO, ELABORADO CON PERLAS DE
POLIESTIRENO EXPANDIDO Y AGREGADO FINO. IQUITOS, 2018"

Sustentada en acto público el día 12 de Julio a las 17:30 horas del 2019

Ing. Ulises Octavio Irigoin Cabrera, M.Sc.

PRESIDENTE DEL JURADO

Ing. Félix Wong Ramírez, M.Sc MIEMBRO DEL JURADO

Ing. Marco Antonio Rodríguez Luna, Mg.

MIEMBRO DEL JURADO

Ing. Mario Amador Vela Rodríguez

ASESOR

Ing. Claudia de Jesús Morales Aquituari

ASESOR

ÍNDICE DE CONTENIDO

DEDICATOR	RIA	II
AGRADECIN	MIENTO	III
ACTA DE SU	JSTENTACIÓNjERROR! MARCADO	OR NO DEFINIDO.
APROBACIÓ	ÓNiERROR! MARCADO	OR NO DEFINIDO.
	CONTENIDO	
_	ГАВLAS	
ÍNDICE DE O	GRÁFICOS	XIV
ÍNDICE DE F	FOTOS	XVIII
RESUMEN.		xıx
ABSTRACT .		xx
CAPITIII O I	: INTRODUCCIÓN	1
	INTRODUCCIÓN	
CAPITULO I	I: MARCO TEÓRICO	5
2.1	ANTECEDENTES DE ESTUDIO	_
2.2	BASES TEÓRICAS	
	El Concreto	
	Concreto Ligero	
	Concreto liviano con perlas de poliestireno	
2.3	CARACTERISTICAS DE LOS MATERIALES	
2.4	DISEÑO DE MEZCLA	
	PROPIEDADES DEL CONCRETO EN ESTADO FRESCO	
	PROPIEDADES DEL CONCRETO ENDURECIDOANÁLISIS ESTADÍSTICO	
	II: METODOLOGÍA	
	DDOLOGÍA	
CAPITULO I	V: RESULTADOS	53
4.1 CARA	CTERIZACIÓN DE LOS MATERIALES	53
4.1.1	AGREGADO FINO	53
4.1.1.	1 Peso unitario Suelto (PUS)	54
4.1.1.	2 Peso unitario compactado (PUC)	55
4.1.1.	3 Peso específico y absorción	55
4.1.1.	4 Análisis granulométrico	56
4.1.1.	5 Módulo de Fineza	59
4.1.1.	6 Superficie especifica	60
4.1.1.	7 Material que pasa el tamiz N° 200	61
4.1.2	PERLA DE POLIESTIRENO	
4.1.2.		
4.1.2.		
4.1.2.		
4.1.2.	· · · · 9 · · · · · · · · · · · · · · · · · · ·	
4.1.2.		
4.1.2.		
4.1.2.	7 Material que pasa por Tamiz N° 200	69
4.2 DISEÑ	NO DE MEZCLAS	69
4.2.1	0.006 NEOPLAST 8500 HP - 0.0001 EUCOCELL 1000 (ADITIVO/CEMENTO)	71

4.2.2	0.006 NEOPLAST 8500 HP - 0.0002 EUCOCELL 1000 (ADITIVO/CEMENTO)	75
4.2.3	0.006 NEOPLAST 8500 HP - 0.00005 EUCOCELL 1000 (ADITIVO/CEMENTO)	79
4.2.4	0.006 NEOPLAST 8500 HP - 0.0003 EUCOCELL 1000 (ADITIVO/CEMENTO)	
4.2.5	0.006 NEOPLAST 8500 HP - 0.000 EUCOCELL 1000 (ADITIVO/CEMENTO)	
4.2.6	0.004 NEOPLAST 8500 HP - 0.0001 EUCOCELL 1000 (ADITIVO/CEMENTO)	
4.2.7	0.008 NEOPLAST 8500 HP - 0.0001 EUCOCELL 1000 (ADITIVO/CEMENTO)	
4.2.8	0.005 NEOPLAST 8500 HP - 0.0001 EUCOCELL 1000 (ADITIVO/CEMENTO)	
4.2.9	0.009 Neoplast 8500 HP - 0.0001 Eucocell 1000 (Aditivo/Cemento)	103
4.3 ENS	SAYO AL CONCRETO FRESCO	107
4.3.1	PESO UNITARIO	107
4.3.2	RENDIMIENTO	111
4.3.3	CONTENIDO DE AIRE	114
4.3.4	ASENTAMIENTO	116
4.3.5	Exudación	
4.3.6	TEMPERATURA DEL CONCRETO	
SE REAL	LIZÓ CONFORME LA NORMA ASTM C138 Y LA NTP 339.046.	118
4.4 ENS	SAYOS AL CONCRETO ENDURECIDO	121
4.4.1	RESISTENCIA A LA COMPRESIÓN	122
4.4.2	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL	
4.4.3	RESISTENCIA A LA FLEXIÓN DEL CONCRETO	165
4.4.4	ENSAYO DE MÓDULO DE ELASTICIDAD	169
CAPITULO	O V: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	172
5.1 AN	ÁLISIS DE LAS CARACTERÍSTICAS DE LOS MATERIALES	172
	ÁLISIS DE FASE ÓPTIMA	
5.2.1	ANÁLISIS DE DISEÑO DE MEZCLAS	
5.2.2	ANÁLISIS DE DENSIDAD Y RESISTENCIA A LA COMPRESIÓN	
5.2.3 5.2.4	ANÁLISIS DE LOS ENSAYOS AL CONCRETO FRESCO	_
5.3 VEI	RIFICACIÓN DE HIPÓTESIS	176
5.3.1	HIPÓTESIS GENERAL	176
5.3.2	HIPÓTESIS ESTADÍSTICA (HO: HIPÓTESIS NULA VS HA: HIPÓTESIS ALTERNA)	177
5.4 AN	ÁLISIS DE COSTOS	177
CAPITUI	O VI: DISCUSIÓN	179
	O VII: CONCLUSIONES Y RECOMENDACIONES	
		_
7.1 7.2	CONCLUSIONESRECOMENDACIONES	
CAPITULO	O VIII: BIBLIOGRAFÍA	184
ANEXOS.		186
ANEX	O N°01. MATRIZ DE CONSISTENCIA	187
	O N°02: ENSAYOS	
	O N°03: COMPARACION DE PRECIOS	
	O N°04: CONSTRASTACIÓN ESTADISTICA DE LA HIPÓTESIS	
	O N°05: FICHAS TÉCNICAS DEL PRODUCTO	
ABIEW	O N°06: PANEL FOTOGRAFICO	237

ÍNDICE DE TABLAS

Tabla N° 1 Densidad y resistencia del concreto con perlas de poliestireno	21
Tabla N° 2 Características químicas del Cemento Portland Tipo I - Sol	23
Tabla N° 3 Características físicas del cemento Portland Tipo I – Sol	23
Tabla N° 4 Requisitos para clasificar agregados gruesos y finos. ASTM C-33 .	25
Tabla N° 5 Límites de distribución granulométrica - normas NTP 400.037 y AS	тм с
–33	30
Tabla N° 6 Ensayos Químicos de agregados según Norma	33
Tabla N° 7 Factor de Corrección a la desviación estándar	42
Tabla N° 8 Coeficiente de variación para diferentes grados de control	43
Tabla N° 9 Operacionalización de Variables	46
Tabla N° 10 Diseño de la Investigación	47
Tabla N° 11 Ensayos de agregados y normativa aplicada	49
Tabla 12 Ensayos químicos de agregados según normas	49
Tabla 13 Propiedades del concreto en estado fresco y normativa aplicada	49
Tabla 14 Propiedades del concreto en estado endurecido y normativa aplicad	a .51
Tabla N° 15 Peso unitario suelto del agregado fino	54
Tabla N° 16 Peso unitario Compactado del agregado fino	55
Tabla N° 17 Peso específico y absorción del agregado fino	55
Tabla N° 18 Análisis granulométrico de la muestra N° 01 del agregado fino	56
Tabla N° 19 Análisis granulométrico de la muestra N° 02 del agregado fino	57
Tabla N° 20 Análisis granulométrico de la muestra N° 03 del agregado fino	58
Tabla N° 21 Módulo de fineza del agregado fino	59
Tabla N° 22 Superficie especifica de la muestra N° 01 del agregado fino	60
Tabla N° 23 Superficie especifica de la muestra N° 02 del agregado fino	60
Tabla N° 24 Superficie especifica de la muestra N° 03 del agregado fino	61

Tabla N° 25 Material que pasa por el tamiz N° 200 del agregado fino	61
Tabla N° 26 Peso unitario suelto de la perla de poliestireno	63
Tabla N° 27 Peso unitario Compactado de la perla de poliestireno	63
Tabla N° 28 Peso específico y absorción de la perla de poliestireno	64
Tabla N° 29 Análisis granulométrico de la muestra N°01 de poliestireno	65
Tabla N° 30 Análisis granulométrico de la muestra N°02 de poliestireno	65
Tabla N° 31 Análisis granulométrico de la muestra N°03 de poliestireno	66
Tabla N° 32 Módulo de fineza de la perla de poliestireno	67
Tabla N° 33 Superficie especifica muestra N° 01 del poliestireno	67
Tabla N° 34 Superficie especifica muestra N° 02 del poliestireno	68
Tabla N° 35: Superficie especifica muestra N° 03 del poliestireno	68
Tabla N° 36 Material que pasa por el tamiz N° 200 perla de poliestireno	69
Tabla N° 37 Dosificaciones - Probetas	70
Tabla N° 38 Categorización de los concretos livianos	70
Tabla N° 39 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0001 Euco)	71
Tabla N° 40 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0002 Euco)	75
Tabla N° 41 Diseño Concreto liviano no estructural- (0.006 Neo; 0.00005 Euco) 79
Tabla N° 42 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0003 Euco)	83
Tabla N° 43 Diseño Concreto liviano no estructural- (0.006 Neo; 0 Euco)	87
Tabla N° 44 Diseño Concreto liviano no estructural- (0.004 Neo; 0.0001 Euco)	91
Tabla N° 45 Diseño Concreto liviano no estructural- (0.008 Neo; 0.0001 Euco)	95
Tabla N° 46 Diseño Concreto liviano no estructural- (0.005 Neo; 0.0001 Euco)	99
Tabla N° 47 Diseño Concreto liviano no estructural- (0.009 Neo; 0.0001 Euco)	103
Tabla N° 48 Peso Unitario 0.006 Neoplast y 0.0001 Eucocell	107
Tabla N° 49 Peso Unitario 0.006 Neoplast y 0.0002 Eucocell	108
Tabla N° 50 Peso Unitario 0.006 Neoplast y 0.00005 Eucocell	108

Tabla N° 51 Peso Unitario 0.006 Neoplast y 0.0003 Eucocell	108
Tabla N° 52 Peso Unitario 0.006 Neoplast y 0.000 Eucocell	109
Tabla N° 53 Peso Unitario 0.004 Neoplast y 0.0001 Eucocell	109
Tabla N° 54 Peso Unitario 0.008 Neoplast y 0.0001 Eucocell	109
Tabla N° 55 Peso Unitario 0.005 Neoplast y 0.0001 Eucocell	110
Tabla N° 56 Peso Unitario 0.009 Neoplast y 0.0001 Eucocell	110
Tabla N° 57 Rendimiento 0.006 Neoplast y 0.0001 Eucocell	111
Tabla N° 58 Rendimiento 0.006 Neoplast y 0.0002 Eucocell	111
Tabla N° 59 Rendimiento 0.006 Neoplast y 0.00005 Eucocell	112
Tabla N° 60 Rendimiento 0.006 Neoplast y 0.00003 Eucocell	112
Tabla N° 61 Rendimiento 0.006 Neoplast y 0.000 Eucocell	112
Tabla N° 62 Rendimiento 0.004 Neoplast y 0.0001 Eucocell	113
Tabla N° 63 Rendimiento 0.008 Neoplast y 0.0001 Eucocell	113
Tabla N° 64 Rendimiento 0.005 Neoplast y 0.0001 Eucocell	113
Tabla N° 65 Rendimiento 0.009 Neoplast y 0.0001 Eucocell	114
Tabla N° 66 Contenido de Aire 0.006 Neoplast y 0.0001 Eucocell	114
Tabla N° 67 Contenido de Aire 0.006 Neoplast y 0.0002 Eucocell	114
Tabla N° 68 Contenido de Aire 0.006 Neoplast y 0.00005 Eucocell	114
Tabla N° 69 Contenido de Aire 0.006 Neoplast y 0.0003 Eucocell	115
Tabla N° 70 Contenido de Aire 0.006 Neoplast y 0.000 Eucocell	115
Tabla N° 71 Contenido de Aire 0.004 Neoplast y 0.0001 Eucocell	115
Tabla N° 72 Contenido de Aire 0.008 Neoplast y 0.0001 Eucocell	115
Tabla N° 73 Contenido de Aire 0.005 Neoplast y 0.0001 Eucocell	115
Tabla N° 74 Contenido de Aire 0.009 Neoplast y 0.0001 Eucocell	116
Tabla N° 75 Asentamiento de 0.006 Neoplast y 0.0001Eucocell	116
Tabla N° 76 Asentamiento de 0.006 Neoplast y 0.0002Eucocell	116

Tabla N° 77 Asentamiento de 0.006 Neoplast y 0.00005Eucocell117
Tabla N° 78 Asentamiento de 0.006 Neoplast y 0.0003 Eucocell117
Tabla N° 79 Asentamiento de 0.006 Neoplast y 0.000 Eucocell117
Tabla N° 80 Asentamiento de 0.004 Neoplast y 0.0001 Eucocell117
Tabla N° 81 Asentamiento de 0.008 Neoplast y 0.0001 Eucocell117
Tabla N° 82 Asentamiento de 0.005 Neoplast y 0.0001 Eucocell117
Tabla N° 83 Asentamiento de 0.009 Neoplast y 0.0001 Eucocell118
Tabla N° 84 Temperatura del Concreto 0.006 Neoplast y 0.0001Eucocell119
Tabla N° 85 Temperatura del Concreto 0.006 Neoplast y 0.0002Eucocell119
Tabla N° 86 Temperatura del Concreto 0.006 Neoplast y 0.00005Eucocell119
Tabla N° 87 Temperatura del Concreto 0.006 Neoplast y 0.0003 Eucocell119
Tabla N° 88 Temperatura del Concreto 0.006 Neoplast y 0.000 Eucocell119
Tabla N° 89 Temperatura del Concreto 0.004 Neoplast y 0.0001 Eucocell119
Tabla N° 90 Temperatura del Concreto 0.008 Neoplast y 0.0001 Eucocell120
Tabla N° 91 Temperatura del Concreto 0.005 Neoplast y 0.0001 Eucocell120
Tabla N° 92 Temperatura del Concreto 0.009 Neoplast y 0.0001 Eucocell120
Tabla N° 93 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0001 EUCOCELL 146
Tabla N° 94 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0002 EUCOCELL 147
Tabla N° 95 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.00005 EUCOCELL 148
Tabla N° 96 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0003 EUCOCELL 149
Tabla N° 97 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.000 EUCOCELL

Tabla N° 98 Especimenes ensayados a compresión, a los 7, 14 y 28 días con 0.004
NEOPLAST / 0.0001 EUCOCELL
Tabla N° 99 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.008
NEOPLAST / 0.0001 EUCOCELL
Tabla N° 100 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.005
NEOPLAST / 0.0001 EUCOCELL
Tabla N° 101 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.009
NEOPLAST / 0.0001 EUCOCELL
Tabla N° 102 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0001 EUCOCELL
Tabla N° 103 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0002 EUCOCELL
Tabla N° 104 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.00005 EUCOCELL
Tabla N° 105 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
NEOPLAST / 0.0003 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL
Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL

Tabla N° 111 Resistencia a la flexion de 0.006 NEOPLAST / 0.0001 EUCOCELL	166
Tabla N° 112 Resistencia a la flexión de 0.006 NEOPLAST / 0.0002 EUCOCELL	166
Tabla N° 113 Resistencia a la flexión de 0.006 NEOPLAST / 0.00005 EUCOC	ELL
	166
Tabla N° 114 Resistencia a la flexión de 0.006 NEOPLAST / 0.0003 EUCOCELL	167
Tabla N° 115 Resistencia a la flexión de 0.006 NEOPLAST / 0.000 EUCOCELL	167
Tabla N° 116 Resistencia a la flexión de 0.004 NEOPLAST / 0.0001 EUCOCELL	167
Tabla N° 117 Resistencia a la flexión de 0.008 NEOPLAST / 0.0001 EUCOCELL	168
Tabla N° 118 Resistencia a la flexión de 0.005 NEOPLAST / 0.0001 EUCOCELL	168
Tabla N° 119 Resistencia a la flexión de 0.009 NEOPLAST / 0.0001 EUCOCELL	168
Tabla N° 120 Módulos de elasticidad de especímenes a los 28 días	170
Tabla N° 121 Resumen de las características de materiales	172
Tabla N° 122 Diseño de mezclas "Concreto liviano no estructural"	173
Tabla N°123 Resumen de la densidad vs resistencia a la compresión	174
Tabla N°124 Resumen de ensayos al concreto fresco	175
Tabla N°125 Resumen de ensayos al concreto endurecido	176
Tabla N°126 Verificación de hipótesis	177
Tabla N°127 Resumen de precios	178
Tabla N° 128 Costo m3 de concreto liviano no estructural CL-OP	216
Tabla N° 129 Costo m3 de concreto cemento - arena f´c 175 kg/cm2	216

ÍNDICE DE GRÁFICOS

GRÁFICO N° 1 Componentes del Concreto (Sánchez Zárate, 2017)15
GRÁFICO N° 2 Perlas de Poliestireno - (Rodriguez Chico, 2017)21
GRÁFICO N° 3 Curva granulométrica del agregado fino - Muestra N° 0157
GRÁFICO N° 4 Curva granulométrica del agregado fino - Muestra N° 0258
GRÁFICO N° 5 Curva granulométrica del agregado fino - Muestra N° 0359
GRÁFICO N° 6 Curva granulométrica del poliestireno - Muestra N° 0165
GRÁFICO N° 7 Curva granulométrica del poliestireno - Muestra N° 0266
GRÁFICO N° 8 Curva granulométrica del poliestireno - Muestra N° 0366
GRÁFICO Nº 9 Composición por peso de un metro cúbico – 0.006/0.000174
GRÁFICO N° 10 Composición por volumen de un metro Cúbico – 0.006/0.000174
GRÁFICO N° 11 Composición por peso de un metro cúbico – 0.006/0.000278
GRÁFICO N° 12 Composición por volumen de un metro Cúbico – 0.006/0.000278
GRÁFICO N° 13 Composición por peso de un metro cúbico – 0.006/0.0000582
GRÁFICO N° 14 Composición por volumen de un metro Cúbico – 0.006/0.0000582
GRÁFICO N° 15 Composición por peso de un metro cúbico – 0.006/0.000386
GRÁFICO N° 16 Composición por volumen de un metro Cúbico – 0.006/0.000386
GRÁFICO N° 17 Composición por peso de un metro cúbico – 0.006/ 090
GRÁFICO N° 18 Composición por volumen de un metro Cúbico – 0.006 / 090
GRÁFICO N° 19 Composición por peso de un metro cúbico – 0.004/ 0.000194
GRÁFICO N° 20 Composición por volumen de un metro Cúbico – 0.004 / 0.0001 94
GRÁFICO N° 21 Composición por peso de un metro cúbico – 0.008/ 0.000198
GRÁFICO N° 22 Composición por volumen de un metro Cúbico – 0.008 / 0.0001 98
GRÁFICO N° 23 Composición por peso de un metro cúbico – 0.005/ 0.0001 102
GRÁFICO N° 24 Composición por volumen de un metro Cúbico – 0.005 / 0.0001 102
GRÁFICO N° 25 Composición por peso de un metro cúbico – 0.009/ 0.0001106

GRAFICO N° 26 Composición por volumen de un metro Cúbico – 0.005 / 0.0001106
GRÁFICO N° 27 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST -
0.0001 EUCOCELL146
GRÁFICO N° 28 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST -
0.0002 EUCOCELL147
GRÁFICO N° 29 Resistencia a la Compresión vs Edad de ensayo 0.006 NEOPLAST /
0.00005 EUCOCELL148
GRÁFICO N° 30 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST -
0.00005 EUCOCELL149
GRÁFICO N° 31 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST -
0.000 EUCOCELL150
GRÁFICO Nº 32 Resistencia a la Compresión vs Edad de ensayo / 0.004 NEOPLAST -
0.0001 EUCOCELL151
GRÁFICO N° 33 Resistencia a la Compresión vs Edad de ensayo / 0.008 NEOPLAST -
0.0001 EUCOCELL152
GRÁFICO N° 34 Resistencia a la Compresión vs Edad de ensayo / 0.005 NEOPLAST -
0.0001 EUCOCELL153
GRÁFICO Nº 35 Resistencia a la Compresión vs Edad de ensayo / 0.009 NEOPLAST -
0.0001 EUCOCELL154
GRÁFICO Nº 36 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.0001
EUCOCELL
GRÁFICO Nº 37 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.0002
EUCOCELL157
GRÁFICO Nº 38 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.00005
EUCOCELL158

GRAFICO Nº 39 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0).0003
EUCOCELL	159
GRÁFICO N° 40 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS -	0.000
EUCOCELL	160
GRÁFICO Nº 41 Esfuerzo a la tracción vs Edad de ensayo / 0.004 NEOPLAS - 0).0001
EUCOCELL	161
GRÁFICO Nº 42 Esfuerzo a la tracción vs Edad de ensayo / 0.008 NEOPLAS - 0).0001
EUCOCELL	162
GRÁFICO N° 43 Esfuerzo a la tracción vs Edad de ensayo / 0.005 NEOPLAS - 0).0001
EUCOCELL	163
GRÁFICO N° 44 Esfuerzo a la tracción vs Edad de ensayo / 0.009 NEOPLAS - 0).0001
EUCOCELL	164
GRÁFICO N° 45 Promedio Módulo de Elasticidad vs dosificación de aditivos	171
GRÁFICO N° 46 Ensayo a los 7 días	191
GRÁFICO N° 47 Ensayo a los 7 días	192
GRÁFICO N° 48 Ensayo a los 14 días	193
GRÁFICO N° 49 Ensayo a los 14 días	194
GRÁFICO N° 50 Ensayo a los 28 días	195
GRÁFICO N° 51 Ensayo a los 28 días	196
GRÁFICO N° 52 Ensayo a los 7 días	197
GRÁFICO N° 53 Ensayo a los 7 días	198
GRÁFICO N° 54 Ensayo a los 14 días	199
GRÁFICO N° 55 Ensayo a los 14 días	200
GRÁFICO N° 56 Ensayo a los 28 días	201
GRÁFICO N° 57 Ensayo a los 28 días	202
GRÁFICO N° 58 Ensayo a los 28 días	203

GRÁFICO N° 59 Ensayo los 28 días	. 204
GRÁFICO N° 60 Ensayo los 28 días	. 205
GRÁFICO N° 61 Ensayo los 28 días	. 206
GRÁFICO N° 62 Ensayo los 28 días	. 207
GRÁFICO N° 63 0.006 Neoplast y 0.0001 Eucocell -Diseño Patrón	. 208
GRÁFICO N° 64 0.006 Neoplast y 0.00005 Eucocell -Diseño Optimo	.212

ÍNDICE DE FOTOS

FOTO N° 1 "Cantera Irina Gabriela"	53
FOTO N° 2 Mezclado del agregado fino por 3 veces	54
FOTO N° 3 Tamices para el Análisis Granulométrico del agregado fino	56
FOTO N° 4 Empresa Ecopor	62
FOTO N° 5 Imágenes Panorámicas	62
FOTO N° 6 Tamices Análisis Granulométrico de la perla de poliestireno	64
FOTO N° 7 Peso Unitario y Rendimiento	107
FOTO N° 8 Asentamiento del Concreto Ligero	116
FOTO N° 9 Ensayo de exudación en recipiente de 10" de diámetro	118
FOTO N° 10 Temperatura del Concreto ligero	118
FOTO N° 11 Proceso del Concreto Endurecido y curado	121
FOTO N° 12 Rotura del Concreto a compresión	122
FOTO N° 13 Rotura de concreto liviano por resistencia a la tracción	155
FOTO N° 14 Rotura de concreto liviano por resistencia a la flexión	165
FOTO N° 15 Ensayo de módulo de elasticidad en concreto liviano no estructural	169

RESUMEN

El uso de concreto cemento - arena liviano a partir de la mezcla de solamente agregado fino de módulo de fineza promedio 1,31 y perlas de poliestireno expandido de tamaño máximo nominal ø 1/4", cemento portland, agua y aditivos, es técnicamente factible; y, es necesario conocerse la dosificación y regular su uso en la normativa correspondiente. La problemática abordada en esta investigación de tipo experimental, ha permitido determinar la influencia de la variación de la dosificación de los aditivos incorporador de aire (Eucocell 1000) y superplastificante (Neoplast 8500 HP), pero manteniéndose constante la relación a/c, el porcentaje de agregado fino y perlas de poliestireno determinados en un diseño patrón. Este concreto, obtenido en combinación con una relación en peso aditivo/cemento de 0.006 de Neoplast y 0.00 de Eucocell, al 95% de nivel de confianza, alcanzó una densidad de 1632,71 kg/m³ y una resistencia a la compresión a los 28 días de 195 kg/cm², siendo significativa la correlación de Neoplast vs resistencia (1.1%) y no siendo necesario el empleo de Eucocell. Asimismo, al 95% de nivel de confianza, a los 28 días alcanzó una resistencia a la tracción de 15.09 kg/cm² y a la flexión de 35.15 kg/cm², y un módulo elástico de 206 910 kg/cm²; habiéndose superado el rango de resistencia a la compresión, para concretos livianos no estructurales, propuesta por la Portland Cement Association.

Palabras Clave: Concreto liviano no estructural, perla de poliestireno expandido, aditivo superplastificante, aditivo incorporador de aire.

ABSTRACT

The use of concrete cement - light sand from the mixture of only fine aggregate of module of average fineness 1.31 and expanded polystyrene beads of maximum nominal size Ø 1/4", Portland cement, water and additives, is technically feasible, and, it is necessary to know the dosage and regulate its use in the corresponding regulations. The problem addressed in this experimental investigation, has allowed to determine the influence of the variation of the dosage of the air-incorporating additives (Eucocell 1000) and superplatifier (Neoplast 8500 HP), but keeping constant the a/c, the percentage constant of fine aggregate and polystyrene beads determined in a standard design.

This concrete, obtained in combination with an additive/cement weight ratio of 0.006 of Neoplast and 0.00 of Eucocell, at 95% confidence level, reached a density of 1632,71kg/m3, and a compressive strength at 28 days 195kg/cm², the correlation between Neoplast vs resistance (1.1%) being significant and the use of Eucocell not being necessary. Likewise, at 95% confidence level, at 28 days I reached a resistance to the fraction of 15.09 kg/cm² and to the flexion of 35.15kg/cm², and an elastic modulus of 206,910 kg/cm²; having exceeded the resistance range to the understanding, for light nonstructural concrete, proposed by the Portland Cement Association.

KeyWords: Non-structural lightweight concrete, expanded polystyrene bead, superplatifier additive, air incorporating additive.

CAPITULO I: INTRODUCCIÓN

1.1. INTRODUCCIÓN

A lo largo de los siglos, los seres humanos han creado diversos sistemas constructivos en concordancia con los avances de la ingeniería de los materiales de construcción y los correspondientes métodos de fabricación. Actualmente, en lquitos solamente existe arena fina, no contamos con agregado grueso y tampoco se observa afloramientos rocosos. El concreto liviano o de baja densidad, en este caso es una mezcla de cemento, arena y un agregado liviano (alive) - las perlas de poliestireno expandido -, y adición de los aditivos superplastificante Neoplast 8500 HP y, el incorporador de aire Eucocell 1000. El superplastificante se usa para incrementar el tiempo de trabajabilidad del concreto, es reductor de agua de alto rango y optimizador de cemento; y, el incorporador de aire, desarrollado para reducir la contracción, aumenta el asentamiento, es autonivelante y por tanto no requiere vibrado.

La finalidad de la investigación es determinar la influencia de los aditivos superplastificante e incorporador de aire, a través de la medición de las propiedades físicas y mecánicas del concreto cemento—arena liviano no estructural, en estado fresco y endurecido, como: consistencia y resistencias respectivamente. Los resultados de la investigación permitirán el uso racional de los aditivos en mención cuando se use como agregado fino las arenas de Iquitos con las que se están construyendo diversas obras.

La pregunta principal que se formuló para resolver la situación problemática fue: ¿Cómo Influyen los aditivos incorporador de aire y superplastificante en las propiedades físicas y mecánicas del concreto cemento-arena liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto? Los problemas específicos que contribuyeron en la búsqueda de la solución estuvieron orientados a conocer cuáles eran los valores de las propiedades físicas obtenidos en laboratorio del diseño óptimo de mezcla del concreto cemento-arena no estructural convencional, elaborado con el agregado fino de la cantera en mención; y, cuál era el diseño óptimo de mezcla de concreto cemento-arena

liviano no estructural, empleando perlas de poliestireno expandido de tamaño máximo nominal \emptyset =1/4" incorporando aditivos inclusor de aire y superplastificante y agregado fino de la misma cantera y cuáles eran los valores de las propiedades físicas y mecánicas que correspondían a este diseño óptimo. Asimismo, cómo se ven afectadas estas propiedades, al adicionarse solamente el aditivo incorporador de aire, manteniendo constante el aditivo superplastificante, y viceversa.

El objetivo general consistió en determinar la influencia de los aditivos incorporador de aire y superplastificante en las propiedades físicas y mecánicas del concreto cemento-arena, liviano, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto. Los objetivos secundarios que contribuyeron a aclarar el objetivo general estuvieron orientados a determinar los valores de las propiedades físicas y mecánicas, obtenidos en laboratorio, de los diseños de mezcla del concreto cemento-arena convencional no estructural, elaborado con el agregado fino de la cantera Irina Gabriela, determinar las proporciones optimas de los aditivos inclusor de aire y superplastificante correspondientes al diseño óptimo de mezcla de concreto en mención; y, determinar los valores de las propiedades físicas y mecánicas de este diseño; asimismo, establecer un análisis comparativo de los valores obtenidos de tales propiedades para observar en qué medida se ven afectadas, al adicionarse en diferentes proporciones solamente uno de los aditivos, manteniéndose constante el otro.

La hipótesis principal que orientó la investigación fue: "La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia y desarrollo de resistencia del concreto cemento – arena liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal \emptyset =1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto".

La investigación se circunscribió a la realidad de existencia de solamente agregados pétreos finos de la Selva Baja Peruana, con los cuales se efectuó este estudio de tipo experimental del concreto liviano no estructural, elaborado a partir de la sustitución total del agregado grueso (concreto cemento–arena), por perlas de poliestireno expandido de tamaño máximo nominal Ø= 1/4" para lograr

resistencias cercanas y/o superiores a los ladrillos de arcilla y determinar la influencia de la incorporación de los aditivos uno inclusor de aire y el otro superplastificante. El agregado fino se adquirió de la cantera Irina Gabriela ubicada a la altura del Km 17 de la carretera Iquitos-Nauta, lado derecho; y las perlas de poliestireno se obtuvieron en donación por la empresa Ecopor establecida en el sector de Rumococha, Distrito de San Juan Bautista. Los ensayos se realizaron de febrero - abril de 2019, en el laboratorio de Mecánica de Suelos y Ensayo de Materiales de la Universidad Científica del Perú – UCP. Se evaluaron las resistencias a los 7, 14 y 28 días; los ensayos para determinar el Módulo de Elasticidad y resistencia a la flexión se efectuaron sólo a los veintiocho (28) días.

La presente tesis ha quedado plenamente justificada al haber aportado en el aspecto metodológico de la investigación; pues, a partir de los diseños óptimos se establecieron parámetros de dosificación de los elementos constituyentes del concreto, relación a/c, distribución granulometría de las perlas de poliestireno expandido, módulo de fineza de agregados, perlas, la dosificación de los aditivos incorporador de aire y superplastificante y su influencia en la preparación del concreto liviano no estructural.

Asimismo, con su desarrollo se ha contribuido en los aspectos ambientales, sociales y económicos por las siguientes razones: Las empresas mineras y los Estados mismos, no han tenido, a lo largo del tiempo, el debido cuidado, control y evaluación de los impactos ambientales durante la explotación de las canteras para la obtención de material pétreo utilizado en la preparación del no menos el 80% del volumen de concreto – material por excelencia- de uso en la construcción civil (Álvarez & Irigoin, 2014 en Barba & García, 2018). A esta realidad problemática si se añade la próxima puesta en marcha de la industria petroquímica en nuestro país, nos coloca en un escenario que obliga a la academia a tomar una posición para contribuir en la solución ante la generación de poliestireno como sub producto residual. (Ministerio de Energía y Minas, 2015).

Desde fines del siglo pasado, se está experimentado la búsqueda de un concreto estructural liviano; en el presente caso, el hecho que, las perlas de poliestireno expandido al estar formado en un 98% de aire, al usarse como sustituto del agregado grueso, no solamente rebaja el peso hasta niveles de un concreto

liviano, sino se convierte en aislante térmico y acústico para construcciones ecológicamente más eficientes y de bajo precio. Además, se está buscando insumir el poliestireno que representa un producto altamente tóxico para el planeta, que no es biodegradable y que su descomposición tarda unos mil años, a lo que se agrega, el caso de que si es consumido por animales marinos y aves les ocasiona la muerte (Manrique, 2016 en Barba & García, 2018). Es por esto que, siguiendo las línea de investigación del Programa Académico de Ingeniería Civil, de la Universidad Científica del Perú "Ingeniería de los materiales y construcción de infraestructura" se estudió la influencia en el comportamiento de un concreto elaborado a base de cemento, agregados fino solamente existente en las canteras de Iguitos, es decir sustituyendo el 100% del agregado grueso por perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4", al que se le incorporó un aditivo inclusor de aire y otro superplastificante, proyectándonos alcanzar resistencias cercanas y/o superiores a los de los ladrillos de arcilla; concreto liviano que podría utilizarse en las edificaciones populares y en la autoconstrucción de viviendas.

La investigación consta de 8 capítulos; Introducción, Marco teórico, Metodología, Resultados, Análisis e interpretación de los resultados, Discusión, Conclusiones y recomendaciones y Bibliografía.

CAPITULO II: MARCO TEÓRICO

2.1 ANTECEDENTES DE ESTUDIO

Ari Queque (2002), en su trabajo de tesis "Estudio de las propiedades del concreto fresco y endurecido, de mediana a alta resistencia, con aditivo superplastificante y retardador de fraguado, con cemento Portland tipo I", utilizó el aditivo superplastificante y retardador de fraguado "Sika Viscocrete – 1" basado en Poli carboxilatos Modificados, cemento portland tipo I Andino y agregados de las canteras "Cerro Camote" (agregado fino con módulo de finura de 2.51 y con 11.30% de material más fino que pasa la malla N° 200) y "Jicamarca" (agregado grueso como piedra chancada de tamaño nominal máximo 3/4" y tamaño máximo 1") con el objetivo de determinar en qué medida se mejoran las propiedades del concreto, especialmente en lo referente a la ganancia de resistencia a la compresión del concreto endurecido y retardar el tiempo de fraguado, para su uso en zonas cálidas.

Este estudio efectuado para tres relaciones agua/cemento (a/c=0.40, 0.45 y 0.50) y tres dosificaciones de aditivo para cada relación a/c: 1.0%, 1.2% y 1.4% del peso de cemento (los cuales equivalen a 386cm³/bl, 464cm³/bl y 541cm³/bl de cemento respectivamente). Encontró que el mayor beneficio es para la relación a/c=0.50, esto es por la variación existente entre el beneficio en la obtención de incremento de resistencia y el costo del concreto, pues para las tres relaciones a/c indicadas se aplicó 541 cm3/bl de cemento de aditivo (1.4% de aditivo) obteniéndose a los 42 días un beneficio de resistencia y un incremento en el costo de 107.3% y 64.3%, respectivamente para la primera relación a/c; y, para la segunda de 10.5% y 62.7%, respectivamente; y, para la relación a/c=0.50 obtuvo un beneficio en la resistencia de 96.6% y un incremento en el costo de 48.0% (Ari Queque, 2002). Y para las mismas relaciones a/c = 0.40, 0.45 y 0.50 en el diseño patrón (sin aditivo) obtuvo a los 42 días, resistencias a la compresión de 497.2 kg/cm2, 430.8kg/cm2 y 420.8 kg/cm2, respectivamente; y, correspondientemente módulos elásticos de 138 960.21 kg/cm2, 215 968.31kg/cm2 y 260 577.77kg/cm2, respectivamente; sin embargo, para las tres relaciones a/c al aplicárselas 541 cm3/bl de cemento de aditivo obtuvo los siguientes valores de módulos elásticos estáticos: 152 814.92 kg/cm2, 188 960.89kg/cm2 y 195 036.44 kg/cm2, respectivamente (Ari Queque, 2002).

Villablanca (2006), en su tesis para optar el título de ingeniero civil, determinó la influencia del aditivo incorporador de aire en la resistencia mecánica del hormigón, llegando a las siguientes conclusiones:

Densidad

- "El aditivo incorporador de aire produce una disminución de la densidad en los hormigones fabricados con él". "Las densidades mínimas obtenidas con la dosis máxima, son prácticamente iguales para todos los hormigones estudiados". "Las densidades mínimas determinadas están levemente por debajo de la mínima que se recomienda para un hormigón normal (2,55 – 2,35 kg/dm3)".
- "El contenido de aire, que para los hormigones patrones considerados para este estudio se estima 10L. según norma Nch170, aumenta con la dosis mínima de aditivo incorporador de aire en 24L los que sumados a los 10L del hormigón patrón llegan a 34L". "Con la dosis máxima aumento el contenido de aire en 69L los que sumados a los 10L del hormigón patrón nos dan un total de 79L".
- "En términos porcentuales expresados en volumen los hormigones patrones contienen un 1% de aire versus los hormigones fabricados con la dosis mínima donde el contenido de aire total es de un 3,4% y con la dosis máxima los hormigones alcanzan un contenido de aire total de un 7,9%". "Por último, de los resultados obtenidos, se puede decir que los aumentos en el contenido de aire debido al aditivo incorporador de aire es similar en todos los hormigones incluidos en el presente estudio".

Docilidad

- "Se pudo observar que el aditivo incorporador de aire tiene un efecto importante en la docilidad de los hormigones". "La docilidad aumenta en todos los tipos de hormigones estudiados, a mayor dosis de aditivo incorporador de aire".
- "Para el hormigón H-2, con la dosis mínima, el asentamiento varió de 7cm a 11cm siendo el aumento de 4cm, con la dosis máxima vario de 7 a 16cm siendo el aumento 9cm". "Para el hormigón H-30, con la dosis mínima el asentamiento del cono vario de 6cm a 9cm siendo el aumento de 3cm, con la dosis máxima vario de 6 a 13cm siendo el aumento de 7cm". "Para

el hormigón H-3,6, con la dosis mínima el asentamiento del cono vario de 6cm a 9cm siendo el aumento de 3cm, con la dosis máxima vario de 6 a 14cm siendo el aumento de 8cm".

 "El aumento de la docilidad tanto para la dosis mínima como para la dosis máxima y para todos los tipos de hormigón estudiados son similares observándose diferencias de solo 1 a 2cm".

Resistencia a Compresión

- "La resistencia a compresión disminuye fuertemente a medida que aumenta la dosis de aditivo incorporador de aire obteniéndose la resistencia más baja con la dosis máxima de aditivo utilizada, la que es recomendada por el fabricante".
- "La influencia en la perdida de resistencia de las distintas dosis aplicadas es similar en todas las edades de ensayo consideradas en el estudio y para todos los tipos de hormigón analizados". "Para todos los tipos de hormigón considerados en el estudio la perdida de resistencia es más fuerte al aplicar la dosis mínima (1era dosis), disminuyendo en la aplicación de las dosis 2da, 3era y 4ta". "La disminución promedio es de un 27% con la dosis mínima y de un 53% con la dosis máxima ambas recomendadas por el fabricante".

Resistencia a Flexo tracción

- "La resistencia a la flexotracción disminuye al aumentar la dosis del aditivo incorporador de aire". "El aumento en la disminución de resistencia según la dosis aplicada es similar en cada una de ellas".
- "La pérdida en la resistencia con la dosis máxima es inferior a la obtenida a la compresión (Flexotracción 36% y compresión 53%)". "La disminución de resistencia a la flexotracción es de 15% con la dosis mínima y de 36% con la dosis máxima". (Villablanca, 2006).

Valdez y Suarez (2010), en su trabajo de investigación sobre bloques de concreto ligero a base de poliestireno, obtuvieron los siguientes resultados: Resistencia a

la compresión a los 07 días : 4.5 Mpa

Resistencia a la compresión a los 14 días : 5.7 Mpa

Resistencia a la compresión a los 28 días : 6.6 Mpa

Densidad promedio : 1158 kg/m3

Módulo de Elasticidad promedio : 9.19 Gpa (Valdez y Suarez,

2010).

Yzquierdo (2015), en su tesis para optar el título de ingeniero civil por la Universidad de Cajamarca, sobre "Influencia del aditivo Chema Estruct en la resistencia a la compresión del concreto con agregados grueso y fino con cemento Pacasmayo y cemento Inka, llegó a las siguientes conclusiones:

- "La dosis óptima de aditivo encontrada es de 425 mililitros por bolsa de cemento con la cual se obtuvo una resistencia a la compresión de 162.709 kg/cm2 el cual representa el 77.48% del 100% (210 kg/cm2), con cemento Pacasmayo Tipo I y con cemento Inka Tipo I Co, se obtuvo una resistencia de 115.873 kg/cm2, que es el 55. 18% del100% (210 kg/cm2), a los tres días de curado".
- "La incorporación del aditivo Cherna Estruct, hace que incremente en 40.42% más la resistencia a la compresión en el cemento Pacasmayo Tipo I que el cemento Inka Tipo I Co, a los tres días".
- "Al incorporar aditivo Cherna Estruct a la mezcla de concreto en la proporción de 425 mililitros por bolsa incrementa la resistencia a la compresión en un 20.57% con cemento Pacasmayo Tipo I, a los tres días". Y, en la misma proporción por bolsa de cemento, la resistencia a la compresión se incrementa en 12.79% a los 28 días.
- "Cuando se incorpora aditivo Cherna Estruct en la proporción de 425
 mililitros por bolsa de cemento a la mezcla de concreto incrementa la
 resistencia a la compresión en 10.56% con cemento Inka Tipo I Co, a los
 28 días".
- "La resistencia promedio a la compresión de especímenes de concreto elaborados sin aditivo Cherna Estruct a los 28 días, dio como resultado de 232.00 kg/cm2 con cemento Pacasmayo Tipo I y con cemento Inka Tipo I Co, fue de 225.680 kg/cm2".

- "La resistencia promedio a la compresión de especímenes de concreto elaborados con aditivo Cherna Estruct a los 28 días, dio como resultado de 258.586 kg/cm2 con cemento Pacasmayo Tipo I y con cemento Inka Tipo I Co, fue de 239.990 kg/cm2".
- "La desviación estándar de los 30 especímenes con cemento Pacasmayo Tipo I sin aditivo a Jos 28 días es de 14.482 kg/cm2". "La desviación estándar de los 30 especímenes con cemento Pacasmayo Tipo I con aditivo a los 28 días es de 12.373 kg/cm2".
- El coeficiente de variación de los 30 especímenes con cemento Inka Tipo I Co sin aditivo a los 28 días es de 27.27%. El coeficiente de variación de los 30 especímenes con cemento Inka Tipo I Co con aditivo a los 28 días es de 23.34%.
- La resistencia a flexión a los 7 días con cemento Pacasmayo Tipo I sin aditivo es de 13.509 kg/cm2 el cual es el 10% de la resistencia a la compresión.
- La resistencia a tracción directa a los 7 días con cemento Pacasmayo
 Tipo I sin aditivo es de 16.587 kg/cm2 el cual es el14% de la resistencia a la compresión. (Yzquierdo, 2015)

Contreras (2016) en su trabajo de grado denominado "Diseño de mezcla de concreto a base de perlas de poliestireno expandido como agregado para la elaboración de bloques destinados a mampostería de concreto aligerado", expone un diseño y el análisis comparativo de resistencia entre bloques tradicionales y bloques de concreto con perlas de poliestireno. Elaboraron 24 bloques de concreto experimental, los cuales arrojaron una disminución del peso de los mismos, menores costos y una mayor resistencia a la compresión en los bloques experimentales con una variación en el agregado de poliestireno del 15% y del 75%, señalando que los otros valores no mostraron eficiencia admisible (Contreras, 2016).

Calderón (2016), en su tesis para optar el título de ingeniero civil por la Universidad Andina de Juliaca – Perú "Influencia del poliestireno, aditivo incorporador de aire en el comportamiento mecánico del concreto con agregado natural y procesado de la ciudad de Huancané", se propuso como como objetivo general: determinar las propiedades mecánicas del concreto con poliestireno, aditivo incorporador de aire en el concreto, con agregado natural de la cantera Isla-Juliaca y agregado procesado de la cantera Quechaya-Huancané. Para ello elaboró 42 probetas, las cuales se dividieron en 2 grupos:

- El primer grupo de 21 briquetas, 03 de ellos con agregado natural, 09 agregando poliestireno en 0.3%, 0.6% y 0.9%, según el peso del cemento, y otros 09 agregando aditivo incorporador de aire en 0.3%, 0.6% y 0.9% según el peso del cemento.
- El segundo grupo de 21 briquetas, 03 de ellos con agregado procesado, 09 agregando poliestireno en 0.3%, 0.6% y 0.9%, según peso del cemento, y otros 09 agregando aditivo incorporador de aire en 0.3%, 0.6% y 0.9% según peso del cemento.

El "ensayo de rotura para determinar la resistencia a la compresión; y, el de deformación del concreto para determinar el módulo de elasticidad", se efectuó en el laboratorio de suelos, concreto y asfalto de la UANCV, a la edad de 28 días de vaciado de las briquetas. Los resultados obtenidos con agregado natural de la cantera Isla incorporando poliestireno hasta el 0.9% según peso del cemento, indican una reducción de hasta un 20.58% de la resistencia y un 30.18% del módulo de elasticidad; y, en el concreto con agregado natural, con aditivo incorporador de aire hasta el 0.9% del peso del cemento, la resistencia reduce en un 16.49% y su módulo de elasticidad en un 25.83%, respectivamente. Y los resultados con agregado procesado de la cantera Quechaya Huancané, incorporando poliestireno hasta el 0.9% según peso del cemento, determinó una reducción de hasta un 26.08% en la resistencia a la compresión y un 12.47% en el módulo de elasticidad; y, en el concreto con agregado procesado con aditivo incorporador de aire hasta el 0.9% del peso del cemento, la resistencia reduce en un 28.73% y su módulo de elasticidad en un 5.41%, respectivamente.

Sánchez (2017), en su trabajo de tesis para optar el título de ingeniero civil por la Universidad Continental, estudió la influencia del uso de aditivo superplastificante en la consistencia y desarrollo de resistencias de concreto para f'c= 175, 210, 245 kg/cm², elaborados con agregados grueso y fino del área de influencia del departamento de Junín (Perú), llegó a las siguientes conclusiones:

- El asentamiento del concreto fresco en el cono de Abrams, para cualquier relación a/c, experimentó incrementos mínimos con dosis de aditivo superplastificante de 650 ml, e incrementos máximos con dosis de aditivo superplastificante de 1600 ml.
- El tiempo transcurrido en alcanzar un asentamiento de cono de 3 ½", para cualquier relación a/c, desarrolló incrementos mínimos con dosis de aditivo superplastificante de 650 ml, e incrementos máximos con dosis de aditivo superplastificante de 1600 ml.
- La mínima y máxima temperaturas promedio alcanzadas por las mezclas de concreto fueron de 19°C y 20°C. Estos valores están en los límites permisibles de 13°C y 32°C para una adecuada hidratación del concreto.
- La variación máxima de 1ºC alcanzada por las mezclas corroboró que se tomaron las medidas adecuadas para evitar la influencia del medio exterior.
- La inclusión del aditivo superplastificante en las mezclas de concreto para dosis iguales a 650 ml genera aire atrapado mínimo para las resistencias 175, 210 y 245 kg/cm² con sus respectivas relaciones a/c, lo que es favorable para las resistencias a la compresión finales.
- La inclusión del aditivo superplastificante en las mezclas de concreto ocasionó un incremento del peso unitario del concreto para dosis iguales a 650 ml. Sin embargo, para dosis superiores a 650 ml, el peso unitario del concreto experimenta un decrecimiento. No obstante, este valor se encuentra mayormente por encima del peso unitario de la mezcla patrón salvo para los diseños A-5 y B-5. Esto ocurre debido a que con la adición de aditivo hasta dosis de 650 ml/100 kg de cemento el porcentaje de aire

atrapado disminuye lo cual genera menos espacio de vacíos que serán ocupados por el concreto. Por ende, aumentará el peso unitario para esta dosificación.

- La inserción del aditivo superplastificante en las mezclas de concreto, generó un porcentaje de exudación mínimo para dosis de 650 ml. Sin embargo, en la medida que se aumentan dosis por encima de los 1600 ml, se observa que el porcentaje de exudación aumenta. No obstante, este valor esta siempre por debajo del porcentaje de exudación obtenido para la mezcla patrón.
- La exudación, para cualquier relación a/c, alcanzó decrecimientos máximos con dosis de aditivo superplastificante de 650 ml, y decrecimientos mínimos con dosis de aditivo superplastificante de 1600 ml.
 En síntesis, el aditivo superplastificante influye en la trabajabilidad del concreto, pues la incorporación del aditivo a las mezclas de concreto modificará las propiedades de asentamiento, temperatura, peso unitario y exudación.
- La adición del aditivo superplastificante en las mezclas de concreto provocó en la mayoría de diseños de mezclas un breve retraso en el tiempo de fraguado con respecto al concreto patrón. Estos valores son mayores para las dosis de 1600 ml. Este retraso se debe a la naturaleza o composición química del aditivo superplastificante, fabricado con sales de condensado de naftaleno sulfonado y formaldehido (SNF).
- El tiempo de fragua inicial, para cualquier relación a/c, alcanzó sus incrementos mínimos con dosis de aditivo superplastificante de 650 ml, y sus incrementos máximos con dosis de aditivo superplastificante de 1600 ml.
- El tiempo de fragua final, para cualquier relación a/c, alcanzó sus incrementos mínimos con dosis de aditivo superplastificante de 650 ml, y sus incrementos máximos con dosis de aditivo superplastificante de 1600 ml.

Resistencia a la compresión (Sánchez Zárate, 2017)

- Los valores del tiempo de fragua inicial y final, obtenidos para las diferentes dosis de aditivo con resistencia a la compresión 175, 210 y 245 kg/cm2 con relaciones a/c = 0.63, 0.56 y 0.63, no superan los límites establecidos por la norma ASTM para aditivos Tipo F (-1:00 a +1:30 hrs: min) únicamente hasta la dosis de 650 ml/100 kg de cemento.
- La incorporación del aditivo superplastificante en las mezclas de concreto ocasionó un incremento de la resistencia a la compresión para dosis debajo e igual a 1100 ml. Sin embargo, para dosis superiores a 1100 ml, la resistencia a la compresión del concreto experimenta un decrecimiento. No obstante, este valor se encuentra mayormente por encima de la resistencia a la compresión de la mezcla patrón.
- La resistencia a la compresión alcanza sus valores máximos con dosis de 1100 ml de aditivo superplastificante, para cualquier edad y resistencia con su respectiva relación a/c.
- La resistencia a la compresión logra alcanzar sus valores mínimos con dosis de 1600 ml de aditivo superplastificante, para cualquier edad y relación a/c.
- Se alcanzaron resistencias mayores al 50% respecto al concreto patrón (referente 28 días) en tres días, para dosis de 650 ml del aditivo superplastificante para cualquier relación a/c.

Rodríguez Chico (2017) en su trabajo de tesis para optar al título de Ingeniero Civil "Concreto liviano a base de poliestireno expandido para la prefabricación de unidades de albañilería no estructural — Cajamarca" encontró un concreto liviano a base de poliestireno de densidad aparente 1600 Kg/m3 y con una resistencia a la compresión de 30.37 y 62.75Kg/cm2 a los 7 y 28 días respectivamente, con módulo de elasticidad de 69601.40 Kg/cm2 a los 28 días. Utilizando el 7.61% de perla de poliestireno expandido modificado con densidad de 154.17 Kg/m3 y el 92.39% de arena con módulo de fineza 2.71, con relación a/c de 0.47 (Rodríguez Chico, 2017).

Barba y García (2018), como trabajo de tesis para optar el título profesional de ingeniero civil en la Facultad de Ciencias e Ingeniería de la Universidad Científica del Perú -UCP, el tema "Estudio exploratorio en diseño de mezclas del concreto cemento -arena liviano empleando perlitas de poliestireno, arcilla expandida y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, Iquitos 2018", En la fase exploratoria, el "Concreto liviano no estructural - CL03", alcanzó una resistencia f´c de 175 kg/cm² y una densidad de 1484.49 kg/m³, por lo tanto, puede ser considerado un concreto estructural. Al preparar el concreto liviano con los aditivos Neoplast 8500 HP y Eucocell 1000, se llega a reducir la cantidad de agua requerida para el diseño, manteniendo la trabajabilidad en la mezcla (Barba y García, 2018).

2.2 BASES TEÓRICAS

2.2.1 El Concreto

El concreto es un producto artificial constituido por la mezcla básicamente de dos componentes: agregados y pasta. La pasta, resultante de la combinación química del material cementante con el agua, está compuesta de cemento portland y agua, une los agregados pétreos (arena: agregado fino y piedra chancada: agregado grueso), los cuales conforman el cuerpo del material, creando una masa que al endurecer forma una roca artificial (Rios, 2011). La pasta constituye la fase continua del concreto y los agregados la fase discontinua, pues éstos no se encuentran unidos y en contacto sino, se hallan separados por espesores diferentes de pasta endurecida. En la Norma E.060 Concreto Armado se define al concreto como Mezcla de cemento Portland o cualquier otro cemento hidráulico, agregado fino, agregado grueso y agua, con o sin aditivos. En la actualidad, se pueden obtener concretos en un amplio rango de propiedades ajustando apropiadamente las proporciones de los materiales constitutivos, y/o utilizando agregados especiales (diversos agregados ligeros o pesados), aditivos (plastificantes, micro sílice, ceniza volante) (Barba & García, 2018), (Nilson, 1999). Por su parte Nilson (1999) da a entender que la calidad del concreto depende de la calidad de la pasta, calidad del agregado y de la unión entre pastas y agregados. En todo concreto de calidad las partículas de los agregados se cubre completamente por la pasta, llenándose por está totalmente todos los espacios entre dichas partículas.

2.1.1.1 Componentes del Concreto

Según Pasquel (1998), los componentes activos del concreto son: cemento, agua, agregados y aditivos, siendo el elemento pasivo el aire. El uso de aditivos en el concreto ha devenido en casi una práctica común porque su uso mejora las condiciones de trabajabilidad, resistencia y durabilidad, lo cual constituye en solución tanto económica como ambiental.

Si bien la definición tradicional consideraba a los aditivos como un elemento opcional, en la práctica moderna mundial estos constituyen un ingrediente normal, por cuanto está científicamente demostrada la conveniencia de su empleo en mejorar condiciones de trabajabilidad, resistencia y durabilidad. Esta es, a la larga, una solución más económica si se toma en cuenta el ahorro en mano de obra y equipo de colocación y compactación, mantenimiento, reparaciones e incluso en reducción de uso de cemento (Mayta Rojas J., 2014 en Sánchez Zarate, 2017).

Proporciones en volumen absoluto de los componentes del concreto

GRÁFICO Nº 1 Componentes del Concreto (Sánchez Zárate, 2017)

Fuente: Instituto de Construcción y Gerencia, ICG, 2013.

2.2.2 Concreto Ligero

Niño Hernández (2010), en su libro sobre Tecnología del Concreto clasifica al concreto, tomando en cuenta su masa unitaria: Concreto ligero los de masa unitaria entre 500 - 2000 Kg/m³; concreto normal (convencional) los de masa unitaria entre 2000 - 2500 Kg/m³ y concreto pesado los de masa unitaria entre 2600 - 5600 kg/m³ (Niño Hernández, 2010). Para **Neville** (2011), concretos ligeros estructurales, son aquellos que poseen una densidad significativamente menor a la de un concreto convencional, es decir de aquellos cuya densidad está comprendida entre los 2200 a 2400 kg/m³, aunque el término es confuso este tipo de concretos tiene una aplicación específica como aislante especialmente aquellos que poseen densidades muy bajas como es reportado en numerosas investigaciones (Campos. 2014). Y por su parte Kosmotks S.H. & Kerkhoff B. (2004), indican que el concreto ligero (liviano) estructural es un concreto similar al concreto de peso normal, excepto que tienen una densidad menor (1350 a 1850 kg/m3): Se le produce con agregados ligeros o con una combinación de agregados ligeros y normales o a través del procesamiento de otros tipos de materiales, tales como escorias y piedra pómez natural o artificiales; y, en la actualidad con el uso de materiales de desecho de uso común o industrial. (Kosmotks & Kerkhoff, 2004).

LA American Concrete Institute -ACI 213R-87 En "Guide to structural Lightweight Agregate Concrete" ACI manual of concrete Practice, Parte 1, clasifica los concretos ligeros de la siguiente manera: (ACI 213 - 87, 1987):

- Concreto ligero de uso no estructural: Se compone de una mezcla de agregado ligero y peso norma; tiene una densidad comprendida entre 1120 y 1920 kg/m³ y posee una resistencia mínima a la compresión de 17Mpa.
- Concreto ligero uso no estructural de moderada resistencia:
 Concreto cuya resistencia a la compresión está comprendida entre 7 y
 17 Mpa y se emplea generalmente con fines de aislamiento térmico.
- Concreto de baja densidad: Concretos la densidad está comprendida entre 300 y 800 kg/m3; se usan generalmente con fines no estructurales y como aislamiento térmico.

Sidney Mindess, J. Francis Young & David Darwin, (2003) Consideran dos tipos de concreto ligero, dependientes del tipo de agregado utilizado:

- Concreto aireado en autoclave o concreto celular: Se elabora con agua, cemento y aire; siendo este último el más importante y que se logra incorporándolo como burbujas de aire en la matriz, por lo que se le denomina también concreto "aireado", "espumas" este concreto se produce para brindar aislamiento tanto térmico como de ruido y como aligerante (Sidney Mindess, J. Francis Young & David Darwin, 2003). Según Campos (2014), el concreto celular con autoclave que se logra mediante la inmersión de calor al espécimen evita que la matriz de poros colapse formando una red muy resistente y además ordenada (Campos, 2014).
- Concreto con agregados ligeros. elaborado con agregados porosos sean naturales como la piedra pómez o fabricados como la arcilla expandida. especiales diferentes a los procedentes de las rocas calizas con los que generalmente se elaboran los concretos convencionales (Sidney Mindess, J. Francis Young & David Darwin, 2003). Los agregados de origen artificial como los poliméricos, poseen un coeficiente de conductividad muy bajo y oponen buena resistencia al paso del calor debido a su microestructura. (Campos, 2014).

En el trabajo de investigación referida a la sustitución del fino liviano por arena natural, Velazco (1984), hace las siguientes precisiones: Parece lógico pensar que, al utilizar agregado fino de origen pétreo en lugar de fino liviano, el módulo de elasticidad debe elevarse: no solo es intuitivo; se observa en todos los modelos matemáticos para materiales compuestos que el módulo de elasticidad del compuesto se incrementa al aumentar la rigidez de cualquiera de sus componentes. Igual sucede con la dureza superficial: un compuesto de matriz – inclusiones, tal como lo es el concreto (pasta / agregados) mejorará su dureza al mejorar la dureza de cualquiera de sus componentes. Velazco (1984), a partir de los trabajos de investigación

sobre el *mecanismo de fractura del concreto* de Glucklinch (1963), Shah (1969) y Nicholls (1976), expone las siguientes razones por las cuales mejorarían las resistencias mecánicas del concreto al aumentar la resistencia y rigidez del agregado fino:

- Existen poros y grietas en el material antes de ser sometido a carga: poros y microgrietas en la pasta, así como grietas de adherencia pasta / agregado fino y mortero / agregado grueso.
- 2. Al comenzar la solicitación se produce una deformación elástica cuasi-lineal hasta aproximadamente 30-50% de la carga máxima, valor que depende de la relación agua/cemento y de la relación volumétrica y resistente pasta/agregado; es más alto en el concreto liviano. En esta etapa no se producen nuevas grietas ni se desarrolla ninguna de las existentes.
- 3. Se produce el desarrollo abrupto de la primera grieta, la cual comienza en la interfase de uno de los agregados de mayor tamaño, y se extiende en la dirección de la dirección de la carga. Posteriormente aparecen nuevas grietas, la curva esfuerzo deformación deja de ser lineal y se observa una seudoplasticidad, producto de las restricciones que ofrece el material al agrietamiento: otros agregados, poros, zonas localizadas de bajas tensiones. Por debajo del 70% de la carga máxima la abertura de las grietas es de una a dos centésimas de milímetro y cierran casi totalmente si se elimina la carga.
- 4. Las grietas se propagan, pero no hay desintegración extendida de la matriz; aumenta la curvatura del gráfico esfuerzo – deformación. En el concreto convencional la mayor parte de las grietas rodean al agregado grueso, mientras que en el concreto liviano lo atraviesan. El agrietamiento continúa hasta alcanzar la compacidad máxima, que se produce

alrededor del 80% en concretos convencionales y del 90% en concretos livianos.

- La extensión del daño es tal que se produce expansión volumétrica, el material deja de ser continuo y se alcanza la resistencia máxima.
- 6. Luego del pico en el gráfico esfuerzo deformación se produce la curva de descenso cuya forma es causada principalmente por la variación estadística de la resistencia última, y depende de la relación volumétrica y resistente entre el agregado grueso y el mortero.

Como se observa, la fracción fina del agregado no parece intervenir en el mecanismo de rotura del concreto, excepto en los concretos de alta resistencia donde la capacidad resistente del mortero se logra incrementar hasta acercarse a la del agregado grueso (Velazco, 1984). En los concretos livianos generalmente sucede lo contrario, según refieren Nicholls (1976) y Wesche (1973), ya que el eslabón débil lo constituye el agregado grueso. Según Velazco (1984) la explicación para que las resistencias mecánicas de los concretos livianos aumenten al sustituir el fino liviano por arena natural podría ser la diferencia en el escalonamiento granulométrico que se produce al incluir uno u otro material. En efecto, Arenas y Bravo (1974) y Cormon Pierre (1973), determinaron que las propiedades mecánico-resistentes de los concretos livianos si se incrementan al utilizar granulometrías más finas, aún dentro de los límites recomendados, por lo que sus resistencias mecánicas están más influenciadas por la variación de la granulometría de los agregados que las de los concretos convencionales; sin embargo, en los trabajos de investigación, de Hanson (1964), Pfeifer & Hanson (1967) y Pfeifer (1967) el control de la granulometría de las combinaciones utilizadas no fue suficientemente estricto para asegurar que este parámetro no haya influenciado los resultados obtenidos (Velazco, 1984).

Según NTC-C (2004), el concreto ligero es un concreto con peso volumétrico en estado fresco menor o igual que 19kN/m3 (1900 kg/m3). De esta manera, la utilización de este concreto permite reducir las cargas muertas en las

estructuras y, por tanto, las fuerzas sísmicas se reducen. En cuanto a las propiedades térmicas, el concreto ligero tiene bajo coeficiente de conductividad térmica en comparación con los concretos de peso normal y autocompactable; adicionalmente, este tipo de concreto ofrece adecuadas propiedades acústicas y de resistencia al fuego.

Usualmente, el tamaño máximo del agregado que se utiliza en el concreto ligero es de 10mm. Este concreto se dosifica para proporcionar revenimientos que varían entre 14 y 18 cm y, por tanto, el concreto es apto para ser bombeable. En este concreto es difícil obtener resistencias a compresión mayores que 20MPa (200 kg/cm²), sin que se alteren sus propiedades de rigidez y peso volumétrico, ya que en la medida que se incrementa la resistencia, sistemáticamente se incrementa el peso volumétrico y el módulo de elasticidad. Cemex (2012), señala "para una resistencia de 15MPa (150 kg/cm²), el costo del concreto de peso ligero es alrededor de 5% mayor que el costo del concreto de peso normal" (CEMEX, 2012)

2.2.3 Concreto liviano con perlas de poliestireno

Concreto que se obtiene mezclando cemento, arena, agua y perlitas de poliestireno expandido. Este tipo de concreto se diferencia de otros concretos livianos por las propiedades que le aportan las partículas de poliestireno (Barba & García, 2018).

La fabricación de las perlas de poliestireno expandido se efectúa generalmente utilizando como agente expansor el pentano. Como parte del proceso se aplica energía térmica para que el agente expansor que contienen se caliente y éstas aumenten su volumen, a la vez que el polímero se plastifica y alcanzan una densidad aparente entre 10 kg/m³ y 30 kg/m³.

En el concreto liviano, se utilizan las perlas de poliestireno expandido, las cuales pueden reemplazar totalmente el agregado grueso, y parcialmente el agregado fino, debido a que son áridos que no absorben agua, no tienen impurezas, no reaccionan con el cemento y además tiene buena adherencia con el mismo. En el proceso de mezclado mecánico, se coloca el poliestireno previamente mojado para aumentar su peso, luego se vierte el agregado fino

que se va a adherir a la superficie del poliestireno, luego de la mezcla se coloca el cemento y al final el agua de mezclado. El material obtenido forma una masa consistente, que se coloca en el sitio por vibrado o apisonamiento manual. Para la elaboración del concreto liviano con poliestireno expandido se debe tener en cuentas la exacta dosificación del agua, debido a que un exceso de agua puede ocasionar una mezcla no cohesiva y segregación del material en la superficie, caso contrario si la dosificación es correcta la mezcla será homogénea. (Rodriguez Chico, 2017)

Fuente: http://www.arkigrafico.com/

GRÁFICO N° 2 Perlas de Poliestireno - (Rodriguez Chico, 2017)

2.2.3.1 Propiedades y características

(Paulino Fierro & Espino Almeyda, 2017) En su trabajo de investigación sobre concreto liviano elaborado con perlas de poliestireno expandido señala a la baja densidad y a la capacidad de aislante térmico, como propiedades principales de estos concretos; así mismo indica poseer menor absorción de humedad y baja resistencia mecánica.

Tabla N° 1 Densidad y resistencia del concreto con perlas de poliestireno

Densidad (kg/m³)	Resistencia a la compresión(kg/cm²)
200	8
250	10
300	15
350	19

Fuente: (Barba & García, 2018)

2.3 CARACTERISTICAS DE LOS MATERIALES

2.3.1 El cemento Portland

Según la Norma de Estructura E.060 Concreto Armado – 2009, el cemento portland se obtiene por la pulverización del Clinker portland con la adición eventual de sulfato de calcio o de otros productos que no excedan del 1% en peso del total siempre que su inclusión no afecte las propiedades del cemento resultante; sin embargo, todos los productos adicionados deberán ser pulverizados conjuntamente con el clinker. El cemento químicamente reacciona con el agua que se le añade en proporción apropiada y forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire.

Según refiere (Ari Queque, 2002), "En 1929 como consecuencia de una serie de investigaciones experimentales, el químico R. H. Bogue establece las fórmulas que permiten el cálculo de los componentes del cemento en base a conocer el porcentaje de óxidos que contiene, habiendo sido asumidas como norma por ASTM C -150, permitiendo una aproximación práctica al comportamiento potencial de cualquier cemento Portland normal no mezclado".

Para la fabricación de concreto hidráulico se usan cualquier cemento que cumpla con la norma ASTM C-150. En el mercado peruano, existen los siguientes tipos: Tipo I, Tipo II, Tipo III, Tipo IV y Tipo V, además los cementos adicionados como por ejemplo el Tipo IPM:

El Tipo I: Conocido como cemento Portland ordinario y es el de mayor uso en la construcción de edificaciones y otras infraestructuras que no requieran propiedades especiales del concreto para prevenir por ejemplo la agresión del salitre, aguas saladas u otros elementos dañinos.

(Ari Queque, 2002), señala que, en general los cementos de producción nacional siguen los comportamientos típicos de los cementos de fabricación mundial; sin embargo, indica, que la experiencia en el uso de ellos no puede generalizarse a priori, debido a la variabilidad de los valores de las propiedades a corto plazo que se pueden apreciar en las tablas, lo cual al ser indicador que no todos nuestros cementos siempre mantengan

parámetros constantes en el corto plazo, es recomendable efectuar pruebas de control de las propiedades.

El cemento que se utilizó en la presente investigación es el Portland Tipo I "Sol" que tiene las siguientes características químicas y físicas:

Tabla N° 2 Características químicas del Cemento Portland Tipo I - Sol

Análisis químico	Valores
Dióxido de sílice (SiO ₂) %	19,04
Óxido de Aluminio (Al ₂ O ₃) %	6,27
Óxido de Fierro (Fe ₂ O ₃) %	3,39
Óxido de Calcio (CaO) %	62,17
Óxido de Magnesio (MgO) %	3,25
Trióxido de Azufre (SO ₃) %	2,62
Óxido de Potasio (K ₂ O) %	0,88
Óxido de Sodio (Na ₂ O) %	0,20
Otros (%)	0,68
Pérdida por Ignición (P.I.) %	1,65
Total	100,15
Insolubles (%)	0,67
Álcalis totales (%)	0,78
Cal libre (CaO (I)) (%)	0,32
CO ₂ (%)	0,91
Fases mineralógicas (según Bogue)	
C₃S	49,23
C ₂ S	17,45
C ₃ A	10,88
C ₄ AF	10,32

Fuente: (Barba & García, 2018)

Tabla N° 3 Características físicas del cemento Portland Tipo I – Sol

Ensayos físicos	Valores
Retenida malla 100 (%)	0,16
malla 200 (%)	0,88
malla 325 (%)	6,60
Superficie específica Blaine (m²/kg)	325
Contenido de aire (%)	5,98
Expansión autoclave (%)	0,11
Densidad (g/cm³)	3,13
Fraguado Vicat Inicial (min)	130
Fraguado Vicat Final (min)	293
Resistencia a la compresión (kg/cm²)	
24 hrs	155
3 días	259
7 días	319
28 días	389

Fuente: (Barba & García, 2018)

2.3.2 Agregados

Conjunto de partículas, sean éstas de origen natural o artificial, que puedan ser tratados o elaborados, y cuyas dimensiones están comprendidas entre los límites fijados por la Norma Técnica Peruana 400.011 (Ari Queque, 2002). Llamados también áridos o inertes; sus características físicas más importantes son: peso unitario, peso específico, contenido de humedad, porosidad y la distribución granulométrica de las partículas o granulometría, el módulo de finura; las que son evaluadas a través de ensayos de laboratorio estandarizados, para su comparación con valores de referencia establecidos en las Normas o para definirlos en los diseños de mezcla de concreto (Chavez & Pinchi, 2015).

El control de calidad del concreto requiere que para realizar los ensayos de los agregados se efectué un muestreo apropiado para la cual se han establecido en la Norma Técnica NTP 400.010, concordante con la Norma ASTM C 702.

El agregado según diámetro de las partículas, se divide en agregados grueso y fino; los cuales, como se verá, cumplen funciones diferentes, pero complementarias en el concreto.

A continuación, en la tabla se presenta los requisitos para clasificar los agregados gruesos y finos según el ASTM C-33.

l abla	N° 4 Red	quisit	os pa	ara c	lasiti	car a	ngrega	ados	gru	esos	y fin	os. A	STM	C-33	
	T				%	Que p	asa po	r los t	amice	es norn	naliza	dos			
N° A.S.T.M.	TAMAÑO NORMAL	100	90	75	63	50	37,5 mm	25	19	12,5	9,5	4,75	2,36	1,18	300
		mm 4"	mm 31/2"	mm 3"	mm 21/2"	mm 2"	11/2"	mm 1"	mm 3/4"	mm 1/2"	mm 3/8"	mm N°4	mm N°8	mm N°16	μm N°50
	31/2"		90		25		0		0						
1	а	100	а		а		a		а						
	1 1/2"		100		60		15		5						
	21/2"				90	35	0		0						
2	a			100	a	a	а		a						
	1 1/2"				100	70	15		5						
2	2"				400	90	35	0		0					
3	a				100	а	a	a		a					
	1"					100	70	15		5		_			
357	2"				100	95		35		10		0			
337	a				100	a 100		a 70		a 20		a			
	N°4					100	90	70 20	0	30	0	5			
4	1 1/2"					100									
	a 3/4"						a 100	а 55	a 15		а 5				
	1 1/2"						95	33	35		10	0			
467						100	а		а		a	a			
	a N°4						100		70		30	5			
	1"							90	20	0	0				
5	a						100	а	а	а	а				
	1/2"							100	55	10	5				
	1"							90	40	10	0	0			
56	а						100	а	а	а	а	а			
	3/8"							100	85	40	15	5			
	1"							95		25		0	0		
57	а						100	а		а		а	а		
	N°4							100		60		10	5		
	3/4"							100	90	20	0	0			
6	a							100	a	a	a	a			
	3/8"	1	-	-					100	55	15	5	_		-
67	3/4"							100	90		20	0	0		
0,	a N°4							100	a 100		a 55	a 15	а 5		
				<u> </u>					100	90	40	0	0		
7	1/2"								100						
	a N°4									a 100	a 70	a 15	а 5		
	3/8"									200	85	10	0	0	
8										100	а	a	a	а	
	a N°8										100	30	10	5	
	3/8"										90	20	5	0	0
89	a									100	а	а	а	а	а
	a N°16								100	55	30	10	5		
	3/8"											85	10	0	0
9	a										100	а	а	а	а
	N°8			<u> </u>						<u> </u>		100	40	10	5

Fuente: (Benites Espinoza, 2011) Tesis para optar Título de Ing. Civil. Universidad Ricardo Palma

2.3.3 Agregado Fino

Material, proveniente de la desintegración natural (arena natural) o artificial (manufacturada) de las rocas, que pasa al Tamiz 3/8" (9.51 mm) y es retenido en el tamiz N° 200 (74μm), como se indica en la Norma Técnica Peruana 400.011. Su gradación corresponde a los límites establecidos en la Norma Técnica NTP 400.037, en concordancia con la Norma ASTM C-33, que recomiendan que la granulometría se encuentre dentro de las curvas granulométricas de Huso correspondientes. (Barba & García, 2018)

2.3.3.1 Características del agregado fino:

2.3.3.1.1 Peso Unitario o Peso Aparente: (NTP 400.017), (ASTM C – 29)

Peso que alcanza un determinado volumen unitario, el cual se expresa en kg/m3. Depende de factores externos como el grado de compactación aplicado, el tamaño máximo del agregado en relación con el volumen del recipiente, la forma de aplicación de energía de consolidación y otros.

1. Peso Unitario Suelto (P.U.S.)

Peso unitario que se obtiene al llenar el recipiente en una sola capa y sin ninguna presión.

$$PUS = Ws/f$$

donde:

PUS = Peso unitario suelto (kg / m3)

f = Factor de calibración del recipiente (1 / m3)

Ws = Peso de la muestra suelta (kg)

2. Peso Unitario Compactado o Varillado (P.U.C.)

Peso unitario que se obtiene cuando se ejerce presión (compactación).

$$PUC = Ws/f$$

donde:

PUC = Peso unitario suelto (kg / m3)

f = Factor de calibración del recipiente (1 / m3)

Ws = Peso de la muestra suelta (kg)

2.3.3.1.2 Peso Específico y Absorción: (NTP 400.022), (ASTM C-128).

Peso específico, gravedad específica o densidad real:
relación entre el peso del material y su volumen. Su diferencia
con el peso unitario está en que éste no toma en cuenta el
volumen que ocupan los vacíos del material. El peso específico
de las arenas varía entre 2.5 y 2.7 g/cm3; las arenas húmedas
con igual volumen aparente, pesan menos que las secas debido
a que recubren de una película de agua que la hace ocupar
mayor volumen. El volumen de huecos de una arena natural
oscila entre un mínimo de 26% para las arenas de granos
uniformes y hasta de 55% para las de granos finos (Benites
Espinoza, 2011 en Barba & García, 2018).

Este valor sirve para realizar la dosificación de la mezcla, así como para verificar que el agregado corresponda al material de peso normal.

Según (Ari Queque, 2002), en esta definición se toma en cuenta tres relaciones a usar:

Peso Específico de Masa (PEmasa): Suele contener poros. Existen varios tipos de peso específico:

a) Peso Específico de Masa Seca (PE_{mse}): Relación a una temperatura estable de la masa en el aire de un volumen unitario de material permeable (incluyendo los poros permeables e impermeables naturales del material) respecto de la masa en el aire de la misma densidad de un volumen igual de agua destilada libre de gases (Barba & García, 2018)

$$PEmasa = A/(V - W)$$

donde:

A = Peso de la arena seca (g)

V = Volumen de la fiola (cm3)

W= Peso del agua (g)

b) Peso Específico de Masa Saturado Superficialmente Seco (PEmssse): Relación entre un volumen unitario de material respecto de la masa de la misma densidad de un volumen igual de agua destilada libre de gases, valorados ambos en el aire. La medición se evalúa a temperatura estable y la masa del material incluye los poros permeables e impermeables. (Barba & García, 2018)

$$PEmssse = \frac{500}{(V - W)}$$

donde:

V = Volumen de la fiola (cm3)

W= Peso del agua (g)

c) Peso Específico Aparente (PE aparente): Relación entre un volumen unitario de material respecto de la masa de la misma densidad de un volumen igual de agua destilada libre de gases, valorados ambos en el aire. La medición se evalúa a temperatura estable y la masa del material incluye los poros permeables e impermeables; si el material es un sólido el volumen es aquel de la porción impermeable. (Barba & García, 2018)

donde:

$$PEaparaente = \frac{A}{(V-W) - (500 - A)}$$

Donde:

A = Peso de la arena seca (g)

V = Volumen de la fiola (cm3)

W= Peso del agua (g)

Porcentaje de Absorción:

Porcentaje que se obtiene de la diferencia en el peso del agregado fino superficialmente seco y el peso del material secado al horno a 100 -110°C por un periodo de 24 horas, dividido entre el peso seco.

Físicamente, es la capacidad del agregado fino de absorber el agua en contacto con éste. Al igual que el contenido de humedad, esta propiedad influye en la cantidad de agua para la relación agua/cemento en el concreto.

$$Porcentaje\ de\ absorcion = \frac{(500-A)}{A}*100$$

Donde:

A = Peso de la arena seca (g)

2.3.3.1.3 Contenido de Humedad: (NTP 339.185), (ASTM C-566):

Contenido de agua que contiene el agregado fino, porcentaje que se obtiene de la diferencia entre el peso del agregado fino natural y el peso del agregado secado en horno a 100 - 110 °C por un periodo de 24 horas.

$$H=\frac{A-B}{R}*100$$

donde:

H = Contenido de humedad (%)

A = Peso de la muestra humedad (g)

B = Peso de la muestra seca (g)

2.3.3.1.4 Granulometría (NTP 400.012):

Distribución de partículas de arena de un mismo tamaño, según la abertura de los tamices utilizados: N° 4, 8, 16, 30, 50, 100 y 200 de la serie Tyler; arena bien gradada corresponde a las cantidades retenidas en forma continua en las mallas comprendidas entre la malla N° 4 y la 100 y que no retiene más del 45% en dos tamices consecutivos. La fracción que pasa la malla N° 200 tiene influencia trascendente entre el agregado y la pasta, en consecuencia, influye en la resistencia del concreto.

Las propiedades mecánicas del concreto fundamentalmente dependen de las propiedades del mortero, especialmente de la granulometría y del porcentaje de arena que pasa la malla N° 200, así como del origen mineralógico de la arena. La calidad del concreto obliga a la observancia del control de homogeneidad

granulométrica de la aren, evitándose arenas de un mismo diámetro. (Ari Queque, 2002).

El ensayo de granulometría de este tipo de agregado se efectúa bajo las Norma Técnica NTP 400.012., la Norma Técnica NTP 400.037 y la Norma ASTM C – 33.

Tabla N° 5 Límites de distribución granulométrica - normas NTP 400.037 y ASTM C –33

Malla	Porcentaje que pasa
9.5 mm (3/8 – in)	100
4.75 mm (N° 4)	95 a 100
2.36 mm (N° 8)	80 a 100
1.18mm (N° 16)	50 a 85
600 μm (N° 30)	25 a 60
300 μm (N° 50)	10 a 30
150 µm (N° 100)	2 a 10

Fuente: (Benites Espinoza, 2011)

2.3.3.1.5 Módulo de Finura: (Norma NTP. 400.011)

Indice aproximado que representa el tamaño promedio de las partículas de la muestra de arena; Su valor se obtiene de la suma de los porcentajes acumulados retenidos en las mallas: N° 4, 8, 16, 30, 50, 100 dividido entre 100; y, sirve para controlar la uniformidad del agregado.

Según la Norma Técnica NTP 400.011, se considera que el módulo de finura de una arena adecuada para producir concreto debe estar entre 2.3 y 3.1, donde un valor menor que 2.0 indica una arena fina, 2.5 una arena de finura media y más de 3.0 una arena gruesa. De acuerdo a la ASOCEM, en la apreciación del módulo de finura, se estiman que las arenas comprendidas entre los módulos 2.2 y 2.8 producen concretos de buena trabajabilidad y reducida segregación; y las que se encuentran entre 2.8 y 3.2 son las más favorables para los concretos de alta resistencia (Benites Espinoza, 2011), (Ari, 2002). Entonces, norma establece que la arena debe tener un módulo de finura no menor de 2.35 ni mayor que 3.

2.3.3.1.6 Superficie Específica:

Se obtiene de la suma de las áreas superficiales de las partículas del agregado fino por unidad de peso. En su determinación se consideran dos supuestos: que todas las partículas son esféricas y que el tamaño medio de las partículas que pasan por un tamiz y quedan retenidas en el otro es igual al promedio de las aberturas.

$$Se = \frac{0.06}{p} \sum_{i=1}^{n} \frac{Pi}{di}$$

donde:

Se = Superficie especifica (cm^2/g)

Pi = Porcentaje retenido en el tamiz i

di = Diámetro de las partículas retenidas en el

tamiz i (cm)

P = Peso específico del agregado.

2.3.3.1.7 Material que pasa la malla N° 200: (NTP 400.018), (ASTM C-117)

Material constituido por arcilla y limo que se presenta recubriendo el agregado grueso o en forma de partículas sueltas mezclado con la arena. En el primer caso, afecta la adherencia del agregado y la pasta, en el segundo, incrementa los requerimientos de agua de la mezcla. A través del ensayo se determina, en porcentaje, la cantidad de materiales finos que contiene el agregado pétreo.

La ASTM C117-03 que establece límites para las sustancias perjudiciales, con relación al material que pasa la malla N° 200 recomienda limitarlo entre una tasa comprendida entre 3% al 5% por afectar la resistencia y exigir mayor cantidad de agua en la mezcla afectándose la relación agua/cemento. Sin embargo, Benites Espinoza (2011) señala "aunque valores superiores hasta del orden del 7% no necesariamente causarán un efecto pernicioso notable que no pueda contrarrestarse mejorando el

diseño de mezclas, bajando la relación agua/cemento y/o optimizando la granulometría (Benites Espinoza, 2011).

La Norma Técnica NTP 400.018 establece el procedimiento para determinar por vía húmeda el contenido de polvo o material que pasa por la malla N° 200, en el agregado emplearse en la elaboración de concretos y morteros. Las partículas de arcilla y otras perjudiciales que son dispersadas por el agua, así como los materiales solubles en agua, serán removidas del agregado durante el ensayo. Se determina aplicando la formula siguiente:

$$A = \frac{P_1 - P_2}{P_1} * 100$$

donde:

A = % que pasa el tamiz Nº 200

P1 = Peso de la muestra (g)

P2 = Peso de la muestra lavada y secada (g)

2.3.4 Agregado grueso

Es aquel que queda retenido en el tamiz N°4 (4.75mm) y proviene de la desintegración natural o mecánica de la roca, que cumple con los límites establecidos en la N.T.P. 400.037. El agregado grueso se puede clasificar en piedra chancada o triturada (agregado grueso obtenido por trituración artificial de rocas, canto rodado o gravas) y grava natural (proviene de la desintegración natural de materiales pétreos, encontrándose en canteras y lechos de ríos, depositados en forma natural). Las gravas naturales a partir de las cuales se obtendrá la piedra chancada deben estar limpias y libre de polvo superficial y deben cumplir con los requisitos especificados en la Norma ASTM C33, excepto en cuanto a la granulometría.

2.3.4.1 Características del agregado grueso: No se describen y tampoco se presentan características y ensayos de este tipo de agregado, por no habérsele usado en la investigación.

2.3.4.2 Análisis Químicos de agregados

No Se efectuarán los ensayos químicos del agregado que indican las normas NTP, ASTM, AASHTO y MTC E, y los manuales de procedimiento de análisis de laboratorio que corresponda.

Tabla Nº 6 Ensayos Químicos de agregados según Norma

Norma NTP	Norma AASHTO	Norma ASTM	Ensayo Químico
339.177	T 290	D-512	Cloruros con ion Cl
339.178	T 290	D-516	Sulfatos con ion SO ₄
339.152	T 290	D-1888	Sales solubles totales
MTC E 213		ASTM C 40	Impurezas orgánicas Totales
339.176	T 290		рН

Fuente: (Benites Espinoza, 2011)

2.3.5 Poliestireno Expandido

Material plástico espumado, derivado del poliestireno que se ha utilizado en la fabricación de envases en las últimas décadas en la construcción.

En la construcción el poliestireno expandido conocido como EPS es un material de aligeramiento de peso, aislante térmico y aislante de ruido. En cuanto a la conductividad térmica el valor esta entre 0.041 y 0,029 W/mK dependiendo de la densidad del producto.

Propiedades y características del poliestireno expandido

Sus principales características de porosidad, dureza, densidad, forma, color, rugosidad superficial, absorción, resistencia mecánica, aislamiento acústico, aislamiento térmico y tamaños comerciales (Paulino Fierro & Espino Almeyda, 2017).

En la presente investigación no se ha evaluado ninguna de las propiedades indicadas; solamente se ha considera su número de fineza y su tamaño nominal máximo 1/4".

2.3.6 Agua

Elemento indispensable para la hidratación del cemento, reacción química y desarrollo de sus propiedades físicas y mecánicas. Su principal función es reaccionar químicamente con el cemento para hidratarlo y físicamente como lubricante para contribuir con la trabajabilidad de la mezcla y procurar la estructura de vacíos necesaria en la pasta para que los productos de hidratación tengan espacio para desarrollarse. En consecuencia el agua que interviene en la mezcla de concreto mayor de la necesaria para la hidratación del cemento es menor que la que realmente contiene la mezcla por razones de trabajabilidad.

El agua que contienen impurezas, dependiendo de la cantidad de estas, ocasiona reaccione químicas que modifican el comportamiento normal de la pasta; así debido a las impurezas en mención se presentan: retardo en el endurecimiento, reducción de la resistencia, manchas en el concreto endurecido, eflorescencias, contribución a la corrosión del acero, cambios volumétricos y otros efectos adversos. Así aguas con contenido individuales de cloruros, sulfatos y carbonatos sobre las 5000 p.p.m. ocasiona reducción de resistencias hasta del orden del 30% con relación a concretos con agua pura; los carbonatos y bicarbonatos de Sodio y Potasio pueden acelerar o retardar el fraguado cuando la suma de sales disueltas tiene concentraciones sobre 1000 p.p.m., por lo que es recomendable en estos casos hacer pruebas de tiempo de fraguado. Que evidencias experimentales recientes indican el incremento en las reacciones álcali-sílice en los agregados del concreto (Rivva Lopez, 2013).

2.3.7 Aditivos

Material distinto del agua, del agregado o del cemento, el cual es utilizado como un componente del concreto y que se añade a este antes o durante el mezclado a fin de modificar una o algunas de sus propiedades (Rivva López, 2014).

Se usó dos productos: aditivo incorporador de aire y superplastificante.

2.3.7.1 Aditivo incorporador de aire

Eucocell 1000: Aditivo líquido que se utiliza para concretos y morteros fluidos, baja densidad y cierto nivel de resistencia a compresión. Por su alto contenidos de aire, no se recomienda para concretos convencionales.

Su uso, permite alta fluidez y trabajabilidad, reduce la contracción y aumenta el asentamiento, no requiere vibrado.

2.3.7.2 Aditivo reductor de agua de alto rango y superplastificante sin retardo

Neoplast 8500 HP: aditivo para concreto especialmente desarrollado para incrementar el tiempo de trabajabilidad, reductor de agua de alto rango sin retardo; y, optimizador de cemento en mezclas de concreto. Está diseñado para ser empleado en climas cálidos y fríos. En nuestro caso se usó esperando reducir más del 45% del agua de amasado y para reducir la segregación y exudación en el concreto plástico y para el control y distribución uniforme de las perlas de poliestireno.

2.4 DISEÑO DE MEZCLA

Proceso en los que intervienen: agregado fino, cemento, agua, aditivos y perlas de poliestireno expandido; en este proceso se cumple la secuencia en el orden que indican los elementos señalados. La relación agua/ cemento, el origen de la roca madre de los agregados y las propiedades físicas y mecánicas de estos influyen considerablemente en las propiedades resultantes del concreto.

En la presente investigación, para el diseño de las mezclas de concreto, se ha empleado el método americano ACI (American Concrete Institute), el que se fundamenta en el principio básico de la relación agua / cemento desarrollado por Abrahams, que consiste en seguir una serie de pasos para determinar la cantidad de cada material en peso y volumen, para 1m³ de concreto.

2.5 PROPIEDADES DEL CONCRETO EN ESTADO FRESCO

2.5.1 Peso unitario: (N.T.P. 339.046), (ASTM C - 138)

Peso del concreto por metro cúbico para cada relación agua cemento.

$$f = \frac{1000}{W_a} \qquad P.U = f * W_c$$

donde:

f = factor de calibración del recipiente (1/m3)

Wa = Peso del agua en kg

PU = Peso unitario del concreto (kg/m3)

Wc = Peso del concreto fresco (kg)

2.5.2 Rendimiento: (NTP 339.046)

Cantidad de concreto que se obtiene por bolsa de cemento, se expresa en metros cúbicos.

$$\gamma = \frac{V_h}{N}$$

donde:

Y = Rendimiento (m3)

Vh = Volumen de concreto (m3).

N = Número de bolsas de cemento (kg)

$$V_h = \frac{N * P_c + P_{a.f} + P_{a.g} + P_a}{P_u}$$

donde:

Pc = Peso de la bolsa de cemento (kg)

Pa.f. = Peso del agregado fino (kg)

Pa.g = Peso del agregado grueso (kg)

Pa = Peso del agua (kg)

PU = Peso unitario del concreto (kg/m3)

2.5.3 Contenido de Aire: (NTP 339.046)

Se realiza para determinar qué cantidad de vacíos tiene internamente el concreto en toda su masa. Cuanto más aire tenga internamente, la resistencia del concreto en la compresión disminuye.

En el concreto siempre existe un porcentaje de aire atrapado, dependiendo de la granulometría, tamaño de máximo del agregado y de las condiciones de operación. Las burbujas de aire atrapado tienen una superficie regular y un diámetro cercano a 1mm (Rivva Lopez, 2013)

2.5.4 Consistencia (Asentamiento: (NTP 339.035), (ASTM C - 143)

La consistencia del concreto fresco es la capacidad de la masa de concreto para adaptarse al encofrado o molde con facilidad, manteniéndose homogéneo con un mínimo de vacíos. La consistencia se modifica fundamentalmente por la variación del contenido de agua en la mezcla. En los concretos bien proporcionados, el contenido de agua necesario para producir un asentamiento determinado depende de varios factores; se requiere más agua con agregados de forma angular y textura rugosa, reduciéndose su contenido al incrementarse el tamaño máximo del agregado. La consistencia se mide con el ensayo slump utilizando el Cono de Abrams (Ari Queque, 2002).

2.5.5 Exudación (NTP 339.077)

Propiedad por la cual una parte del agua de mezcla se separa de la masa y sube hacia la superficie del concreto. Este fenómeno está gobernado por las leyes físicas del flujo, de un líquido en un sistema capilar, antes que el efecto de la viscosidad y la diferencia de densidades del agua y la masa plástica del concreto. Se produce inevitablemente en el concreto, pues es una propiedad inherente a su estructura, en ello radica su evaluación y control para evitar efectos negativos en la capacidad del concreto, de producirse. Está influenciada por la cantidad de finos en los agregados y la finura del cemento, por lo que cuanto más fino es la moliendo de éste y mayor sea el porcentaje de material menor que la malla N° 100 la exudación será menor, pues retiene el agua de mezcla. Se expresa en porcentaje. (Ari Queque, 2002)

$$C = \frac{w}{W} * S \qquad Exudación(\%) = \frac{v}{c} * 100$$

donde:

C = Masa del agua en la muestra de ensayo, en L.

W = Agua efectiva en L.

W = Cantidad total de materiales, en kg

S = Peso del concreto en kg

V = Volumen final exudado en L.

2.5.6 Temperatura del concreto: (NTP 339.184), (ASTM C1064)

Este ensayo se refiere a la temperatura del concreto recién mesclado y se usa para verificar que dicho concreto satisfaga requerimientos específicos de temperatura. Es importante realizar este control debido a que las temperaturas en el concreto fresco condicionan la velocidad del proceso de endurecimiento inicial del concreto, la cual es además influenciada por la temperatura ambiente y calor específico de los materiales constituyentes. A mayor temperatura se logra mayor resistencia inicial y mayor efecto de contracción, sin embargo, la resistencia a largo plazo será menor.

2.6 PROPIEDADES DEL CONCRETO ENDURECIDO

2.6.1 Resistencia a la Compresión: (NTP 339.034)

Es la capacidad de soportar cargas y esfuerzos de compresión; depende principalmente de la concentración de la pasta de cemento, expresada en términos de relación agua /cemento en peso. A esta característica mecánica afectan además los mismos factores que influyen en las características resistentes de la pasta, como son la temperatura y el tiempo, aunados a un elemento adicional constituido por la calidad de los agregados, que constituyen complemento de la estructura del concreto; y, el curado que es el complemento del proceso de hidratación, permite el desarrollo o alcance de las características del concreto.

El esfuerzo a la compresión de la muestra está calculado por el cociente de la máxima carga obtenida durante el ensayo entre el área de la sección transversal de la muestra.

$$R_c = \frac{4G}{\pi d^2}$$

donde:

Rc =Es la resistencia de rotura a la compresión, medido en kilogramos por centímetro cuadrado.

G = Es la carga máxima de rotura, en kilogramos.

d = Es el diámetro de la probeta cilíndrica, en centímetros.

2.6.2 Resistencia a la tracción por compresión diametral (NTP 339.084)

La resistencia a la flexión en viga es una forma de medida de la resistencia a la tracción del concreto. Mide la resistencia a la falla por momento de una viga o losa de concreto no reforzada. Se mide mediante la aplicación de cargas a vigas de concreto de 6x6 pulgadas (150 x 150 mm) de sección transversal y con luz como mínimo tres veces el espesor. La resistencia a la flexión, se expresa como el Módulo de Rotura (MR) en este caso se expresa en libras por pulgada cuadrada (MPa) y es determinada mediante los métodos de ensayo ASTM C78 (cargada en los puntos tercios) o ASTM C293 (cargada en el punto medio); siendo menores hasta en un 15% los valores determinados cuando la viga es cargada en los puntos tercios que cuando se determina cargada en el punto medio (National Ready Mixed Concrete Association, 2016).

$$T = \frac{2P}{\pi * L * D} \left(\frac{kg}{cm^2} \right)$$

donde:

T = Resistencia a la tracción por compresión diametral (kg/cm2)

P = Carga registrada (KN)-convertida en kg-f

L = Longitud de la probeta(cm)

D = Diámetro de la probeta(cm)

2.6.3 Ensayo de resistencia a la flexion del concreto (ASTM C 78)

La resistencia a la flexión en viga es una forma de medida de la resistencia a la tracción del concreto. Mide la resistencia a la falla por flexion pura en una viga o losa de concreto no reforzada. Se mide mediante la aplicación de cargas a vigas de concreto de 6x6 pulgadas (150 x 150 mm) de sección transversal y con luz como mínimo tres veces el espesor. A esta resistencia se le conoce como el Módulo de Rotura (MR) y se expresa en (MPa) y es determinada mediante los métodos de ensayo ASTM C78 (cargada en los puntos tercios) o ASTM C293 (cargada en el punto medio). Cuando la viga es cargada en los puntos tercios se obtienen valores hasta un 15% menores que los que se obtiene al cargarla en el punto medio (National Ready Mixed Concrete Association, 2016).

Si la fractura se inicia en la superficie de tensión dentro del tercio medio de la luz o longitud de separación entre apoyos, calcular el módulo de ruptura como sigue:

$$M_r = \frac{PL}{bh^2}$$

donde:

Mr : Es el módulo de rotura, en MPa

P: Es la carga máxima de rotura indica por la máquina, en Kg-f

L : Es la luz libre entre apoyos, en cm

b : Es el ancho promedio de la vida en la sección de falla, en cm

h : Es la altura promedio de la viga en la sección de falla, en cm Si la fractura ocurre en la sección de tensión fuera del tercio medio de la luz o longitud de separación entre apoyos por no más de 5 % de la luz, calcular el módulo de ruptura como sigue:

$$R = \frac{3 Pa}{hd^2}$$

donde:

R = Módulo de ruptura, MPa (lb/pulg²)

P = Carga máxima aplicada indicada por la máquina de ensayo,en N (lbf)

 a = Distancia promedio entre la línea de fractura y el soporte más cercano medido en la superficie de tensión de la viga, en mm (pulg)

b = Ancho promedio del espécimen, en la fractura, mm (pulg)

d = Espesor promedio del espécimen, en la fractura, mm (pulg).

Si la fractura ocurre en la sección de tensión fuera del tercio medio de la luz o longitud de separación entre apoyos por más de 5 % de la misma, descartar los resultados del ensayo.

2.6.4 Módulo de Elasticidad Estático (Norma ASTM C 469-94)

Capacidad del concreto de deformarse bajo carga, sin tener deformación permanente. Definida como la relación entre el esfuerzo normal y la deformación unitaria correspondiente, para esfuerzos de tracción o compresión menores que el límite de proporcionalidad del concreto. Se emplea en el cálculo de la rigidez de los elementos estructurales.

El concreto no es un material elástico, no tiene un comportamiento lineal en ningún tramo de su diagrama de carga Vs deformación en compresión; sin embargo, convencionalmente se acostumbra definir un "Modulo de Elasticidad Estático" del Concreto, mediante una recta tangente a la parte inicial del diagrama o una recta secante que une el origen del diagrama con un punto establecido, que normalmente es un porcentaje de la tensión última. Los valores de E normalmente oscilan entre 280 000 a 350 000 kg/cm² y están en relación directa con la resistencia en compresión del concreto y a la relación agua/cemento, pero siempre las mezclas más ricas en cemento tienen modelos de elasticidad mayores y también mayor capacidad de deformación. En general a mayor resistencia del concreto y mayor densidad se tiende a obtener mayor módulo de elasticidad, sin embargo, dependiendo de los componentes y dosificación del concreto o mortero los valores pueden diferir de manera apreciable (Quimbay, 2012)

$$E = (S_2 - S_1) (\varepsilon_2 - 0.000050)$$

donde:

E = Módulo de elasticidad secante, MPa [psi]

S2 = Esfuerzo correspondiente al 40% de la carga última o de ruptura

S1 = Esfuerzo correspondiente a la deformación unitaria longitudinal, ε 1, de 50 millonésimas, MPa [psi]

E2 = Deformación unitaria longitudinal producida por el esfuerzoS2.

2.7 ANÁLISIS ESTADÍSTICO

Su aplicación es de importancia en la evaluación de los resultados, por otorgar certeza de confiabilidad en los valores extraídos de las pruebas y en la aplicación de los parámetros estadísticos poder evaluar los resultados.

Para aplicar las diferentes pruebas estadísticas es imprescindible evaluar la normalidad de los datos. Generalmente tratándose de concretos su calidad se mide en términos del coeficiente de variación y la desviación estándar de los datos producto de la medición.

2.7.1 Desviación estándar (S)

Es la raíz cuadrada positiva de la varianza. La varianza mide la dispersión de los datos con respecto a la media aritmética:

$$S = \sqrt{\frac{(X1 - Xp)^2 + (X2 - Xp)^2 + \dots (Xn - Xp)^2}{n - 1}}$$

donde:

S = Desviación estándar.

n = Número de ensayos de la serie.

X1, X2, ...Xn=Resultados de resistencia de muestras determinados a través de ensayos individuales.

Xp = Promedio de todos los ensayos individuales de una serie.

Existe corrección al valor de la desviación estándar conocida como factor de corrección, donde los resultados obtenidos con datos menores a 15 puede permitirse la omisión de este factor de corrección.

Tabla N° 7 Factor de Corrección a la desviación estándar

ENSAYOS	FACTOR DE CORRECIÓN
Menos de 15	
15	1.16
20	1.08
25	1.03
30	1.00

Fuente: (Díaz Vilca, 2010)

2.7.2 Coeficiente de variación (V)

Resulta de la división entre la desviación estándar y la media aritmética de las muestras: Nos da un valor de confiabilidad del concreto, expresado en porcentaje. Para datos obtenidos en laboratorio, los valores de "V" deben ser menores que 5%.

$$V = \frac{S \times 100}{Xp}$$

donde:

V = Coeficiente de variación (%)

S = Desviación estándar

Xp = Media aritmética

El nivel del control de calidad del concreto mantiene puede establecerse según los coeficientes de variación

Tabla N° 8 Coeficiente de variación para diferentes grados de control

Grados de control	Coef. De variación
Obtenible solo en ensayos de laboratorio	5%
bien controlados	
Excelente en obra	10 a 12%
Bueno	15%
Regular	18%
Inferior	20%
Malo	25%

Fuente: (Díaz Vilca, 2010)

CAPITULO III: METODOLOGÍA

3.1 METODOLOGÍA

3.1.1 Hipótesis de trabajo

Hipótesis General

La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia y desarrollo de resistencia del concreto cemento – arena liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

Hipótesis Secundarias

Son las pertinentes que correspondan a cada objetivo específico; las que, sin embargo, se podrían expresar a través de las siguientes dos hipótesis secundarias:

• Hipótesis Secundaria 1:

La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia del concreto (cemento – arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal \emptyset =1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

• Hipótesis Secundaria 2:

La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en el desarrollo de la resistencia del concreto (cemento – arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal \emptyset =1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

3.1.2 Variables

3.1.2.1 Identificación de variables

• Variable independiente X:

Dosificación y propiedades de los materiales constituyentes de la mezcla de diseño óptimo de concreto (cemento – arena) liviano no estructural, sustituyendo totalmente el agregado grueso por perlas de poliestireno expandido y adición de aditivos incorporador de aire y superplastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista-Loreto.

• Variable dependiente Y:

Propiedades físicas y mecánicas del concreto (cemento – arena), elaborado con perlas de poliestireno expandido en sustitución total del agregado grueso y adición de aditivos incorporador de aire y superplastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista-Loreto.

3.1.3 Operacionalización de variables

Tabla Nº 9 Operacionalización de Variables

X:

Variables

Dosificación y propiedades de los materiales constituyentes de la mezcla de diseño óptimo de concreto liviano no estructural. sustituvendo totalmente el agregado grueso poliestireno por perlas de expandido y adición de aditivos incorporador de aire У plastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista-Loreto

Módulo de fineza de los agregado fino y perlas de poliestireno.

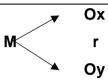
Indicadores

Proporciones adecuadas de perlas de poliestireno expandido de tamaño máximo Ø=1/4", agregado fino de la cantera Irina Gabriela (arena), cemento, aditivos incorporador agua, de aire superplastificante, correspondientes a un diseño óptimo para concreto (cemento - arena) liviano y propiedades mecánicas dentro del rango para concretos no estructurales livianos.

Y:

Propiedades físicas У mecánicas del concreto, (cemento - arena) liviano no estructural. elaborado con perlas de poliestireno expandido en sustitución total del agregado grueso y adición de aditivos incorporador de aire y plastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista-Loreto.

Asentamiento para relación a/c de diseño óptimo antes después de incorporar aditivos. У Temperaturas alcanzadas para la mezcla en proceso de hidratación del C° (cemento – arena) liviano antes y después de incorporar aditivos. Densidad del C° (cemento – arena) liviano antes y después de incorporar aditivos. Tiempo de fragua inicial y final del C° (cemento – arena) liviano antes y después de incorporar aditivos. Resistencia a la compresión del C° (cemento – arena) liviano antes y después de incorporar aditivos. Resistencia a la flexión (Módulo de rotura) del C° (cemento – arena) liviano no estructural antes y después de incorporar aditivos. Módulo de elasticidad del C° (cemento arena) liviano no estructural antes y después de incorporar aditivos.


Fuente: Los autores

3.1.4 Aspecto metodológico

3.1.4.1 Tipo de Investigación

La investigación es de **Tipo Experimental**; sin embargo, inicialmente al describirse las variables, tal como se encuentra en la realidad, se manipula la variable independiente para medir su efecto en la variable dependiente. Su diseño se presenta a continuación.

Tabla N° 10 Diseño de la Investigación

• Variable Independiente X:

X1: Dosificación de los materiales de la mezcla de diseño óptimo de concreto liviano no estructural, sustituyendo totalmente el agregado grueso por perlas de poliestireno expandido y adición de los aditivos incorporador de aire y superplastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista - Loreto.

X2: Propiedades de los materiales constituyentes de la mezcla de diseño óptimo de concreto (cemento – arena) liviano no estructural, sustituyendo totalmente el agregado grueso por perlas de poliestireno expandido y adición de los aditivos incorporador de aire y superplastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista - Loreto.

Variable dependiente Y:

Y1: Propiedades físicas y mecánicas del concreto (cemento – arena) liviano estructural, elaborado con agregado fino de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista - Loreto.

Y2: Propiedades físicas y mecánicas del concreto (cemento – arena) liviano no estructural, elaborado con perlas de poliestireno expandido tamaño máximo nominal Ø=1/4" en sustitución total del agregado grueso y de aditivos incorporador de aire y superplastificante y agregado fino de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista - Loreto.

- M =Muestra que representa al universo de las propiedades del agregado grueso y de perlas de poliestireno expandido.
- O = Información de interés recogida de la muestra.

3.1.4.2 Población y Muestra

Población. Diseños existentes de concretos livianos en tesis de investigación, obtenidos con agregados gruesos y finos, donde se ha sustituido parcial o totalmente el agregado grueso por perlas de poliestireno expandido.

Muestra. La muestra estuvo conformada por 1 metro cúbico de concreto elaborado con arena de la cantera Irina Gabriela al sustituir el 100% de agregado grueso por perlas de poliestireno expandido de tamaño máximo nominal $\emptyset=1/4$ ", aditivo incorporador de aire y superplastificante.

3.1.4.3 Verificación de Hipótesis

Se aplicó la prueba de Análisis de Correlación para verificar la homogeneidad de los datos; y se verificó esta condición con un nivel de significación de 5% (confianza 95%).

3.1.5 Métodos

3.1.5.1 Ensayo de propiedades físicas de agregados

Atendiendo las recomendaciones de Chávez y Pinchi (2015), quienes señalan, entre otros aspectos; asimismo, lo señalado por Rivva (2007), quien señala que la granulometría es fundamental en la preparación del concreto, al estar relacionado con su trabajabilidad en estado fresco y con las propiedades ficas y mecánicas alcanzadas del concreto en estado endurecido, como son la resistencia a la compresión y el módulo de elasticidad; se optó por determinar esas propiedades aplicando las normas técnicas que se señalan a continuación. Las propiedades en mención se determinaron según los ensayos y normativa correspondiente que se señalan a continuación.

Tabla N° 11 Ensayos de agregados y normativa aplicada

ENSAYO	Norma Técnica Peruana: NTP	Norma Técnica ASTM: ASTM
Muestreo de los agregados	NTP 400.010	ASTM C 702
Requisitos para clasificación de agregados		ASTM C-33
Límites de gradación del agregado fino	NTP 400.037	ASTM C-33
Peso unitario o peso aparente del agregado fino:	NTP 400.017	ASTM C -29
Peso Unitario Suelto (P.U.S.) y Peso Unitario		
Compactado o varillado (P.U.C.)		
Peso específico, gravedad específica o densidad	NTP 400.022	ASTM C-128
real; y, absorción de agregados finos		
Contenido de humedad del agregado fino	NTP 339.185	ASTM C-566
Granulometría del agregado fino	NTP 400.012	
Módulo de finura	NTP 400.011	
Material fino que pasa la malla N° 200 (o sustancias perjudiciales)	NTP 400.018	ASTM C-117
Límites de gradación del agregado grueso	NTP 400.037	ASTM C-33
Peso unitario o peso aparente del agregado grueso:	NTP 400.017	ASTM C- 29
Peso Unitario Suelto (P.U.S.) y Peso Unitario Compactado o varillado (P.U.C.)		
Peso específico y porcentaje de absorción del agregado grueso	NTP 400.022	ASTM C-127
Contenido de Humedad del agregado grueso	NTP 339.185	ASTM C-566
Granulometría del agregado grueso	NTP 400.012	ASTM C-136
Módulo de finura del agregado grueso	NTP 400.011	
Agregado Global (mezcla de agregado grueso y fino		ASTM C-33
participante en la mezcla): Curvas Teóricas y Husos Totales		Husos DIM 1045

Fuente: Los autores

Tabla 12 Ensayos químicos de agregados según normas

Ensayo químico	Norma NTP	Norma ASTM	Norma AASHTO
Cloruros con ion Cl	NTP 339.177	ASTM D-512	AASHTO T 290
Sulfatos con ion SO ₄	NTP 339.178	ASTM D-516	AASHTO T 290
Sales solubles totales	NTP 339.152	ASTM D-1888	AASHTO T 290
Impurezas orgánicas totales	MTC E 213	ASTM C 40	
pH	NTP 339.176		AASHTO T 290

Fuente: Los autores

3.1.5.2 Ensayo de propiedades del concreto en estado fresco

Tabla 13 Propiedades del concreto en estado fresco y normativa aplicada

Ensayo	Norma Técnica Peruana: NTP	Norma Técnica ASTM: ASTM
Peso unitario	NTP 339.046	ASTM C-138
Consistencia	NTP 339.035	ASTM C- 143
(Asentamiento)		
Contenido de aire	NTP 339.046	
Exudación	NTP 339.077	

Fuente: Los autores

La dosificación de los agregados se efectuó después de la verificación de las especificaciones granulométricas, tamaño máximo y calidad de los agregados finos, excepto los agregados livianos y otros requisitos de la Norma ASTM C – 33.

Cumpliéndose así lo establecido por el Método ACI para la dosificación de las mezclas se cumplió los siguientes pasos:

- Elección del asentamiento.
- Elegir el tamaño máximo nominal del agregado grueso.
- Estimar el contenido de aire.
- Estimar la cantidad de agua de mezclado
- Estimar la cantidad de agua / cemento (a/c)
- Calcular la cantidad de cemento
- Verificar si los agregados cumplen las recomendaciones granulométricas.
- Estimación del contenido de grava.
- Estimar el contenido de agregado fino.
- Ajustar la cantidad de agua por el contenido de humedad del agregado.
- Ajustar las mezclas de prueba.

Durante la investigación se garantizó la cohesión entre el EPS y la pasta de concreto, no permitiéndose la suspensión en la capa superior de la mezcla de las perlas de poliestireno utilizando los aditivos en cuestión, y cuya influencia constituye el tema de la presente investigación.

Método de mezclado

Se siguió el siguiente proceso:

- Se humedeció la mezcladora (de capacidad de 40 litros).
- El agua de mezclado se dividió en dos partes: la primera parte, en un litro y la segunda parte, el agua restante que se agregó al inicio de la preparación de la mezcla.
- Seguidamente se añadió la arena con el cemento,
 mezclándose estos materiales durante un minuto.

- Adicionándose los aditivos y luego las perlas de poliestireno expandido.
- Después del periodo de mezcla inicial, se observó la mezcla resultante, la que al encontrarse en una condición seca se añadió el agua restante correspondiente al litro de agua separado inicialmente, incorporándola poco a poco durante el periodo de cinco minutos de mezclado.

La determinación del peso unitario de la mezcla se realizó conforme a la NTP 339.046. Se tomó parte de la muestra fresca por medio de una cuchara de acero, colocándose en un recipiente de menos de 14Lt, compactándose en 3 capas aplicándose 25 golpes a cada una, además golpeándose el recipiente con un mazo de caucho por cada capa para eliminar las burbujas grandes de aire atrapado. Luego se pesó el recipiente con la mezcla y se determinó el peso unitario (kg/m3) de cada una de las mezclas correspondientes a todos los diseños. Obteniéndose también el rendimiento y el contenido de aire real por volumen absoluto.

El Asentamiento Slump o revenimiento se determinó aplicando la NTP 339.035, y utilizándose el cono de Abrams.

El ensayo de exudación se realizó conforme a la NTP. 339.077.

La de temperatura se evaluó de acuerdo a lo estipulado en la NTP. 339.184, utilizándose un termómetro calibrado del laboratorio cuya base se sumergió tres pulgadas en el concreto y por un periodo de cinco minutos.

3.1.5.3 Ensayo de propiedades del concreto en estado endurecido Tabla 14 Propiedades del concreto en estado endurecido y normativa aplicada

Ensayo	Norma Técnica Peruana: NTP	Norma Técnica ASTM: ASTM
Refrentado de testigos	NTP 339.037 (2008)	
Resistencia a la compresión	NTP 339.034	
Resistencia a la flexión en viga		ASTM C293
Módulo de elasticidad estático		ASTM C 469 - 94

Fuente: Los autores

El módulo de elasticidad del concreto endurecido se determinó a los 28 días de su curado, conforme a lo estipulado en el ASTM C469. Se utilizó la prensa, un compresómetro, los anillos para la medición de la expansión diametral (evaluación del coeficiente de Poisson). Los esfuerzos y las deformaciones se obtuvieron de la fórmula descrita en el Capítulo 2.6.4 del presente informe.

Aplicando el anexo A de la NTP 339.078. El módulo de rotura se determinó a través de formula descrita en el Capítulo 2.6.3, y considerando que la falla ocurrió dentro del tercio medio de la luz.

CAPITULO IV: RESULTADOS

4.1 CARACTERIZACIÓN DE LOS MATERIALES

4.1.1 Agregado Fino

La arena de color blanco que se utilizó en esta investigación, proviene de la Cantera" Irina Gabriela" ubicada en la carretera Iquitos – Nauta km. 17+500.

FOTO N° 1 "Cantera Irina Gabriela"

FOTO N° 2 Mezclado del agregado fino por 3 veces Fuente: Elaboración propia (2019).

4.1.1.1 Peso unitario Suelto (PUS)

Se realizó conforme la norma ASTM C-29 y la NTP 400.017.

Tabla N° 15 Peso unitario suelto del agregado fino

PESO UNITARIO SUELTO DEL AGREGADO SEGÚN NORMA ASTM C - 29						
DESCRIPCION	M1	M2	M3			
(A) PESO DE MUESTRA + MOLDE (g)	6736	6777	6765			
(B) PESO DE MOLDE (g)	2895	2895	2895			
(C=A-B) PESO DE MUESTRA (g)	3841	3882	3870			
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827			
(C/D) PESO UNITARIO (g /cm3)	1.359	1.373	1.369			
PROMEDIO PESO UNITARIO (Kg /cm3) 1,367						

Fuente: Elaboración propia (2019).

Resultado: el promedio del peso unitario suelto del agregado fino es 1367 kg/m3.

4.1.1.2 Peso unitario compactado (PUC)

Se realizó conforme la norma ASTM C-29 y la NTP 400.017.

Tabla N° 16 Peso unitario Compactado del agregado fino

PESO UNITARIO COMPACTADO DEL AGREGADO SEGÚN NORMA ASTM C - 29					
Descripción	M1	M2	М3		
(A) PESO DE MUESTRA + MOLDE (g)	7308	7246	7277		
(B) PESO DE MOLDE (g)	2895	2895	2895		
(C=A-B) PESO DE MUESTRA (g)	4413	4351	4382		
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827		
(C/D) PESO UNITARIO (g /cm3)	1.561	1.539	1.550		
Promedio peso unitario (kg /cm3)	1,550				

Fuente: Elaboración propia (2019).

Resultado: el promedio del peso unitario suelto del agregado fino es 1550 kg/m3.

4.1.1.3 Peso específico y absorción

Ensayos realizados conforme la norma ASTM C-128 y la NTP 400.022.

Tabla N° 17 Peso específico y absorción del agregado fino.

	PESO ESPECIFICO Y ABSORCIÓN DEL AGREGADO FINO								
	SEGÚN NORMA ASTM C - 128								
	Descripción	M1	M2	М3	M4	Promedio			
Α	PESO MAT.SAT.SUP.SECO (EN AIRE)	197.66	242.15	286.79	279.70	-			
В	PESO FRASCO + H2O	707.39	675.49	815.08	730.37	-			
С	PESO FRASCO + H2O + A = (A+B)	905.05	917.64	1101.87	1010.07	-			
D	PESO MAT.+H2O EN EL FRASCO	829.55	825.97	991.72	903.05	-			
Ε	VOL. MASA + VOL. DE VACIO = (C-D)	75.50	91.67	110.15	107.02	-			
F	PESO MAT.SECO EN ESTUFA (105°C)	196.27	240.4	284.87	277.85	-			
G	VOL.MASA = (E-A-F)	74.11	89.92	108.23	105.17	-			
	Peso Específico de Masa (Base Seca) = (F/E)		2.622	2.586	2.596	2.601			
Pe	so Específico de Masa (S.S.S) = (A/E)	2.618	2.642	2.604	2.614	2.619			
Peso Específico de Aparente = (F/G)		2.648	2.673	2.632	2.642	2.649			
% (de Absorción = ((A-F) /F) *100	0.708	0.728	0.674	0.666	0.694			

Fuente: Elaboración propia (2019).

Resultado: El Peso específico del agregado fino es 2.601g/cm3 y el Porcentaje de absorción del agregado fino es 0.694%

4.1.1.4 Análisis granulométrico

Se realizó según la norma ASTM C-136 y NTP 400.012.

FOTO N° 3 Tamices para el Análisis Granulométrico del agregado fino

Fuente: Elaboración propia (2019).

Tabla N° 18 Análisis granulométrico de la muestra N° 01 del agregado fino.

ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 01) SEGÚN NORMA ASTM C - 136						
Tamices	Abertura	Peso	%	Retenido	% Que Pasa	
ASTM	mm.	Retenido(g)	Parcial	Acumulado		
N°04	4.760	0.09	0.03	0.03	99.97	
N°08	2.380	0.22	0.07	0.11	99.89	
N°16	1.190	0.49	0.17	0.27	99.73	
N°30	0.590	3.00	1.02	1.29	98.71	
N°50	0.297	110.86	37.58	38.87	61.13	
N°100	0.149	158.30	53.66	92.52	7.48	
N°200	0.074	18.12	6.14	98.66	1.34	
Pasa N°200		3.94	1.34			
Peso total de	e muestra	295.02				

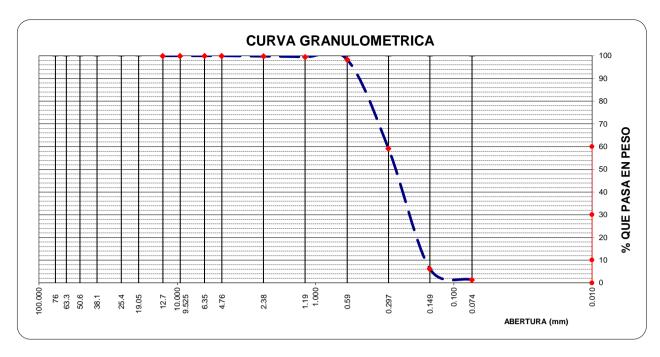


GRÁFICO N° 3 Curva granulométrica del agregado fino - Muestra N° 01 Fuente: Elaboración propia (2019).

Tabla N° 19 Análisis granulométrico de la muestra N° 02 del agregado fino.

ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 02) SEGÚN NORMA ASTM C - 136						
Tamices	Abertura	Peso	%	Retenido	% Que Pasa	
ASTM	mm.	Retenido(g)	Parcial	Acumulado		
N°04	4.760	0	0.00	0.00	100.00	
N°08	2.380	0.59	0.20	0.20	99.80	
N°16	1.190	0.93	0.31	0.51	99.49	
N°30	0.590	3.52	1.19	1.70	98.30	
N°50	0.297	116.03	39.10	40.80	59.20	
N°100	0.149	157.29	53.00	93.80	6.20	
N°200	0.074	14.43	4.86	98.66	1.34	
Pasa N°200		3.97	1.34			
Peso total de	e muestra	296.76				

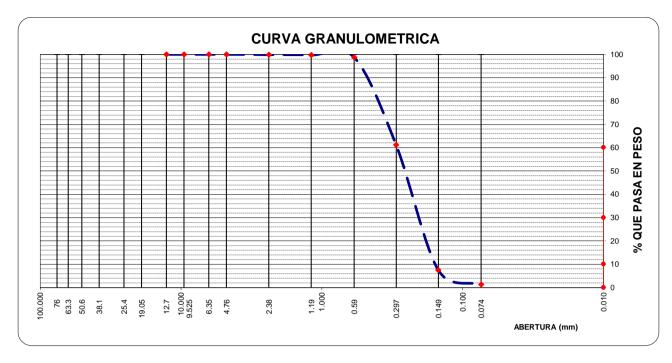


GRÁFICO N° 4 Curva granulométrica del agregado fino - Muestra N° 02

Tabla N° 20 Análisis granulométrico de la muestra N° 03 del agregado fino.

ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 03) SEGÚN NORMA ASTM C - 136						
Tamices	Abertura	Peso	%l	Retenido	% Que	
ASTM	mm.	Retenido(g)	Parcial	Acumulado	Pasa	
N°04	4.760	0.09	0.03	0.03	99.97	
N°08	2.380	0.35	0.11	0.14	99.86	
N°16	1.190	0.61	0.20	0.34	99.66	
N°30	0.590	3.23	1.05	1.39	98.61	
N°50	0.297	84.71	27.53	28.92	71.08	
N°100	0.149	194.10	63.07	91.99	8.01	
N°200	0.074	21.02	6.83	98.82	1.18	
Pasa N°200		3.63	1.18			
Peso total d	e muestra	307.74				



GRÁFICO Nº 5 Curva granulométrica del agregado fino - Muestra Nº 03

4.1.1.5 Módulo de Fineza.

Se realizó conforme la norma ASTM C-33 y NTP 400.011.

Tabla N° 21 Módulo de fineza del agregado fino.

MODULO DE FINEZA POR TAMIZADO SEGÚN NORMA ASTM C - 33							
Tamices	N	11	ı	И2	N	13	
ASTM	%Retenido	%Ret.acum	%Retenido	%Ret.acum	%Retenido	%Ret.acum	
N°04	0.03	0.03	0.00	0.00	0.03	0.03	
N°08	0.07	0.11	0.20	0.20	0.11	0.14	
N°16	0.17	0.27	0.31	0.51	0.20	0.34	
N°30	1.02	1.29	1.19	1.70	1.05	1.39	
N°50	37.58	38.87	39.10	40.80	27.53	28.92	
N°100	53.66	92.52	53.00	93.80	63.07	91.99	
TOTAL		1.33		1.37		1.23	
MOD. FINEZA	1.33 1.37 1.23						
PROMEDIO			1	.31			

Fuente: Elaboración propia (2019).

Resultado: El Promedio del Módulo de fineza del agregado fino es 1.31

4.1.1.6 Superficie especifica

Se realizó conforme la norma NTP 400.012.

Tabla N° 22 Superficie especifica de la muestra N° 01 del agregado fino

	SUPERFICIE ESPECIFICA M1						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
N°04	4.760	0.7125	0.03	0.04			
N°08	2.380	0.3555	0.07	0.21			
N°16	1.190	0.1770	0.17	0.94			
N°30	0.590	0.0885	1.02	11.49			
N°50	0.297	0.0442	37.58	850.16			
N°100	0.149	0.0221	53.66	2427.94			
FONDO	0.074	0.0111	6.14	553.33			
TOTAL				3844.11			

Fuente: Elaboración propia (2019).

$$Se = \frac{0.06}{2.601}x3844.11 = 88.68 cm2/g$$

Tabla N° 23 Superficie especifica de la muestra N° 02 del agregado fino

	SUPERFICIE ESPECIFICA M2						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
N°04	4.760	0.7125	0.00	0.00			
N°08	2.380	0.3555	0.20	0.56			
N°16	1.190	0.1770	0.31	1.77			
N°30	0.590	0.0885	1.19	13.40			
N°50	0.297	0.0442	39.10	884.59			
N°100	0.149	0.0221	53.00	2398.30			
FONDO	0.074	0.0111	4.86	438.06			
TOTAL				3736.69			

$$Se = \frac{0.06}{2.601}x3736.69 = 86.20 \ cm2/g$$

Tabla N° 24 Superficie especifica de la muestra N° 03 del agregado fino

	SUPERFICIE ESPECÎÏFICA M3						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
N°04	4.760	0.7125	0.03	0.04			
N°08	2.380	0.3555	0.11	0.32			
N°16	1.190	0.1770	0.20	1.12			
N°30	0.590	0.0885	1.05	11.86			
N°50	0.297	0.0442	27.53	622.77			
N°100	0.149	0.0221	63.07	2853.97			
FONDO	0.074	0.0111	6.83	615.36			
TOTAL				4105.44			

$$Se = \frac{0.06}{2.601}x4105.44 = 94.70 \ cm2/g$$

4.1.1.7 Material que pasa el tamiz N° 200

Se desarrolló según la norma ASTM C-117 y NTP 400.018.

Tabla N° 25 Material que pasa por el tamiz N° 200 del agregado fino

MATERIAL FINO QUE PASA POR EL TAMIZ N° 200 SEGÚN NORMA ASTM C - 117							
N° de Ensayos	M1	M2	М3				
(A) PESO DE MUESTRA HUMEDA + TARA (g)	423.66	379.29	359.50				
(B) PESO DE MUESTRA SECA + TARA (g)	406.39	367.59	345.43				
(C) PESO DE TARA (g)	84.73	80.40	71.40				
(D=A-C) PESO DE MUESTRA HUMEDA (g)	338.93	298.89	288.1				
(E=B-C) PESO DE LA MUESTRA SECA (g)	321.66	287.19	274.03				
(F=D-E) PESO DEL MATERIAL FINO (g)	17.27	11.7	14.07				
(F/D*100%) QUE PASA LA MALLA N° 200	5.10	3.91	4.88				
Promedio de % que pasa la malla N° 200		4.63					

Fuente: Elaboración propia (2019).

Resultado: El Promedio del porcentaje que pasa la malla N° 200 del agregado fino es 4.63%

4.1.2 Perla de Poliestireno

La perla de poliestireno utilizado en la presente investigación, fue proveída por la empresa Ecopor, ubicada en la carretera Santa Clara, calle las Malvinas ,100m antes de llegar a Rumococha.

FOTO N° 4 Empresa Ecopor

Fuente: Elaboración propia (2019).

FOTO N° 5 Imágenes Panorámicas dentro de Empresa

4.1.2.1 Peso unitario Suelto (PUS)

Se realizó conforme la norma ASTM C-29 y la NTP 400.017.

Tabla N° 26 Peso unitario suelto de la perla de poliestireno

PESO UNITARIO SUELTO DE LA PERLA DE POLIESTIRENO SEGÚN NORMA ASTM C - 29					
Descripción	m1	m2	m3		
(A) PESO DE MUESTRA + MOLDE (g)	2927.77	2928.07	2929.27		
(B) PESO DE MOLDE (g)	2895.32	2895.32	2895.32		
(C=A-B) PESO DE MUESTRA (g)	32.45	32.75	33.95		
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827		
(C/D) PESO UNITARIO (g /cm3)	0.011	0.012	0.012		
Promedio peso unitario (kg /cm3)	12.00				

Fuente: Elaboración propia (2019).

Resultado: el promedio del peso unitario suelto de la perla de poliestireno es 12.00 kg/m3.

4.1.2.2 Peso unitario compactado (PUC)

Se realizó conforme la norma ASTM C-29 y la NTP 400.017.

Tabla N° 27 Peso unitario Compactado de la perla de poliestireno

PESO UNITARIO COMPACTADO DE LA PERLA DE POLIESTIRENO SEGÚN NORMA ASTM C - 29						
Descripción	m1	m2	m3			
(A) PESO DE MUESTRA + MOLDE (g)	2929.53	2929.04	2928.67			
(B) PESO DE MOLDE (g)	2895.32	2895.32	2895.32			
(C=A-B) PESO DE MUESTRA (g)	34.21	33.72	33.35			
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827			
(C/D) PESO UNITARIO (g /cm3)	0.012	0.012	0.12			
Promedio peso unitario (Kg /cm3)	12					

Fuente: Elaboración propia (2019).

Resultado: el promedio del peso unitario suelto de la perla de poliestireno es 12 kg/m3.

4.1.2.3 Peso específico y absorción

Se realizó conforme la norma ASTM C-128 y la NTP 400.022.

Tabla N° 28 Peso específico y absorción de la perla de poliestireno.

	PESO ESPECÍFICO Y ABSORCIÓN DE LA PERLA DE POLIESTIRENO SEGÚN NORMA ASTM C - 128							
	Descripción	m1	m2	m3	promedio			
Α	PESO MAT.SAT.SUP.SECO (EN AIRE)	6.69	6.03	6.39	-			
В	PESO FRASCO + H2O	855.11	862.14	870.22	-			
С	PESO FRASCO + H2O + A = (A+B)	861.8	868.17	876.61	-			
D	PESO MAT.+H2O EN EL FRASCO	528.44	475.25	467.32	-			
Ε	VOL. MASA + VOL. DE VACIO = (C-D)	333.36	392.92	409.29	-			
F	PESO MAT.SECO EN ESTUFA (105°C)	6.69	6.03	6.39	-			
G	VOL.MASA = (E-A-F)	333.36	392.92	409.29	-			
Pe: (F/	so Específico de Masa (Base Seca) = E)	0.020	0.015	0.016	0.017			
Pe	so Específico de Masa (S.S.S) = (A/E)	0.020	0.015	0.016	0.017			
Pe	so Específico de Aparente = (F/G)	0.020	0.015	0.016	0.017			
% (de Absorción = ((A-F) /F) *100	0.000	0.000	0.000	0.000			

Fuente: Elaboración propia (2019).

Resultado: El Peso específico del agregado fino es 0.017g/cm3 y el Porcentaje de absorción del agregado fino es 0.000%.

4.1.2.4 Análisis granulométrico

Se realizó según la norma ASTM C-136 y NTP 400.012.

FOTO N° 6 Tamices Análisis Granulométrico de la perla de poliestireno Fuente: Elaboración propia (2019).

Tabla N° 29 Análisis granulométrico de la muestra N°01 de poliestireno

ANAI	ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 01) SEGÚN NORMA ASTM C - 136						
Tamices	Abertura	Peso	%R	%Retenido			
ASTM	mm.	Retenido(g)	Parcial	Acumulado	Pasa		
3/8"	9.525	0.00	0.00	0.00	100.00		
1/4"	6.350	1.68	7.24	7.24	92.76		
N°04	4.760	18.66	80.36	87.60	12.40		
N°08	2.380	2.88	12.40	100.00	0.00		
Peso total	Peso total de muestra						

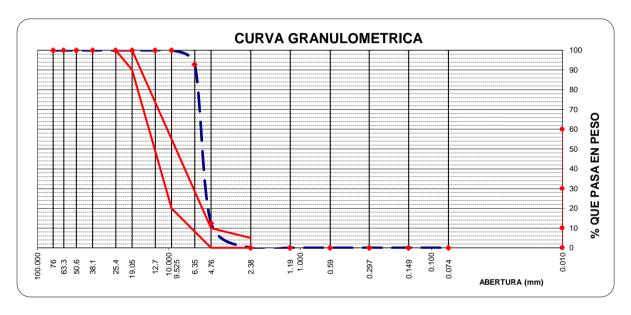


GRÁFICO Nº 6 Curva granulométrica del poliestireno - Muestra Nº 01

Fuente: Elaboración propia (2019).

Tabla N° 30 Análisis granulométrico de la muestra N°02 de poliestireno

ANAL	ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 02) SEGÚN NORMA ASTM C - 136						
Tamices	Abertura	Peso	%R	etenido	% Que		
ASTM	mm.	Retenido(g)	Parcial	Acumulado	Pasa		
3/8"	9.525	0.00	0.00	0.00	100.00		
1/4"	6.350	1.51	4.81	4.81	95.19		
N°04	4.760	25.06	79.78	84.59	15.41		
N°08	2.380	4.84	15.41	100.00	0.00		
Peso total	Peso total de muestra						

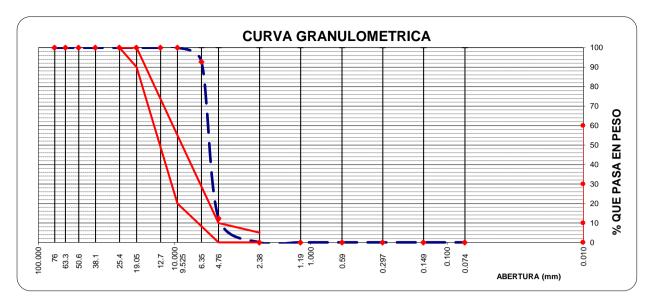


GRÁFICO Nº 7 Curva granulométrica del poliestireno - Muestra Nº 02

Tabla N° 31 Análisis granulométrico de la muestra N°03 de poliestireno

ANALI	ANALISIS GRANULOMÉTRICO POR TAMIZADO (MUESTRA Nº 03)							
	SEC	GÚN NORMA AS	TM C - 136					
Tamices	Tamices Abertura Peso %Retenido %							
ASTM	mm.	Retenido(g)	Parcial	Acumulado	Pasa			
3/8"	9.525	0.00	0.00	0.00	100.00			
1/4"	6.350	0.91	4.21	4.21	95.79			
N°04	4.760	16.64	77.00	81.21	18.79			
N°08	2.380	4.06	18.79	100.00	0.00			
Peso total	Peso total de muestra							

Fuente: Elaboración propia (2019).

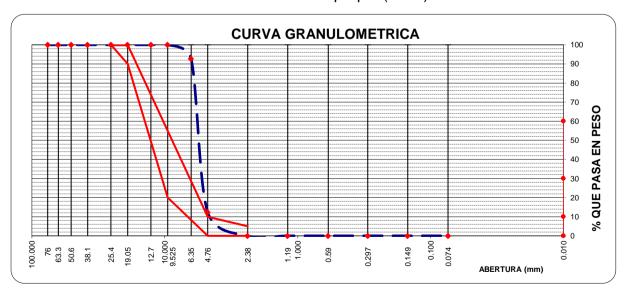


GRÁFICO N° 8 Curva granulométrica del poliestireno - Muestra N° 03

4.1.2.5 Módulo de Fineza.

El análisis de módulo de fineza de la perla de poliestireno se realizó conforme la norma ASTM C-33 y NTP 400.011.

Tabla N° 32 Módulo de fineza de la perla de poliestireno

	MODULO DE FINEZA POR TAMIZADO SEGÚN NORMA ASTM C - 33								
Tamices	N	1 1		M2	N	M3			
ASTM	%Retenido	%Ret.acum	%Retenido	%Ret.acum	%Retenido	%Ret.acum			
N°04	80.36	87.60	79.78	84.59	77.00	81.21			
N°08	12.40	100.00	15.41	100.00	18.79	100.00			
N°16	-	100.00	-	100.00	-	100.00			
N°30	-	100.00	-	100.00	-	100.00			
N°50	-	100.00	-	100.00	-	100.00			
N°100	-	100.00	-	100.00	-	100.00			
TOTAL		5.88		5.85		5.81			
MOD. FINEZA	5.	88	5.85 5.81			81			
PROMEDIO		5.84							

Fuente: Elaboración propia (2019).

Resultado: El Promedio del Módulo de fineza del agregado fino es 5.84

4.1.2.6 Superficie específica

El análisis de superficie específica de la perla de poliestireno se realizó conforme la norma NTP 400.012.

Tabla N° 33 Superficie especifica muestra N° 01 del poliestireno

	SUPERFICIE ESPECIFICA M1						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
3/8"	9.525	1.1100	0.00	0.00			
1/4"	6.350	0.7936	7.24	9.12			
N°04	4.760	0.5550	80.36	144.80			
N°08	2.380	0.3555	12.40	34.89			
N°16	1.190	0.1770	0.00	0.00			
N°30	0.590	0.0885	0.00	0.00			
FONDO	0.074	0.0111	0.00	0.00			
TOTAL				188.80			

$$Se = \frac{0.06}{0.013}x188.80 = 871.38 \, cm2/g$$

Tabla N° 34 Superficie especifica muestra N° 02 del poliestireno

	SUPERFICIE ESPECIFICA M2						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
3/8"	9.525	1.1100	0.00	0.00			
1/4"	6.350	0.7936	4.81	6.06			
N°04	4.760	0.5550	79.78	143.75			
N°08	2.380	0.3555	15.41	43.34			
N°16	1.190	0.1770	0.00	0.00			
N°30	0.590	0.0885	0.00	0.00			
FONDO	0.074	0.0111	0.00	0.00			
TOTAL				193.16			

$$Se = \frac{0.06}{0.013}x193.16 = 891.51 \, cm2/g$$

Tabla N° 35: Superficie especifica muestra N° 03 del poliestireno

	SUPERFICIE ESPECÍFICA M3						
Tamices ASTM	Abertura (mm)	Di (cm)	Pi (%)	Pi/di			
3/8"	9.525	1.1100	0.00	0.00			
1/4"	6.350	0.7936	4.21	5.31			
N°04	4.760	0.5550	77.00	138.74			
N°08	2.380	0.3555	18.79	52.85			
N°16	1.190	0.1770	0.00	0.00			
N°30	0.590	0.0885	0.00	0.00			
FONDO	0.074	0.0111	0.00	0.00			
TOTAL				196.90			

$$Se = \frac{0.06}{0.013}x196.90 = 908.77 \ cm2/g$$

4.1.2.7 Material que pasa por Tamiz N° 200

El ensayo de cantidad de la perla de poliestireno que pasa por el tamiz N° 200 se desarrolló según la norma ASTM C-117 y NTP 400.018.

Tabla N° 36 Material que pasa por el tamiz N° 200 perla de poliestireno

MATERIAL FINO QUE PASA POR EL TAMIZ Nº 200 SEGÚN NORMA ASTM C - 117							
N° de Ensayos	m1	m2	m3				
(A) PESO DE MUESTRA HUMEDA + TARA (g)	376.53	384.56	342.13				
(B) PESO DE MUESTRA SECA + TARA (g)	376.53	384.56	342.13				
C) PESO DE TARA (g)	353.15	353.15	320.52				
(D=A-C) PESO DE MUESTRA HUMEDA (g)	23.38	31.41	21.61				
(E=B-C) PESO DE LA MUESTRA SECA (g)	23.38	31.41	21.61				
(F=D-E) PESO DEL MATERIAL FINO (g)	0	0	0				
(F/D*100%) QUE PASA LA MALLA N° 200	0.00	0.00	0.00				
PROMEDIO DE % QUE PASA LA MALLA Nº 200		0.00					

Fuente: Elaboración propia (2019).

Resultado: El Promedio del porcentaje que pasa la malla N° 200 del agregado fino es 0.00%.

4.2 DISEÑO DE MEZCLAS

Se partió de un diseño optimo, eligiéndose el correspondiente CL-03, en el cual se utilizó una relación agua/cemento de 0.40, 60% de agregado fino y 40% de perlas de poliestireno, 0.006 kg/bls de cemento de Neoplast 8500 HP, 0.0001 kg/bls de cemento de Eucocell 1000. La humedad de este diseño fue de 9.47 % para el agregado fino y 0.00% para las perlas de poliestireno; 160 L/m3 de estimación de agua y 20% de contenido de aire atrapado tomados de la composición de un m3 corregido por cambio de aire atrapado real. (Barba & García, 2018)

A partir del diseño patrón, se variaron los aditivos incorporador de aire y superplastificante, manteniendo constante los otros diseños ya mencionados en él patrón. Los aditivos Neoplast 8500 HP y Eucocell 1000 fueron usados en nueve dosis; todas las variantes hacen un total de 252 diseños de mezcla incluido el diseño patrón, tomándose el que cumplía con las características óptimas.

Tabla N° 37 Dosificaciones - Probetas

N°	NEOPLAST 8500 HP (aditivo superplastificant e/reductor de agua) relación aditiva/cemento	EUCOCELL 1000 (aditivo incorpora dor de aire) relación aditiva/ cemento	Muestras por cada dosis de aditivo	co R tra	lesist. mpres lesist. cción	ión y a la (días)	Resist. a la flexión (días)	Módul o de Elasti. (días)	Prob	etas
			N°	7	14	28	28	28	Cilín. Ø 4"	Vigas
1	0.006	0.0001	3	6	6	6	6	4	22	6
2	0.004	0.0001	3	6	6	6	6	4	22	6
3	0.005	0.0001	3	6	6	6	6	4	22	6
4	0.008	0.0001	3	6	6	6	6	4	22	6
5	0.009	0.0001	3	6	6	6	6	4	22	6
6	0.006	0.0000	3	6	6	6	6	4	22	6
7	0.006	0.00005	3	6	6	6	6	4	22	6
8	0.006	0.0002	3	6	6	6	6	4	22	6
9	0.006	0.0003	3	6	6	6	6	4	22	6
								TOTAL	198	54

Tabla N° 38 Categorización de los concretos livianos

	CATEGORIZACIÓN DE LOS CONCRETOS LIVIANOS						
Diseño Meta	Densidad (Kg/m3)	Resistencia a la Compresión (Mpa)	Categoría				
А	Menor a 1000	Menor a 5	Espuma de concreto				
В	1000-1800	5 - 17	Concreto liviano no estructural				
С	1800-2100	Mayor a 17	Concreto estructural de baja densidad				

Fuente: (Barba & García, 2018)

4.2.1 0.006 Neoplast 8500 HP - 0.0001 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 39 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0001 Euco)

DISEÑO DE MEZO	CL	A DE C	ONCR	RETC	- DOSIS	N° 01	/PA	TRO	NC	
CONCRETO LIVIAN										
			MATERIA	ALES						
1. CEMENTO										
Marca y Tipo	:	SOL T								
Peso Específico	:		g/cc							
Peso Unitario	:	1500	kg/m3							
2. ADITIVO		Aditiv	vo1		Aditivo 2					
Marca y Tipo	:	NEOPI	LAST		EUCOCELL					
		8500	HP		1000					
Densidad	:		kg/L			kg/L				
3. AGREGADOS										
		AGREGADO	O FINO		PERLA DE P	OLIESTIR	ENO			
Peso Específico	:	2.601	g/cc		0.017	g/cc				
Porcentaje de Absorción	:	0.69	%		0.00	%				
Peso Unitario Suelto	:	1,367	Kg/m3		12	Kg/m3				
Peso Unitario Compactado	:	1,550	Kg/m3		12	Kg/m3				
Módulo de Fineza	:	1.31	-		5.85					
Tamaño Máximo Nominal	:				1/4"					
Humedad para Diseño	:	9.67	%		0.00	%				
		CA	RACTERI	STICAS	3					
4. DATOS PARA LA DOSIFICACIÓN										
Estimación de Agua	:	160	L/m3							
Relación Agua/Cemento (A/C)	:	0.40								
Factor Cemento	:	C=A/Rac	160.00	/	0.40	=	400	=	9.41	Bls./m3
Contenido de Aire Atrapado	:	20.00	%							
Combinación de Agregados	:	60%	A. FINO		40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.006								
Relación Aditivo/Cemento 2	:	0.0001								
Cantidad de aditivo 1	:	2400	g	=	2.4	Kg/m3				
Cantidad de aditivo 2	:	40	g	=	0.04	Kg/m3				
,			CALCU	LO						
5. CALCULO DE VOLÚMENES ABSOI MEZCLA	LUT	O DE LA								
Cemento	:		400	/	3150	=	0.127	m3		
Agua	:		160.00	/	1000	=	0.158	m3		
Aire Atrapado	:		20.00	/	100	=		m3		
Aditivo 1	:		2.40		1100		0.002			
Aditivo 2	:		0.04	/	1050		0.000			
Volumen Absoluto de los agregados	:		1.000	_	0.486984	=	0.487 0.513			
Peso del Agregado Fino	:	60%	0.308	х	2601	=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205	Х	17	=		kg		
								J		

6. VALORES DE DISEÑO											
Cemento	:	400.0	Kg/m3								
Agua	:		L/m3								
Agregado Fino	:		Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1	•		Kg/m3								
Aditivo 2			Kg/m3								
7. CORRECIÓN POR HUMEDAD DE I AGREGADOS	LOS	0.040	rtg/iiio								
Peso Húmedo del A. Fino	:	800.65	Х	1.0967	=		878.08	Kg/m3			
Peso Húmedo del P. Poliestireno	:	3.49	Х	1.0000	=		3.4903				
Humedad Superficial A. Fino	:	9.67	-	0.69	=		8.98				
Humedad Superficial P. Poliestireno	:	0.00	-	0.00	=		0.00				
Aporte de Humedad A. Fino		800.65		0.0898			71.899				
Aporte de Humedad P. Poliestireno	÷	3.49	X	0.0000				L.			
Aporte de Humedad F. Follestifeno	•	3.49	^	0.0000	_		71.90	•			
Agua Efectiva de Diseño	:	157.78	-	71.90	=		85.88	L.			
8. VALORES DE DISEÑO CORREGID HUMEDAD	OS P	OR									
Cemento	:	400.0	Kg/m3								
Agua			L/m3								
Agregado Fino			Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1			Kg/m3								
Aditivo 2	•		Kg/m3								
9. PROPORCIÓN EN PESO (Kg)											
Cemento	:	400.00	/	400.00	=		1.00				
Agregado Fino	:	878.1	/	400.00	=		2.20				
Agregado Grueso	:	3.5	/	400.00	=		0.01				
Agua	:	0.21	Х		=		8.93				
			C			AF	_	AG		Agua]., ,
DOSIFICACIÓN EN PESO	:		1	•		2.20	•	0.01	<u>:</u>	8.93	L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)											
Peso Unitario Suelto Húmedo A. fino	:		1499.19								
Peso Unitario Suelto Húmedo A. Polies	:		12.00	Kg/m3							
DOSIFICACIÓN EN VOLUMEN	:		C 1	:		AF 2.18	:	AG 1.24	:	Agua 8.93	L/m3
			•								•
11. DOSIFICACIÓN POR BOLSA DE											
CEMENTO		12.5	Ka								
CEMENTO Cemento	:	42.5 92.7	•								
CEMENTO Cemento Agregado Fino	:	92.7	Kg								
CEMENTO Cemento Agregado Fino Agregado Grueso	: : : : : : : : : : : : : : : : : : : :	92.7 0.4	Kg Kg								
CEMENTO Cemento Agregado Fino	: : : : : : : : : : : : : : : : : : : :	92.7	Kg Kg L.								

PESO UNITARIO DE PRODUCCION Y CONTENIDO DE AIRE DEL CONCRETO

PESO UNITARIO DE PRO		ASTM C		IDO DE AIR	VE DEL	CONCR	EIO
Relación agua/cemento:	0.40			CON ADITIV	vo		0.006 0.0001
DOSIFICACIÓN POR METRO CÚBICO I	DEL CON	NCRETO	(AREI	NA SATUR	ADA SU	PERFIC	
			•				VOLUMEN
				PESO			ABSOLUTO
CEMENTO		:		400.00	•		0.12698 m3
AGREGADO FINO (ESTADO S.S.S*)		:		806.18	kg		0.30780 m3
PERLA DE POLIESTIRENO (ESTADO S.S	S.S*)			3.49	kg		0.20521 m3
AGUA		:		157.78	J		0.15778 m3
ADITIVO NEOPLAST 8500 HP		:		2.40	kg		0.00218 m3
ADITIVO EUCOCELL		_		0.04	kg		0.00004_ m3
PESO TOTAL DE MATERIALES				1369.89	kg		0.800 m3
S.S.S.* - saturado superficialmente seco							
PESO UNITARIO TEÓRICO DE CONCRETO (SI	IDONIENI		DDECE	NCIA DE AIDE		DO)	
			PNESEI	NCIA DE AINE	AIRAPA	וטטו	
•	1369.89kg 0.800m3	=		1712.3	9	kg/m	3
PESO UNITARIO DEL CONCRETO	J.800m3						
(A) PESO DE MUESTRA + MOLDE (g)		•	6868	,	6917		7004
(B) PESO DE MOLDE (g)			2895		2895		2895
(C=A-B) PESO DE MUESTRA (g)			3973	1	4022		4109
(D) VOLUMEN DE MOLDE (cm3)			2827	•	2827		2827
(D/C) PESO UNITARIO (g/cm3)			1.405	5	1.423		1.453
PESO UNITARIO PROMEDIO (g/cm3)				1	.42719		
PESO UNITARIO PROMEDIO (kg/m3)				1	427.19		
RENDIMIENTO =	1369	.89 kg.	=	0.959851	m3		
	1427.1	9 kg/m3					
RENDIMIENTO	0.959	851 m3	=	0.960			
RELATIVO	1	m3					
CONTENIDO DE = CEMENTO) m3.	=	416.73	kg/m3	=	9.81 bolsas/m3
REAL	0.959	581 m3					
CONTENIDO DE AIRE ATRAPADO = 1713	2.39 - 142	7.19	X 100			=	16.66%
(Método Volumétrico)	1712.39						
COMPOSICIÓN DE UN METRO CÚBIC	O DEL C	ONCRE	TO FR	ESCO COI	RREGID	O POR	CAMBIO DE AIRE
		ATRA	PADO	REAL			
				PESO			VOLUMEN ABSOLUT
CEMENTO			:	416.7	'3 kg		0.132 m3

AGREGADO FINO (ESTADO S.S.S*) 839.90 kg 0.321 m3 PERLA DE POLIESTIRENO (ESTADO S.S.S*) : 3.64 kg 0.214 m3 AGUA : 164.38 L. 0.164 m3 ADITIVO NEOPLAST 8500 HP 0.00227 m3 : 2.50 kg ADITIVO EUCOCELL 0.04 kg 0.00004 m3

AIRE ATRAPADO 0.00 0.167 m3 TOTAL 1427.19 kg 1.0000 m3

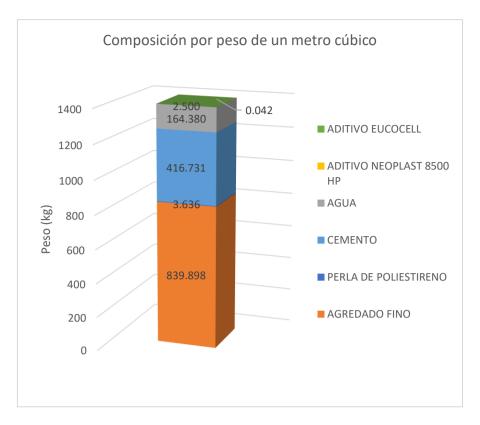


GRÁFICO Nº 9 Composición por peso de un metro cúbico – 0.006/0.0001

Fuente: Elaboración propia (2019).

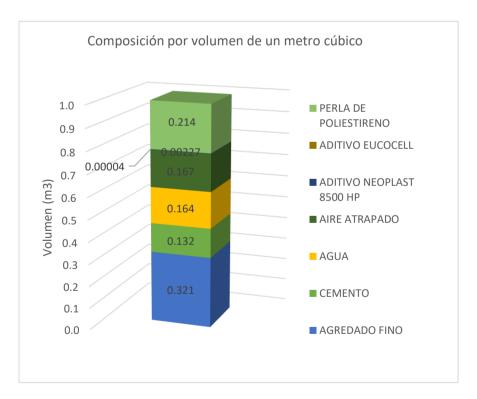


GRÁFICO N° 10 Composición por volumen de un metro Cúbico – 0.006/0.0001

Fuente: Elaboración propia (2019).

4.2.2 0.006 Neoplast 8500 HP - 0.0002 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 40 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0002 Euco)

CONCRETO LIVIA 1. CEMENTO Marca y Tipo Peso Específico	ANO N		CTURAL -	0.006	NEOPLAS	ST: 0.0	0002 EU	COCEL	L		
Marca y Tipo						- , -					
Marca y Tipo			MATERIA	ALES							
	:	SOL T	IPO I								
C30 E3pComoo			g/cc								
Peso Unitario			kg/m3								
C30 Cilitano	·	1000	Ng/1110								
2. ADITIVO		Aditi	vo1		Aditiv	/o 2					
Marca y Tipo	:	NEOPI			EUCO						
		8500	_		100	_					
Densidad	:		kg/L			-	kg/L				
B. AGREGADOS											
		AGREGADO	O FINO		PERLA	DE PO	DLIESTIRI	ENO			
Peso Específico	:	2.601	g/cc			0.017	g/cc				
Porcentaje de Absorción	:	0.69	-			0.00	%				
Peso Unitario Suelto	:	1,367	Kg/m3			12	Kg/m3				
Peso Unitario Compactado	:	1,550	Kg/m3			12	Kg/m3				
Módulo de Fineza	:	1.31				5.85					
Гатаño Máximo Nominal	:					1/4"					
Humedad para Diseño	:	12.55	%			0.00	%				
		CA	RACTER	ISTICA	S						
I. DATOS PARA LA DOSIFICACIÓN	ı										
Estimación de Agua	:	160	L/m3								
Relación Agua/Cemento (A/C)	:	0.40									
Factor Cemento	:	C=A/Rac	160.00	/	0.40		=	400	=	9.41	Bls./m3
Contenido de Aire Atrapado	:	20.00	%								
Combinación de Agregados	:	60%	A. FINO			40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.006									
Relación Aditivo/Cemento 2	:	0.0002									
Cantidad de aditivo 1	:	2400	g	=		2.4	Kg/m3				
Cantidad de aditivo 2	:	80	g	=		0.08	Kg/m3				
			CÁLCU	ILO							
5. CÁLCULO DE VOLÚMENES ABS MEZCLA	OLUT	O DE LA									
Cemento	:		400	/	3150		=	0.127	m3		
∖ gua	:		160.00	/	1000		=	0.158	m3		
Aire Atrapado	:		20.00	/	100		=	0.2	m3		
Aditivo 1	:		2.40	/	1100			0.002			
Aditivo 2	:		0.08	/	1050			0.000 0.487			
Volumen Absoluto de los agregados	:		1.000	_	0.4869	84	=	0.513			
Peso del Agregado Fino	:	60%	0.308		2601		=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205		17		=		kg		

6. VALORES DE DISEÑO										
Cemento	: 400.0	Kg/m3								
Agua	: 157.7	L/m3								
Agregado Fino	: 800.7	Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1		Kg/m3								
Aditivo 2		Kg/m3								
7 Idia 70 E	0.000									
7. CORRECIÓN POR HUMEDAD DE LO AGREGADOS	os									
Peso Húmedo del A. Fino	: 800.65	Х	1.1255	=		901.13	Kg/m3			
Peso Húmedo del P. Poliestireno	: 3.49	Х	1.0000				Kg/m3			
Humedad Superficial A. Fino	: 12.55	-	0.69	=		11.86				
Humedad Superficial P. Poliestireno	: 0.00	-	0.00	=		0.00				
Aporte de Humedad A. Fino	: 800.65	х	0.1186			94.957				
Aporte de Humedad P. Poliestireno	: 3.49	X	0.0000				L.			
Aporte de Humedad I : I oliestifeno	. 3.49	^	0.0000	_		94.96	-			
						94.90	L.			
Agua Efectiva de Diseño	: 157.74	-	94.96	=		62.78	L.			
8. VALORES DE DISEÑO CORREGIDO HUMEDAD	S POR									
Cemento	: 400.0	Kg/m3								
Agua		L/m3								
Agregado Fino		Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1		Kg/m3								
		-								
Aditivo 2	0.080	Kg/m4								
9. PROPORCIÓN EN PESO (Kg)										
Cemento	: 400.00	/	400.00	=		1.00				
Agregado Fino	: 901.1338	/	400.00	=		2.25				
Agregado Grueso	: 3.5	/	400.00	=		0.01				
Agua	: 0.16	Х	42.50	=		6.80				
					AF		40		A a.u.a]
DOSIFICACIÓN EN PESO	:	C 1	:		2.25	:	AG 0.01	:	Agua 6.80	L/m3
										1 =/0
10. PROPORCIÓN EN VOLUMEN (Pie3)										
Peso Unitario Suelto Húmedo A. fino	:	1538.56	Kg/m3							
Peso Unitario Suelto Húmedo A. Polies	:	12.00	Kg/m3							
		С			AF		AG		Agua	
DOSIFICACIÓN EN VOLUMEN	:	1	<u>:</u>		2.18	<u>:</u>	1.24	<u>:</u>	6.80	L/m3
11. DOSIFICACIÓN POR BOLSA DE CEMENTO										
Cemento	: 42.5	Kg								
Agregado Fino	: 95.6	-								
Agregado Grueso		Kg								
Agua Efectiva	: 6.8	-								
Aditivo 01	: 0.255									
		-								
Aditivo 02	: 0.009	kg								

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

		ASTN	/I C-138				
Relación agua/cemento:	0.40)	CON	ADITIVO			0.006 0.0002
DOSIFICACIÓN POR METRO	CÚBICO	DEL CONCRE	TO (ARE	NA SATUR	ADA	SUPERFICIALME	
				PESO		VOLUM ABSOLI	
CEMENTO		:		400.00	kg	0.1	2698 m3
AGREGADO FINO (ESTADO S.S.S PERLA DE POLIESTIRENO (ESTA		:		806.18	J	0.3	0780 m3
S.S.S*)				3.49	_		0521 m3
AGUA ADITIVO NEOPLAST 8500 HP		:		157.74	_		5774 m3
		;		2.40	_		0218 m3
ADITIVO EUCOCELL				0.08			0008 m3
PESO TOTAL DE MATERIALES				1369.89	kg	(0.800 m3
S.S.S.* - saturado superficialmente seco							
PESO UNITARIO TEÓRICO DE CONCRE	•		PRESENCIA	A DE AIRE ATR	APAD	00)	
т	$= \frac{1369.8}{0.800n}$		1712.	39	kg/r	m3	
PESO UNITARIO DEL CONCRETO	0.8001	113					
(A) PESO DE MUESTRA + MOLDE ((a)		6829			7021	7114
(B) PESO DE MOLDE (g)	.9/		2895			2895	2895
(C=A-B) PESO DE MUESTRA (g)			3934			4126	4219
(D) VOLUMEN DE MOLDE (cm3)			2827			2827	2827
(D/C) PESO UNITARIO (g/cm3)			1.392			1.460	1.492
PESO UNITARIO PROMEDIO (g/cm	3)			1.44	782		ļ.
PESO UNITARIO PROMEDIO (kg/m	3)			1447	7.82		
RENDIMIENTO =		1369.89 kg.	=	0.946172	m3		<u>'</u>
	14	47.823333 kg/ı	m3				
RENDIMIENTO RELATIVO =		0.946172 m3	=	0.946			
		1m3					
CONTENIDO DE CEMENTO =		400 m3.	=	422.76 kg/	/m3	=	9.95
REAL		0.946172 m3					bolsas/m3
CONTENIDO DE AIRE ATRAPADO=	1712	.39 - 1447.82	X 100			= 1	5.45%
(Método Volumétrico)		1712.39					
COMPOSICIÓN DE UN METR	O CÚBIO	O DEL CONC	RETO F	RESCO COF	RREG	IDO POR CAMB	IO DE AIRE
		ATRAPA	DO REA	۱L			
				PESO		VOLUMEN	ABSOLUTO
CEMENTO			:	422.76	kg	0.134 m3	
AGREGADO FINO (ESTADO S.S.S*)				852.04	kg	0.325 m3	
PERLA DE POLIESTIRENO (ESTADO	S.S.S*)			3.69	kg	0.217 m3	
AGUA			:	166.72	L.	0.167 m3	
ADITIVO NEOPLAST 8500 HP			:	2.54	kg	0.00231 m3	
ADITIVO EUCOCELL			:	0.08	kg	0.00008 m3	
AIRE ATRAPADO				0.00	_	0.155 m3	
TOTAL				4447.00		4.0000	

TOTAL

1.0000 m3

1447.82 kg

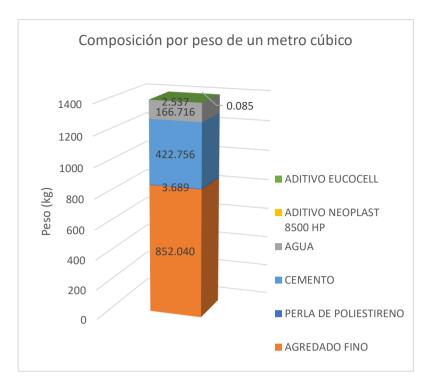


GRÁFICO N° 11 Composición por peso de un metro cúbico – 0.006/0.0002

Fuente: Elaboración propia (2019).

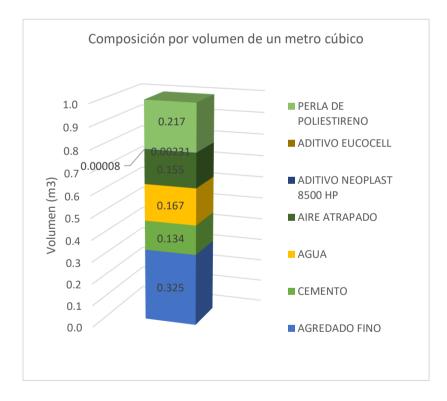


GRÁFICO N° 12 Composición por volumen de un metro Cúbico – 0.006/0.0002

Fuente: Elaboración propia (2019).

4.2.3 0.006 Neoplast 8500 HP - 0.00005 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 41 Diseño Concreto liviano no estructural- (0.006 Neo; 0.00005 Euco)

CONCRETO LIVIA 1. CEMENTO Marca y Tipo Peso Específico	INO N		TUKAL -	ป.บบ๒ โ	ieuplas i ; 0.	ひひひひつ 上し	ICOCEL	.L		
Marca y Tipo			MATERIA	AI FS						
Marca y Tipo				ALLO						
	:	SOL T	IPO I							
	:	3.15	g/cc							
Peso Unitario	:		kg/m3							
2. ADITIVO		Aditiv	vo1		Aditivo 2					
Marca y Tipo	:	NEOPI	LAST		EUCOCELL	•				
		8500	HP		1000					
Densidad	:	1.1	kg/L		1.05	kg/L				
3. AGREGADOS										
		AGREGADO			PERLA DE P	OLIESTIR	ENO			
Peso Específico	:	2.601	-			g/cc				
Porcentaje de Absorción	:	0.69			0.00					
Peso Unitario Suelto	:		Kg/m3			Kg/m3				
Peso Unitario Compactado	:		Kg/m3			Kg/m3				
Módulo de Fineza	:	1.31			5.85					
Tamaño Máximo Nominal	:				1/4"					
Humedad para Diseño	:	9.41	%		0.00	%				
,		CA	RACTER	ISTICAS	3					
4. DATOS PARA LA DOSIFICACIÓN										
Estimación de Agua	:	160	L/m3							
Relación Agua/Cemento (A/C)	:	0.40								
Factor Cemento	:	C=A/Rac	160.00	/	0.40	=	400	=	9.41	Bls./m
Contenido de Aire Atrapado	:	20.00	%							
Combinación de Agregados	:	60%	A. FINO		40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.006								
Relación Aditivo/Cemento 2	:	0.00005								
Cantidad de aditivo 1	:	2400	g	=		Kg/m3				
Cantidad de aditivo 2	:	20	g	=	0.02	Kg/m3				
5. CALCULO DE VOLÚMENES ABS	OL LIT	ODELA	CALCU	JLO						
MEZCLA	J_U1									
Cemento	:		400	/	3150	=	0.127	m3		
Agua	:		160.00		1000	=	0.158			
Aire Atrapado	:		20.00		100	=		m3		
Aditivo 1	:		2.40		1100		0.002			
Aditivo 2	:		0.02		1050		0.000			
	-		0.02	•	. 550		0.487	m3		
Volumen Absoluto de los agregados	:		1.000	-	0.486984	=	0.513			
Peso del Agregado Fino	:	60%	0.308		2601	=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205		17	=	3.5	_		

6. VALORES DE DISEÑO											
Cemento	:	400.0	Kg/m3								
Agua	:	157.8	L/m3								
Agregado Fino	:	800.7	Kg/m3								
Perla de Poliestireno	:	3.5	Kg/m3								
Aditivo 1	:	2.400	Kg/m3								
Aditivo 2	:		Kg/m3								
7. CORRECIÓN POR HUMEDAD DE L AGREGADOS	os										
Peso Húmedo del A. Fino	:	800.65	Х	1.0941	=		875.99	Kg/m3			
Peso Húmedo del P. Poliestireno	:	3.49	Х	1.0000	=		3.4903	Kg/m3			
Humedad Superficial A. Fino	:	9.41	-	0.69	=		8.72	%			
Humedad Superficial P. Poliestireno	:	0.00	-	0.00	=		0.00	%			
Aporte de Humedad A. Fino	:	800.65	Х	0.1186	=		69.817	L.			
Aporte de Humedad P. Poliestireno	:	3.49	Х	0.0000				L.			
							69.82	•			
Agua Efectiva de Diseño	:	157.80	-	69.82	=		87.98	L.			
8. VALORES DE DISEÑO CORREGIDO HUMEDAD	OS PO	R									
Cemento	:	400.0	Kg/m3								
Agua	:		L/m3								
Agregado Fino	:		Kg/m3								
Perla de Poliestireno			Kg/m3								
Aditivo 1	•		Kg/m3								
Aditivo 2			Kg/m4								
9. PROPORCIÓN EN PESO (Kg)											
Cemento	:	400.00	/	400.00	=		1.00				
Agregado Fino	:	876.0	/	400.00			2.19				
Agregado Grueso		3.5	/	400.00			0.01				
Agua		0.22	X		=		9.35				
Agua	•	0.22		72.00	_		9.55				7
DOSIFICACIÓN EN PESO	:		C 1	:		AF 2.19	:	AG 0.01	:	Agua 9.35	L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)											
Peso Unitario Suelto Húmedo A. fino	:		1538.56								
Peso Unitario Suelto Húmedo A. Polies	:		12.00	Kg/m3							
DOSIFICACIÓN EN VOLUMEN	:		C 1	:		AF 2.18	:	AG 1.24	:	Agua 9.35	L/m3
11. DOSIFICACIÓN POR BOLSA DE CEMENTO											
Cemento	:	42.5	Ka								
Agregado Fino	:	92.7	-								
Agregado Grueso	:		Kg								
Agua Efectiva		9.4	-								
-	•										
Aditivo 01	•	0.255	Ka								

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO **ASTM C-138**

	ASIN	/I C-138					
Relación agua/cemento:	0.40	CON A	DITIVO				0.006 0.0000
DOSIFICACIÓN POR METRO CÚE	SICO DEL CONCRE	TO (AREN	A SATUR	ADA SU	PERFICIAL	MENTE	
					VOL	UMEN	
OFMENTO			PESO		ABSO	OLUTO	
CEMENTO	:		400.00	kg	(0.12698	m3
AGREGADO FINO (ESTADO S.S.S*) PERLA DE POLIESTIRENO (ESTADO	;		806.18	J		0.30780	
S.S.S*) AGUA	:		3.49	J		0.20521	
ADITIVO NEOPLAST 8500 HP			157.80	J		0.15780	
ADITIVO EUCOCELL	·		2.40	J		0.00218	
			0.02			0.00002	
PESO TOTAL DE MATERIALES			1369.89	кg		0.800	m3
S.S.S.* - saturado superficialmente seco							
PESO UNITARIO TEÓRICO DE CONCRETO (SUPONIENDO LA NO	PRESENCIA [DE AIRE ATR	APADO)			
T = 1	1369.89kg =	1712.39		kg/m3			
-	0.800m3	1712.33		кв/1113			
PESO UNITARIO DEL CONCRETO							
(A) PESO DE MUESTRA + MOLDE (g)		7156			7284	7:	335
(B) PESO DE MOLDE (g)		2895			2895	28	895
(C=A-B) PESO DE MUESTRA (g)		4261			4389	4	440
(D) VOLUMEN DE MOLDE (cm3)		2827			2827	28	827
(D/C) PESO UNITARIO (g/cm3)		1.507			1.553	1.	571
PESO UNITARIO PROMEDIO (g/cm3)			1.543	345			
PESO UNITARIO PROMEDIO (kg/m3)			1543	.45			
RENDIMIENTO =	1369.89 kg.	=	0.887551	m3	•	*	,
	1543.45 kg/m3	3					
RENDIMIENTO RELATIVO =	0.946172 m3	=	0.888				
	1m3						
CONTENIDO DE CEMENTO =	400 m3.	=	450.68 kg/	m3	=		0.6
REAL	0.887551 m3		O.			bols	as/m3
CONTENIDO DE AIRE ATRAPADO=	<u>1712.39 – 1543.45</u>	X 100			=	9.87%	
(Método Volumétrico)	1712.39						
COMPOSICIÓN DE UN METRO C	CÚBICO DEL CONC	RETO FRE	SCO COR	REGID	O POR CAN	IBIO DE	AIRE
	ATRAPA	ADO REAL					
			PESO		VOLUME	N ABSO	LUTO
CEMENTO		:	450.68	kg	0.143 n	n3	
AGREGADO FINO (ESTADO S.S.S*)		:	908.32	kg	0.347 n	n3	
PERLA DE POLIESTIRENO (ESTADO S.S	5.S*)	:	3.93	kg	0.231 n	n3	
AGUA		:	177.79	L.	0.178 n	n3	
ADITIVO NEOPLAST 8500 HP		:	2.70	kg	0.00246 n	n3	
ADITIVO EUCOCELL		:	0.02	kg	0.00002 n	n3	
AIRE ATRAPADO			0.00		0.099 n	n3	
TOTAL				kα	1.0000 n		
. •		:	1543.44	νŔ	1.0000 h	113	

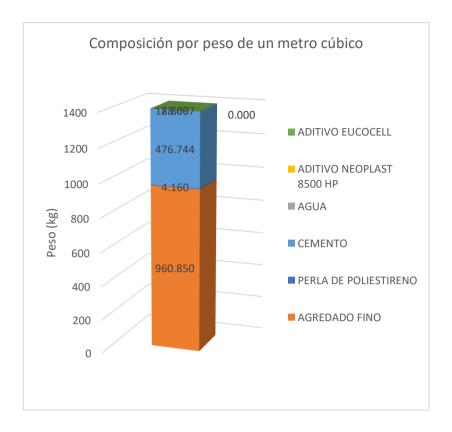


GRÁFICO N° 13 Composición por peso de un metro cúbico – 0.006/0.00005

Fuente: Elaboración propia (2019).

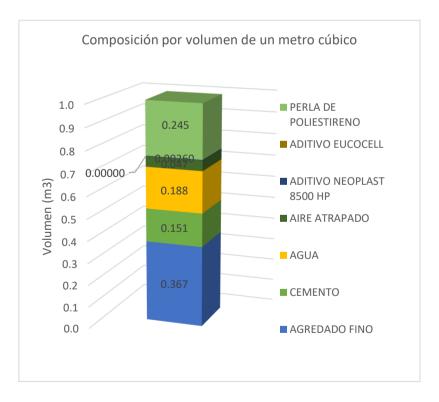


GRÁFICO N° 14 Composición por volumen de un metro Cúbico – 0.006/0.00005 Fuente: Elaboración propia (2019).

4.2.4 0.006 Neoplast 8500 HP - 0.0003 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 42 Diseño Concreto liviano no estructural- (0.006 Neo; 0.0003 Euco)

CONCRETO LIVIA	NO N	NO ESTRUC	CTURAI -	0.006	NEOPI AST: 0	.0003 FU	COCFL	L		
OCHCKETO LIVIA	1101		MATERIA		INLOI LAGI, U	.0003 EO	COOLL			
1. CEMENTO			=							
Marca y Tipo	:	SOL T	IPO I							
Peso Específico	:	3.15	g/cc							
Peso Unitario	:	1500	kg/m3							
2. ADITIVO		Aditiv	vo1		Aditivo 2					
Marca y Tipo	:	NEOPI	_AST		EUCOCELL	-				
		8500	HP		1000					
Densidad	:	1.1	kg/L		1.05	kg/L				
3. AGREGADOS										
		AGREGADO			PERLA DE P	-	ENO			
Peso Específico	:	2.601	-			g/cc				
Porcentaje de Absorción	:	0.69			0.00					
Peso Unitario Suelto	:		Kg/m3			2 Kg/m3				
Peso Unitario Compactado	:		Kg/m3			Kg/m3				
Módulo de Fineza	:	1.31			5.85					
Tamaño Máximo Nominal	:				1/4'					
Humedad para Diseño	:	15.77	%		0.00) %				
		CA	RACTERÍ	ÍSTICA	S					
4. DATOS PARA LA DOSIFICACIÓN										
Estimación de Agua	:	160	L/m3							
Relación Agua/Cemento (A/C)	:	0.40	400.00	,						
Factor Cemento	:	C=A/Rac	160.00	/	0.40	=	400	=	9.41	Bls./m
Contenido de Aire Atrapado	:	20.00	%							
Combinación de Agregados	:	60%	A. FINO		40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.006								
Relación Aditivo/Cemento 2	:	0.0003								
Cantidad de aditivo 1	:	2400	g	=		Kg/m3				
Cantidad de aditivo 2	:	120	g	=	0.12	Kg/m3				
5. CÁLCULO DE VOLÚMENES ABSO) LIT	ODELA	CÁLCU	ILO						
MEZCLA		- - · ·								
Cemento	:		400	/	3150	=	0.127	m3		
Agua	:		160.00		1000	=	0.158			
Aire Atrapado	:		20.00		100	=	0.200			
Aditivo 1	:		2.40		1100		0.002	-		
Aditivo 2	:		0.12		1050		0.000	_		
Volumen Absolute de les agrecedes			1 000		0.496004	_	0.487			
Volumen Absoluto de los agregados		600/	1.000		0.486984	=	0.513			
Peso del Agregado Fino	:	60%	0.308		2601	=	800.7	_		
Peso de Perla de Poliestireno	:	40%	0.205	Х	17	=	3.5	кg		

6. VALORES DE DISEÑO											
Cemento	:	400.0	Kg/m3								
Agua	:	157.7	L/m3								
Agregado Fino	:	800.7	Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1	:		Kg/m3								
Aditivo 2	:		Kg/m3								
			J								
7. CORRECIÓN POR HUMEDAD DE AGREGADOS	LOS										
Peso Húmedo del A. Fino	:	800.65	Х	1.1577	=		926.91	Kg/m3			
Peso Húmedo del P. Poliestireno	:	3.49	Х	1.0000				Kg/m3			
Humedad Superficial A. Fino	:	15.77	-	0.69	=		15.08				
Humedad Superficial P. Poliestireno	:	0.00	-	0.00	=		0.00				
Aporte de Humedad A. Fino		800.65	х	0.1508			120.74				
Aporte de Humedad P. Poliestireno		3.49	X	0.0000			-	L.			
Aporte de Humedad I : I ollestifeno	•	0.40	~	0.0000	_		120.74	-			
							120.74	L.			
Agua Efectiva de Diseño	:	157.70	-	120.74	=		36.97	L.			
8. VALORES DE DISEÑO CORREGIO HUMEDAD	OS PO	OR .									
Cemento		400 O	Kg/m3								
Agua	:		L/m3								
-			Kg/m3								
Agregado Fino			Kg/m3								
Perla de Poliestireno			-								
Aditivo 1	•		Kg/m3								
Aditivo 2		0.120	Kg/m4								
9. PROPORCIÓN EN PESO (Kg)											
Cemento	:	400.00	/	400.00	=		1.00				
Agregado Fino	:	926.9	/	400.00	=		2.32				
Agregado Grueso	:	3.5	/	400.00	=		0.01				
Agua	:	0.09	Х	42.50	=		3.82				
			С			AF		AG		Agua	
DOSIFICACIÓN EN PESO	:		1	:		2.32	:	0.01	:		L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)											
Peso Unitario Suelto Húmedo A. fino	:		1582.58	Kg/m3							
Peso Unitario Suelto Húmedo A. Polies	:		12.00	Kg/m3							
			С			AF		AG		Agua	
DOSIFICACIÓN EN VOLUMEN	:		1	:		2.18	:	1.24	:	3.83	L/m3
11. DOSIFICACIÓN POR BOLSA DE CEMENTO											
	:	42.5	Kg								
CEMENTO Cemento	:	42.5 92.7	-								
CEMENTO Cemento Agregado Fino	: : :	92.7	Kg								
CEMENTO Cemento Agregado Fino Agregado Grueso	: : :	92.7 0.4	Kg Kg								
CEMENTO Cemento Agregado Fino	: : : : : : : : : : : : : : : : : : : :	92.7	Kg Kg L.								

0.0013 kg

Fuente: Elaboración propia (2019).

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

		AST	M C-138					
Relación agua/cemento:	0.40)	CON A	ADITIVO			-	0.006 0.0003
DOSIFICACIÓN POR MET	RO CÚBICO	DEL CONCRE	ETO (AREI	NA SATUR	ADA S	UPERFICIALN		
				PESO		VOLUI ABSOL		
CEMENTO		:		400.00	kg	0.	12698 n	n3
AGREGADO FINO (ESTADO S PERLA DE POLIESTIRENO (E		:		806.18	kg	0.	30780 n	n3
S.S.S*)				3.49	kg	0.	20521 n	n3
AGUA		:		157.70	kg	0.	15770 n	n3
ADITIVO NEOPLAST 8500 HP		:		2.40	kg	0.	00218 n	n3
ADITIVO EUCOCELL				0.12	kg	0.	00011 n	n3
PESO TOTAL DE MATERIALE	S			1369.89	kg		0.800 n	n3
S.S.S.* - saturado superficialmen seco PESO UNITARIO TEÓRICO DE CON		NIENDO LA NO I	DDESENICIA	DE AIDE ATD	4 D 4 D 0	1		
PESO UNITARIO TEORICO DE COI	•		PRESENCIA	DE AIRE ATR				
	$T = \frac{1369.8}{0.800 \text{ m}}$		1712.39	9	kg/m3	3		
PESO UNITARIO DEL CONCRE								
(A) PESO DE MUESTRA + MOLI	DE (a)		6555			6664	659	96
(B) PESO DE MOLDE (g)	3 L (g)		2895			2895	289	95
(C=A-B) PESO DE MUESTRA (g)		3660			3769	370)1
(D) VOLUMEN DE MOLDE (cm3)			2827			2827	282	27
(D/C) PESO UNITARIO (g/cm3)	<u>'</u>		1.295			1.333	1.30	09
PESO UNITARIO PROMEDIO (g	/cm3)			1.31	235			
PESO UNITARIO PROMEDIO (k	-			1312				
RENDIMIENTO	=	1369.89 kg.	=	1.043848		•		I
		1312.35 kg/m3	3					
RENDIMIENTO RELATIVO	=	1.043848 m3	=	1.044				
		1m3						
CONTENIDO DE CEMENTO	=	400 m3.	=	383.2 kg/n	n3	=	9.02bols	sas/m3
REAL	-	1.043848 m3		0.				
CONTENIDO DE AIRE ATRAPADO=	1712	.39 – 1312.35	X 100			=	23.36%	
(Método Volumétrico)		1712.39						
COMPOSICIÓN DE UN M	ETRO CÚBIC	CO DEL CONC	CRETO FR	ESCO COF	RREGI	DO POR CAME	310 DE /	AIRE
		ATRAPA	ADO REAL	_				
				PESO		VOLUMEN	I ABSOLU	то
CEMENTO			:	383.20	kg	0.122 m3	3	
AGREGADO FINO (ESTADO S.S.S	S*)		:	772.31	kg	0.295 m3	3	
PERLA DE POLIESTIRENO (ESTA	DO S.S.S*)		:	3.34	kg	0.197 m3	3	
AGUA			:	151.08	L.	0.151 m3	3	
ADITIVO NEOPLAST 8500 HP			:	2.30	kg	0.00209 m3	3	
ADITIVO EUCOCELL			:	0.11	kg	0.00011 m3	3	
AIRE ATRAPADO				0.00		0.234 m3	3	
TOTAL			_	1010 ==		1.200	_	

TOTAL

1.0000 m3

1312.35 kg

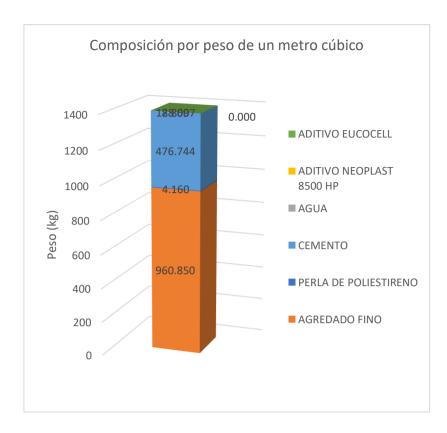


GRÁFICO N° 15 Composición por peso de un metro cúbico – 0.006/0.0003

Fuente: Elaboración propia (2019).

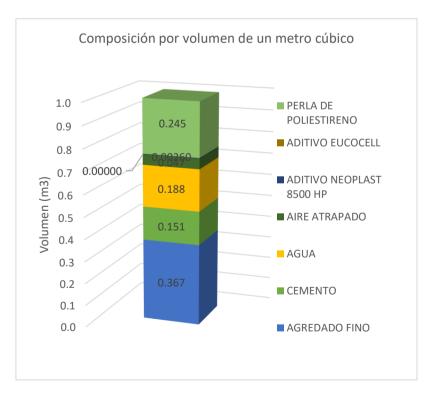


GRÁFICO N° 16 Composición por volumen de un metro Cúbico – 0.006/0.0003

Fuente: Elaboración propia (2019).

4.2.5 0.006 Neoplast 8500 HP - 0.000 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 43 Diseño Concreto liviano no estructural- (0.006 Neo; 0 Euco)

1. CEMENTO Marca y Tipo	IANO I	NO ESTRU	CTLIDAL	0.000	NEODI A	T. 0	AAA ELIC	CCELL			
					NEOPLA	51; U.	.000 EUC	OCELL	-		
			MATERIA	ALES							
	:	SOL T	IPO I								
Peso Específico			g/cc								
Peso Unitario			kg/m3								
CSO Officiallo	•	1000	Ng/1110								
2. ADITIVO		Aditiv	vo1		Aditiv	0.2					
Marca y Tipo	:	: NEOPLAST 8500 HP			EUCOC						
a. oa y 1.po					100						
Densidad	:		kg/L		100	-	kg/L				
3. AGREGADOS											
		AGREGADO	O FINO		PERLA	DE PC	LIESTIRI	ENO			
Peso Específico	:	2.601	_				g/cc				
Porcentaje de Absorción	:	0.69	-			0.00	-				
Peso Unitario Suelto	:	1,367	Kg/m3			12	Kg/m3				
Peso Unitario Compactado	:		Kg/m3				Kg/m3				
Módulo de Fineza	:	1.31	Ü			5.85	Ü				
Tamaño Máximo Nominal	:					1/4"					
Humedad para Diseño	:	13.52	%			0.00	%				
		CAI	RACTERÍ	STICA	S						
4. DATOS PARA LA DOSIFICACIÓN	١										
Estimación de Agua	:	160	L/m3								
Relación Agua/Cemento (A/C)	:	0.40									
Factor Cemento	:	C=A/Rac	160.00	/	0.40		=	400	=	9.41	Bls./m
Contenido de Aire Atrapado	:	20.00	%								
Combinación de Agregados	:	60%	A. FINO			40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.006									
Relación Aditivo/Cemento 2	:	0									
Cantidad de aditivo 1	:	2400	g	=		2.4	kg/m3				
Cantidad de aditivo 2	:	0	g	=		0	Kg/m3				
			CÁLCU	LO							
5. CÁLCULO DE VOLÚMENES ABS MEZCLA	OLUT	O DE LA									
Cemento	:		400	/	3150		=	0.127	m3		
Agua	:		160.00	/	1000		=	0.158	m3		
Aire Atrapado	:		20.00		100		=	0.200	m3		
Aditivo 1	:		2.40	/	1100			0.002			
Aditivo 2	:		0	/	1050			0.000 0.487	m3		
Volumen Absoluto de los agregados	:		1.000	_	0.48698	34	=	0.513			
Peso del Agregado Fino	:	60%	0.308	Х	2601		=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205	Х	17		=		kg		

6. VALORES DE DISEÑO											
Cemento	: 4	0.00	Kg/m3								
Agua	:	55.1	L/m3								
Agregado Fino	: 9	08.9	Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1	: 2	.400	•								
Aditivo 2			Kg/m3								
			J								
7. CORRECIÓN POR HUMEDAD DE I AGREGADOS	LOS										
Peso Húmedo del A. Fino	: 80	0.65	Х	1.1352	=		908.9	Kg/m3			
Peso Húmedo del P. Poliestireno	:	3.49	Х	1.0000	=		3.4903	Kg/m3			
Humedad Superficial A. Fino	: 1	5.77	-	0.69	=		12.83				
Humedad Superficial P. Poliestireno		0.00	-	0.00	=		0.00				
Aporte de Humedad A. Fino	: 80	0.65	Х	0.1283	=		102.72				
Aporte de Humedad P. Poliestireno	:	3.49	Х	0.0000			0	L.			
, , , , , , , , , , , , , , , , , , , ,		00		0.000			120.72	•			
Agua Efectiva de Diseño	: 15	7.82	-	102.72	=		55.09	L.			
8. VALORES DE DISEÑO CORREGID	OS POR										
HUMEDAD	. 4	00.0	Ka/m2								
Cemento			Kg/m3								
Agua			L/m3								
Agregado Fino	: 8		Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1			Kg/m3								
Aditivo 2	0	.000	Kg/m4								
9. PROPORCIÓN EN PESO (Kg)											
Cemento	: 40	0.00	/	400.00	=		1.00				
Agregado Fino	: 9	08.9	/	400.00	=		2.27				
Agregado Grueso	:	3.5	/	400.00	=		0.01				
Agua	:	0.14	Х	42.50	=		5.95				
			С			AF		AG		Agua]
DOSIFICACIÓN EN PESO	:		1	:		2.27	:	0.01	:		L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)											
Peso Unitario Suelto Húmedo A. fino	:		1551.82								
Peso Unitario Suelto Húmedo A. Polies	:		12.00	Kg/m3							
			C			AF		AG		Agua	1
DOSIFICACIÓN EN VOLUMEN	:		1	:		2.18	:	1.24	:	5.95	L/m3
11. DOSIFICACIÓN POR BOLSA DE CEMENTO											
Cemento	:	42.5	Kg								
		92.7	-								
Agregado Fino	:	92.1	rvy								
	: :		-								
Agregado Grueso	: : :	0.4	Kg								
	: :		Kg L.								

PESO UNITARIO DE PRODUCCION Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

		ASTM	C-138					
Relación agua/cemento:	0.40)	CON A	DITIVO			(0.006 0
DOSIFICACIÓN POR METRO	CÚBICO I	DEL CONCRE	TO (AREN	IA SATUR	ADA S	SUPERFICIALI		-
				PESO			JMEN DLUTO	
CEMENTO		:		400.00	kg	C).12698 r	m3
AGREGADO FINO (ESTADO S.S PERLA DE POLIESTIRENO (EST		:		806.18	kg	C).30780 r	m3
S.S.S*)				3.49	kg	C).20521 r	m3
AGUA		:		157.82	kg	C).15782 r	m3
ADITIVO NEOPLAST 8500 HP		:		2.40	kg	C	0.00218 r	m3
ADITIVO EUCOCELL				0.00	kg		0.00000 r	m3
PESO TOTAL DE MATERIALES				1369.89	kg		0.800 r	m3
S.S.S.* - saturado superficialmente seco								
PESO UNITARIO TEÓRICO DE CONCI	-		RESENCIA I	DE AIRE ATR	APAD	0)		
	T = 1369.89		1712.39)	kg/n	13		
PESO UNITARIO DEL CONCRETO	0.800m 0	13						
			7428			7489	761	15
(A) PESO DE MUESTRA + MOLDE	: (g)		2895			2895	289	
(B) PESO DE MOLDE (g)			4533			4594	472	
(C=A-B) PESO DE MUESTRA (g)			2827			2827	282	_
(D) VOLUMEN DE MOLDE (cm3)			1.603			1.625	1.67	
(D/C) PESO UNITARIO (g/cm3) PESO UNITARIO PROMEDIO (g/ci	m3)		1.000	1.63	771	1.020	1.0	. 0
PESO UNITARIO PROMEDIO (kg/s								
RENDIMIENTO =		1369.89 kg.	=	1632 0.839024		.		
RENDIMIENTO		1632.71 kg/m3		0.00002				
RENDIMIENTO RELATIVO =		0839024 m3	=	0.839				
RENDIMIENTO RELATIVO		1m3		0.000				
CONTENIDO DE CEMENTO =		400 m3.	=	476.74 kg/	'm2	=	11.	22
REAL		0.399024 m3		470.74 kg/	1113	-	bolsas	s/m3
CONTENIDO DE AIRE ATRAPADO=	1712	.39 – 1632.71	X 100			=	4.65%	
(Método Volumétrico)		1712.39	200					
COMPOSICIÓN DE UN MET			RETO FRI	ESCO COR	REG	IDO POR CAM	BIO DE	AIRE
		ATRAPA	DO REAL	ı				
				PESO		VOLUME	N ABSOLU	JTO
CEMENTO		:		476.74	kg	0.151 n	13	
AGREGADO FINO (ESTADO S.S.S*)		:		960.85	_	0.367 n		
PERLA DE POLIESTIRENO (ESTAD	O S.S.S*)	:		4.16	_	0.245 n		
AGUA		:		188.10	_	0.188 n		
ADITIVO NEOPLAST 8500 HP		:		2.86		0.00260 n		
ADITIVO EUCOCELL		:		0.00	•	0.00000 n		
AIRE ATRAPADO				0.00		<u>0.047</u> n		
TOTAL							_	

TOTAL

1.0000 m3

1632.71 kg

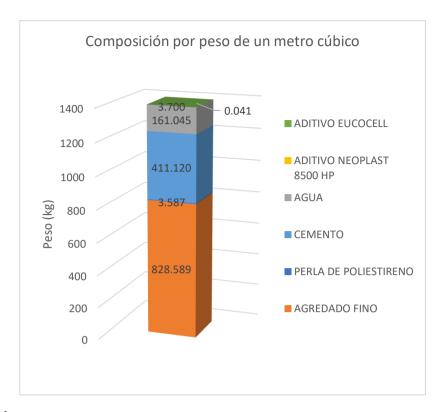


GRÁFICO N° 17 Composición por peso de un metro cúbico – 0.006/ 0

Fuente: Elaboración propia (2019).

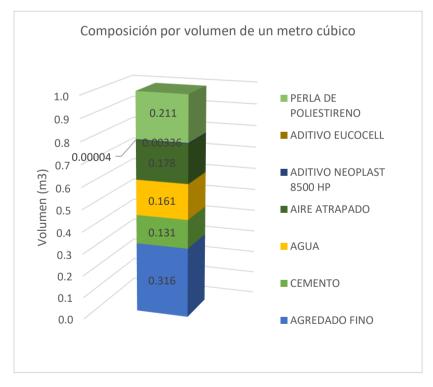


GRÁFICO N° 18 Composición por volumen de un metro Cúbico – 0.006 / 0

Fuente: Elaboración propia (2019).

4.2.6 0.004 Neoplast 8500 HP - 0.0001 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 44 Diseño Concreto liviano no estructural- (0.004 Neo; 0.0001 Euco)

					RETO - D					
CONCRETO LIVIA	NO N				NEOPLAST; (0.0001 EU	COCEL	<u> </u>		
1. CEMENTO			MATERIA	ALES						
Marca y Tipo	:	SOL T	IPO I							
Peso Específico	:	3.15								
Peso Unitario	:		kg/m3							
2. ADITIVO		Aditiv	/01		Aditivo 2					
Marca y Tipo	:	NEOPL	_AST		EUCOCELI	_				
, ,		8500	HP		1000					
Densidad	:		kg/L			5 kg/L				
3. AGREGADOS										
		AGREGADO	FINO		PERLA DE F	POLIESTIR	ENO			
Peso Específico	:	2.601	g/cc		0.017	7 g/cc				
Porcentaje de Absorción	:	0.69	-) %				
Peso Unitario Suelto	:	1,367	Kg/m3		1:	2 Kg/m3				
Peso Unitario Compactado	:	1,550	Kg/m3		1:	2 Kg/m3				
Módulo de Fineza	:	1.31	•		5.89	-				
Tamaño Máximo Nominal	:				1/4	"				
Humedad para Diseño	:	11.12	%		0.00) %				
		CAI	RACTERÍ	STICA	S					
4. DATOS PARA LA DOSIFICACIÓN										
Estimación de Agua	:	160	L/m3							
Relación Agua/Cemento (A/C)	:	0.40								
Factor Cemento	:	C=A/Rac	160.00	/	0.40	=	400	=	9.41	Bls./m3
Contenido de Aire Atrapado	:	20.00	%							
Combinación de Agregados	:	60%	A. FINO		40%	6 A. GRU	IESO			
Relación Aditivo/Cemento 1	:	0.004								
Relación Aditivo/Cemento 2	:	0.0001								
Cantidad de aditivo 1	:	1600	g	=	1.0	6 Kg/m3				
Cantidad de aditivo 2	:	40	g	=		4 Kg/m3				
6			CÁLCU	LO						
5. CÁLCULO DE VOLÚMENES ABSO MEZCLA	LUT	O DE LA								
Cemento	:		400	/	3150	=	0.127	m3		
Agua	:		160.00	/	1000	=	0.159	m3		
Aire Atrapado	:		20.00	/	100	=	0.200	m3		
Aditivo 1	:		1.60	/	1100		0.001			
Aditivo 2	:		0.04		1050		0.000			
							0.487	m3		
Volumen Absoluto de los agregados	:		1.000	-	0.486984	=	0.513	m3		
Peso del Agregado Fino	:	60%	0.308	Х	2601	=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205	Х	17	=		kg		
								•		

3 Kg/m3 3 Kg/m3 3 % 3 L. 1 L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 Kg/m3 3 %) % 3 L. <u>)</u> L. L.			
3 %) % 3 L.) L. L.			
) % 3 L. <u>)</u> L. I L.			
3 L. <u>)</u> L. L.			
<u>)</u> L. l L.			
_ L.			
5 L.			
AG		Agua	7
0.01	:		L/m3
AG			
1.24	<u>:</u>	8.08	L/m3
		0.01 :	0.01 : 8.08

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

		AST	/I C-138					
Relación agua/cemento:	(0.40	CON A	ADITIVO				0.004
DOSIFICACIÓN POR ME	TRO CÚBIC	O DEL CONCRE	TO (ARE	NA SATUR	ADA	SUPERFICIAL	LMENTE	
				PESO			LUMEN SOLUTO	
CEMENTO		:		400.00	kg		0.12698	m3
AGREGADO FINO (ESTADO PERLA DE POLIESTIRENO (:		806.18	_		0.30780	m3
S.S.S*)				3.49	kg		0.20521	m3
AGUA		:		158.51	kg		0.15851	m3
ADITIVO NEOPLAST 8500 HI	P	:		1.60	kg		0.00145	m3
ADITIVO EUCOCELL				0.04	kg		0.00004	m3
PESO TOTAL DE MATERIAL	.ES			1369.81	kg		0.800	m3
S.S.S.* - saturado superficialme seco	nte							
PESO UNITARIO TEÓRICO DE CO	•	JPONIENDO LA NO	PRESENCIA	DE AIRE ATR	APAD	O)		
	• -	00m3	1712.2	9	kg/r	n3		
PESO UNITARIO DEL CONCR		001113						
(A) PESO DE MUESTRA + MO			6976			7042	7	027
(B) PESO DE MOLDE (g)	\3/		2895			2895	2	895
(C=A-B) PESO DE MUESTRA	(a)		4081			4147	4	132
(D) VOLUMEN DE MOLDE (cm			2827			2827	2	827
(D/C) PESO UNITARIO (g/cm3)	•		1.444			1.467	1.	.462
PESO UNITARIO PROMEDIO				1.45	738			
PESO UNITARIO PROMEDIO ((kg/m3)			1457	7.38			
RENDIMIENTO	=	1369.81 kg.	=	0.939915		·	· ·	
		1457.38 kg/m3	3					
RENDIMIENTO RELATIVO	=	0839024 m3	=	0.940				
		1m3						
CONTENIDO DE CEMENTO	=	400 m3.	=	425.57 kg/	/m3	=	1	0.01
REAL		0.939915 m3					bols	sas/m3
CONTENIDO DE AIRE ATRAPADO=	1	712.29– 1457.38	X 100			=	14.89%	6
Método Volumétrico)		1712.39						
COMPOSICIÓN DE UN I	METRO CÚ	BICO DEL CONO	RETO FR	ESCO COF	RREG	IDO POR CAI	MBIO DI	E AIRE
		ATRAPA	ADO REAL	<u>-</u>				
				PESO		VOLUM	1EN ABSO	LUTO
CEMENTO			:	425.57	kg	0.135	m3	
AGREGADO FINO (ESTADO S.S	S.S*)		:	857.71	J	0.327		
PERLA DE POLIESTIRENO (EST	TADO S.S.S	S*)	:	3.71	J	0.218		
AGUA			:	168.64	_	0.169		
ADITIVO NEOPLAST 8500 HP			:	1.70	kg	0.00155	m3	
ADITIVO EUCOCELL			:	0.04	_	0.00004		
AIRE ATRAPADO			_	0.00	-	0.0149	m3	
							_	

TOTAL

1.0000 m3

1457.38 kg

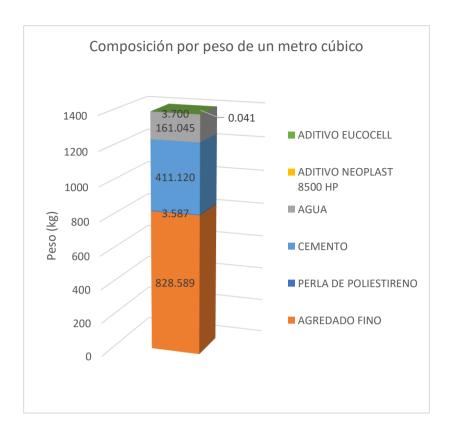


GRÁFICO N° 19 Composición por peso de un metro cúbico – 0.004/ 0.0001

Fuente: Elaboración propia (2019).

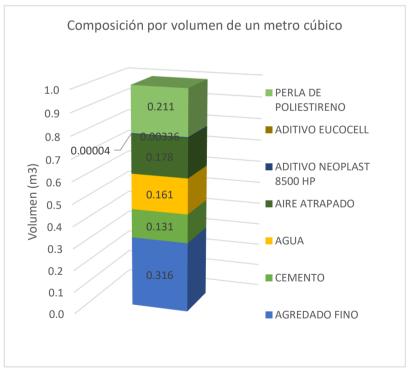


GRÁFICO N° 20 Composición por volumen de un metro Cúbico – 0.004 / 0.0001

Fuente: Elaboración propia (2019).

4.2.7 0.008 Neoplast 8500 HP - 0.0001 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 45 Diseño Concreto liviano no estructural- (0.008 Neo; 0.0001 Euco)

	ANU I	NO ESTRU	CTURAL	- 0.00)8 NE	EOPLAS	ST: 0.	.0001 EU	COCEL	.L		
			MATERI				,					
1. CEMENTO												
Marca y Tipo	:	SOL T	IPO I									
Peso Específico	:	3.15	g/cc									
Peso Unitario	:	1500	kg/m3									
2. ADITIVO		Aditiv	vo1			Aditiv	0 2					
Marca y Tipo	:	NEOPI	_AST			EUCOC	ELL					
		8500	HP			100	0					
Densidad	:	1.1	kg/L				1.05	kg/L				
3. AGREGADOS												
		AGREGADO	FINO			PERLA	DE PO	LIESTIRI	ENO			
Peso Específico	:	2.601	g/cc			C	.017	g/cc				
Porcentaje de Absorción	:	0.69	%				0.00	%				
Peso Unitario Suelto	:	1,367	Kg/m3				12	Kg/m3				
Peso Unitario Compactado	:	1,550	Kg/m3				12	Kg/m3				
Módulo de Fineza	:	1.31					5.85					
Tamaño Máximo Nominal	:						1/4"					
Humedad para Diseño	:	8.21	%				0.00	%				
		CA	RACTER	ÍSTIC	CAS							
4. DATOS PARA LA DOSIFICACIÓN	I											
Estimación de Agua	:	160	L/m3									
Relación Agua/Cemento (A/C)	:	0.40										
Factor Cemento	:	C=A/Rac	160.00	/		0.40		=	400	=	9.41	Bls./m3
Contenido de Aire Atrapado	:	20.00	%									
Combinación de Agregados	:	60%	A. FINO				40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.008										
Relación Aditivo/Cemento 2	:	0.0001										
Cantidad de aditivo 1	:	3200	gr	=			3.20	Kg/m3				
Cantidad de aditivo 2	:	40	gr	=				Kg/m3				
<u> </u>			CALC	JLO								
5. CÁLCULO DE VOLÚMENES ABS MEZCLA	OLUT	O DE LA										
Cemento	:		400	/	;	3150		=	0.127	m3		
Agua	:		160.00	/		1000		=	0.157	m3		
Aire Atrapado	:		20.00	/		100		=	0.200	m3		
Aditivo 1	:		3.20	/		1100			0.003			
Aditivo 2	:		0.04	/		1050			0.000	0		
Volumen Absoluto de los agregados	:		1.000	_		0.48698	34	=	0.487 0.513			
Peso del Agregado Fino		60%	0.308	х		2601		=	800.7			
Peso de Perla de Poliestireno	:	40%	0.205	X		17		=		kg		

6. VALORES DE DISEÑO											
Cemento		400 O	Kg/m3								
Agua	:	157.1	•								
Agregado Fino	:	_	Kg/m3								
Perla de Poliestireno	:		Kg/m3								
	:		•								
Aditivo 1	:	3.200	Kg/m3								
Aditivo 2	:	0.040	Kg/m3								
7. CORRECIÓN POR HUMEDAD DE LO AGREGADOS	os										
Peso Húmedo del A. Fino		800.65	х	1.0821	_		866.39	Ka/m3			
Peso Húmedo del P. Poliestireno	:	3.49	X	1.0000			3.4903				
	:										
Humedad Superficial A. Fino	:	8.21	-	0.69	=		7.52				
Humedad Superficial P. Poliestireno	•	0.00	-	0.00	=		0.00				
Aporte de Humedad A. Fino	:	800.65	Х	0.0752			60.209				
Aporte de Humedad P. Poliestireno	:	3.49	Х	0.0000	=			L.			
							60.21	L.			
Agua Efectiva de Diseño	:	157.05	-	60.21	=		96.84	L.			
8. VALORES DE DISEÑO CORREGIDO	S PC	OR .									
HUMEDAD			W / 5								
Cemento	:		Kg/m3								
Agua	:		L/m3								
Agregado Fino	:		Kg/m3								
Perla de Poliestireno	:		Kg/m3								
Aditivo 1	:	3200	Kg/m3								
Aditivo 2		0.040	Kg/m4								
9. PROPORCIÓN EN PESO (Kg)											
Cemento	:	400.00	/	400.00	=		1.00				
Agregado Fino	:	866.4	/	400.00	=		2.17				
Agregado Grueso	:	3.5	/	400.00	=		0.01				
Agua	:	0.24	Х	42.50	=		10.20				
			С			AF		AG		Agua	1
DOSIFICACIÓN EN PESO	:		1	:		2.17	:	0.01	:	10.20	L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)											
Peso Unitario Suelto Húmedo A. fino	:		1479.23								
Peso Unitario Suelto Húmedo A. Polies	:		12.00	Kg/m3							
DOSIFICACIÓN EN VOLUMEN	:		C 1	:		AF 2.18	:	AG 1.24	:	Agua 10.20	L/m3
11. DOSIFICACIÓN POR BOLSA DE											
CEMENTO											
Cemento	:	42.5	Kg								
Agregado Fino	:	92.7	-								
Agregado Grueso	:	0.4	-								
Agua Efectiva	:	10.20	-								
Aditivo 01	•	0.340									
IGILIYO U I	•	0.0-0	٠٠9								

Aditivo 02

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

	AST	M C-138					
Relación agua/cemento:	0.40	CON A	DITIVO				0.008 0.000
DOSIFICACIÓN POR METRO CÚ	BICO DEL CONCR	ETO (AREN	A SATUR	ADA S	UPERFICIAL	MENTE	
			DECO		_	UMEN	
CEMENTO	:		PESO	1		OLUTO	2
	•		400.00	3		0.12698	
AGREGADO FINO (ESTADO S.S.S*) PERLA DE POLIESTIRENO (ESTADO S.S.S*)			806.18 3.49	J		0.30780	
AGUA	:		157.05	Ū		0.20321	
ADITIVO NEOPLAST 8500 HP	:		3.20	J		0.00291	
ADITIVO EUCOCELL			0.04	•		0.00291	
PESO TOTAL DE MATERIALES			1369.96			0.800	
S.S.S.* - saturado superficialmente seco PESO UNITARIO TEÓRICO DE CONCRETO	(SUPONIENDO LA NO 1369.96kg						
T=-	0.800m3	1712.48		kg/m	3		
PESO UNITARIO DEL CONCRETO							
(A) PESO DE MUESTRA + MOLDE (g)		6871			6883	69	903
(B) PESO DE MOLDE (g)		2895			2895	28	895
(C=A-B) PESO DE MUESTRA (g)		3976			3988	40	800
(D) VOLUMEN DE MOLDE (cm3)		2827			2827	28	827
(D/C) PESO UNITARIO (g/cm3)		1.406			1.411	1.	418
PESO UNITARIO PROMEDIO (g/cm3)			1.41	163			
PESO UNITARIO PROMEDIO (kg/m3)			1411	.63			
RENDIMIENTO =	1369.96 kg.	=	0.970483	m3			
	1411.63 kg/m	3					
RENDIMIENTO RELATIVO =	0.970483 m3	3 =	0.970				
	1m3						
CONTENIDO DE CEMENTO =	400 m3.	=	412.17 kg/	/m3	=		9.7 as/m3
REAL	0.970483 m3					DUIS	as/1113
CONTENIDO DE AIRE ATRAPADO=	<u>1712.48–1411.63</u>	X 100			=	17.57%	,
Método Volumétrico)	1712.48						
COMPOSICIÓN DE UN METRO			ESCO COF	RREGI	DO POR CAN	IBIO DE	AIRE
	ATRAP	ADO REAL					
DEMENTO			PESO		VOLUME		LUTO
CEMENTO		:	412.17	0	0.131 n		
AGREGADO FINO (ESTADO S.S.S*)	C C*)		830.70	_	0.317 n		
PERLA DE POLIESTIRENO (ESTADO S. AGUA	S.S)		3.60	_	0.211 n		
ADITIVO NEOPLAST 8500 HP		•	161.83		0.162 n		
ADITIVO NEOPEAST 8500 TIP			3.30	·	0.00300 n		
AIRE		•	0.04	кв	0.00004 n	115	
ATRAPADO		_	0.00	_	<u>0.0176</u> n	n3	

TOTAL

1.0000 m3

1411.63 kg

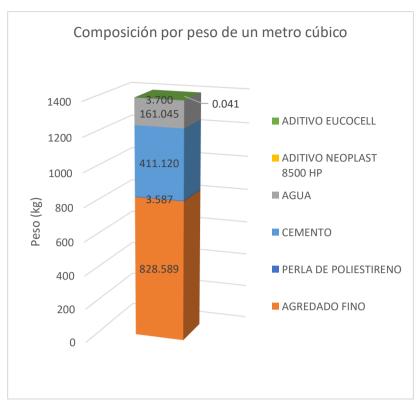


GRÁFICO N° 21 Composición por peso de un metro cúbico – 0.008/ 0.0001

Fuente: Elaboración propia (2019).

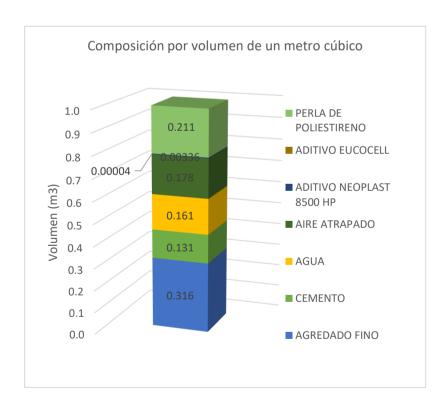


GRÁFICO N° 22 Composición por volumen de un metro Cúbico – 0.008 / 0.0001

Fuente: Elaboración propia (2019).

4.2.8 0.005 Neoplast 8500 HP - 0.0001 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 46 Diseño Concreto liviano no estructural- (0.005 Neo; 0.0001 Euco)

DISEÑO DE	E M	EZCLA	DE C	ON	IC	RETO - D	OSIS	N° 0	8		
CONCRETO LIVIA	NO	NO ESTRU	CTURAL	- 0.0	05	NEOPLAST; 0	.0001 EU	COCEL	L		
			MATERI	ALE	S						
1. CEMENTO		COL T	IDO I								
Marca y Tipo	•	SOL T									
Peso Específico	:		g/cc								
Peso Unitario	:	1500	kg/m3								
2. ADITIVO		Aditiv	vo1			Aditivo 2					
Marca y Tipo	:	NEOPL	_AST			EUCOCELL					
		8500	HP			1000					
Densidad	:		kg/L				kg/L				
3. AGREGADOS											
		AGREGADO) FINO			PERLA DE PO	OLIESTIRI	ENO			
Peso Específico	:	2.601				0.017		-			
Porcentaje de Absorción	:	0.69	-			0.00	_				
Peso Unitario Suelto	:		Kg/m3				Kg/m3				
Peso Unitario Compactado	:		Kg/m3				Kg/m3				
Módulo de Fineza		1.31	rtg/mo			5.85	rtg/mo				
Tamaño Máximo Nominal						1/4"					
Humedad para Diseño		17.83	0/_			0.00	0/_				
Turriedad para Diserio	•	17.03	70			0.00	70				
		CA	RACTER	ÍSTI	CA	S					
4. DATOS PARA LA DOSIFICACIÓN											
Estimación de Agua	:	160	L/m3								
Relación Agua/Cemento (A/C)	:	0.40									
Factor Cemento	:	C=A/Rac	160.00		/	0.40	=	400	=	9.41	Bls./m
Contenido de Aire Atrapado	:	20.00	%								
Combinación de Agregados	:	60%	A. FINO			40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.005									
Relación Aditivo/Cemento 2	:	0.0001									
Cantidad de aditivo 1	:	2000	g	=		2.0	kg/m3				
Cantidad de aditivo 2	:	40	g	=		0.04	kg/m3				
			CALC	JLO							
5. CÁLCULO DE VOLÚMENES ABSO MEZCLA	LUT	O DE LA									
Cemento	:		400		/	3150	=	0.127	m3		
Agua	:		160.00		/	1000	=	0.158			
Aire Atrapado	:		20.00		/	100	=	0.200			
Aditivo 1			3.00		/	1100	_	0.002	0		
Aditivo 2			0.04		/	1050		0.002			
, (diti VO 2	•		0.04		•	1000		0.487	m3		
Volumon Absoluto do los carcandos			1.000		_	0.486984	_	0.467			
Volumen Absoluto de los agregados		600/					=				
Peso del Agregado Fino		60%	0.308		X	2601	=	800.7	-		
Peso de Perla de Poliestireno	:	40%	0.205		X	17	=	3.5	кg		

6. VALORES DE DISEÑO										
	. 400.0) Kg/m3								
Cemento		L/m3								
Agua										
Agregado Fino		′ Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1) Kg/m3								
Aditivo 2	: 0.040	Kg/m3								
7. CORRECIÓN POR HUMEDAD DE LO	os									
Peso Húmedo del A. Fino	: 800.65	5 X	1.1783	=		943.41	Kg/m3			
Peso Húmedo del P. Poliestireno	: 3.49		1.0000			3.4903	-			
Humedad Superficial A. Fino	: 17.83			=		17.14				
Humedad Superficial P. Poliestireno	: 0.00			=		0.00				
Aporte de Humedad A. Fino	: 800.65		0.1714			137.23				
Aporte de Humedad P. Poliestireno	: 3.49		0.0000				L.			
Aporte de Flamedad F. Foliestificho	. 0.40	, ,	0.0000	_		137.23				
						101.20	∟.			
Agua Efectiva de Diseño	: 158.14	-	137.23	=		20.91	L.			
8. VALORES DE DISEÑO CORREGIDO HUMEDAD	OS POR									
Cemento	: 400.0	Kg/m3								
Agua	: 20.9) L/m3								
Agregado Fino		Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1		Kg/m3								
Aditivo 2		Kg/m4								
9. PROPORCIÓN EN PESO (Kg)										
Cemento	: 400.00) /	400.00	=		1.00				
Agregado Fino	: 943.4	. /	400.00			2.36				
Agregado Grueso	: 3.5		400.00			0.01				
Agua	: 0.05		42.50	=		2.13				
7.933	0.00									7
DOSIFICACIÓN EN PESO		C 1			AF 2.36		AG 0.01		Agua 2.13	L/m3
	•		<u> </u>		2.50	•	0.01	•	2.10] L/1113
10. PROPORCIÓN EN VOLUMEN (Pie3)										
Peso Unitario Suelto Húmedo A. fino	:	1479.23								
Peso Unitario Suelto Húmedo A. Polies	:	12.00	Kg/m3							
DOSIFICACIÓN EN VOLUMEN	:	C 1	:		AF 2.18	:	AG 1.24	:	Agua 2.13	L/m3
11. DOSIFICACIÓN POR BOLSA DE CEMENTO										
Cemento	: 42.5	i Kg								
Agregado Fino		' Kg								
Agregado Grueso		⊦ Kg								
Agua Efectiva		L.								
Aditivo 01	: 0.213									
Aditivo 02	: 0.004	-								
AUITIVU UZ	. 0.002	<u> </u>	.,		0 (201)	٠,				

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO

		ASTM	C-138	3					
Relación agua/cemento:	0.40		cc	ON A	DITIVO				0.00
DOSIFICACIÓN POR METRO CÚ	JBICO [DEL CONCRET	ГО (АІ	REN	A SATUR	ADA :	SUPERFICIA	LMENTE	
							_	LUMEN	
CEMENTO					PESO	الما	AB	SOLUTO	
					400.00	·		0.12698	
AGREGADO FINO (ESTADO S.S.S*) PERLA DE POLIESTIRENO (ESTADO S.S.S*)		•			806.18 3.49	J		0.30780	
AGUA		:			158.14	_		0.15814	
ADITIVO NEOPLAST 8500 HP		:			2.00	•		0.00182	
ADITIVO EUCOCELL					0.04	•		0.00004	m3
PESO TOTAL DE MATERIALES			.=		1369.85			0.800	_
S.S.S.* - saturado superficialmente seco									
PESO UNITARIO TEÓRICO DE CONCRETO	•		RESEN	CIA [DE AIRE ATR	APAD	0)		
T =	1369.85		171	2.34		kg/n	n3		
PESO UNITARIO DEL CONCRETO	0.800m	3							
		•	7058				7144	7	080
(A) PESO DE MUESTRA + MOLDE (g)			2895				2895		895
(B) PESO DE MOLDE (g)			4163				4249		185
(C=A-B) PESO DE MUESTRA (g)			2827				2827		827
(D) VOLUMEN DE MOLDE (cm3)			1.473				1.503		.480
(D/C) PESO UNITARIO (g/cm3) PESO UNITARIO PROMEDIO (g/cm3)					1 40	-22	1.000		. 100
PESO UNITARIO PROMEDIO (kg/m3)					1.485 1485				
ENDIMIENTO =		1369.85 kg.		=	0.922257				
ENDIMIENTO	1	485.32 kg/m3			0.00				
ENDIMIENTO RELATIVO =		0.922257 m3		=	0.970				
ENDIMIENTO RELATIVO		1m3							
ONTENIDO DE CEMENTO =		400 m3.		=	433.72 kg/	m3	=	1	0.21
EAL		0.970483 m3			733.72 Kg/	5	_	bol	sas/m
ONTENIDO DE AIRE ATRAPADO=	1712	34– 1411.63	X 100)			=	13.26%	6
Método Volumétrico)		1712.34	7. 10.					15.1207	•
COMPOSICIÓN DE UN METRO			RETO	FRE	ESCO COR	REG	IDO POR CA	MBIO D	E AIR
		ATRAPAI	DO RE	EAL					
					PESO		VOLUN	лен absc	LUTO
EMENTO		:			433.72	kg	0.138	m3	
GREGADO FINO (ESTADO S.S.S*)		:			874.13	_	0.334	m3	
ERLA DE POLIESTIRENO (ESTADO S	.S.S*)	:			3.78	_	0.223		
GUA		:			171.47	_	0.171	m3	
DITIVO NEOPLAST 8500 HP		:			2.17	kg	0.00197	m3	
DITIVO EUCOCELL		:			0.04	_	0.00004		
IRE									

TOTAL

1.0000 m3

1485.32 kg

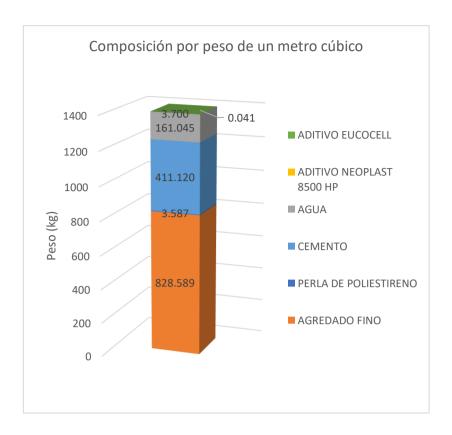


GRÁFICO N° 23 Composición por peso de un metro cúbico – 0.005/ 0.0001

Fuente: Elaboración propia (2019).

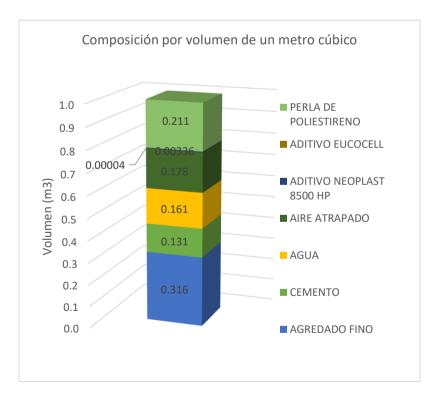


GRÁFICO N° 24 Composición por volumen de un metro Cúbico – 0.005 / 0.0001

Fuente: Elaboración propia (2019).

4.2.9 0.009 Neoplast 8500 HP - 0.0001 Eucocell 1000 (aditivo/cemento)

Se efectuaron 28 ensayos de diseños de mezcla utilizando agregado fino, perlas de poliestireno, cemento, agua y aditivos.

Tabla N° 47 Diseño Concreto liviano no estructural- (0.009 Neo; 0.0001 Euco)

DISEÑO DE												
CONCRETO LIVIA	NO	NO ESTRU				NEOPLAS	ST; 0.	0001 EU	COCEL	<u>L</u>		
1. CEMENTO			MATERI	ALE	5							
Marca y Tipo		SOL T	IPO I									
Peso Específico	•		g/cc									
Peso Unitario	•		kg/m3									
1 ood omand	•	.000	ng/mo									
2. ADITIVO		Aditiv	vo1			Aditiv	0.2					
Marca y Tipo	:	NEOPI				EUCOC						
		8500	_			1000						
Densidad	:		kg/L					kg/L				
2 ACRECAROS												
3. AGREGADOS		AGREGADO) FINO			DEDIA	DE DC	LIESTIRI	ENO.			
Peso Específico		2.601	_					g/cc	LINU			
Porcentaje de Absorción	•	0.69	~				0.00	-				
Peso Unitario Suelto			Kg/m3					Kg/m3				
Peso Unitario Compactado	:		Kg/m3					Kg/m3				
Módulo de Fineza	:	1.31	rtg/mo				5.85	rtg/1110				
Tamaño Máximo Nominal							1/4"					
Humedad para Diseño		11.12	%				0.00	%				
Trainedad para Biserio	-	11.12	70				0.00	70				
		CA	RACTER	ÍSTIC	CAS	3						
4. DATOS PARA LA DOSIFICACIÓN												
Estimación de Agua	:	160	L/m3									
Relación Agua/Cemento (A/C)	:	0.40										
Factor Cemento	:	C=A/Rac	160.00	/	/	0.40		=	400	=	9.41	Bls./m
Contenido de Aire Atrapado	:	20.00	%									
Combinación de Agregados	:	60%	A. FINO				40%	A. GRU	ESO			
Relación Aditivo/Cemento 1	:	0.009										
Relación Aditivo/Cemento 2	:	0.0001										
Cantidad de aditivo 1	:	3600	gr	=			3.6	kg/m3				
Cantidad de aditivo 2	:	40	gr	=			0.04	kg/m3				
			CÁLCI	JLO								
5. CÁLCULO DE VOLÚMENES ABSO	LUT	O DE LA		-								
MEZCLA												
Cemento	:		400	,	/	3150		=	0.127	m3		
Agua	:		160.00	/	/	1000		=	0.157	m3		
Aire Atrapado	:		20.00	,	/	100		=	0.200	m3		
Aditivo 1	:		3.60	/	/	1100			0.003			
Aditivo 2	:		0.04	,	/	1050			0.000	m 0		
Volumen Absoluto de los agregados	:		1.000			0.48698	34	=	0.487 0.513			
Peso del Agregado Fino	•	60%	0.308		(2601		=	800.7			
Peso de Perla de Poliestireno	•	40%	0.205		`	17		=	3.5	-		
. 303 do i ona ao i olloctiforio	•	70 /0	0.200	,	-	• •		_	0.0	·чэ		

6. VALORES DE DISEÑO										
Cemento	. 400.0	Kg/m3								
		L/m3								
Agua										
Agregado Fino		Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1		Kg/m3								
Aditivo 2	: 0.040	Kg/m3								
7. CORRECIÓN POR HUMEDAD DE LO	os									
Peso Húmedo del A. Fino	: 800.65	Х	1.1112	=		889.68	Ka/m3			
Peso Húmedo del P. Poliestireno	: 3.49	X	1.0000			3.4903				
Humedad Superficial A. Fino	: 11.12	-	0.69	=		10.43	-			
Humedad Superficial P. Poliestireno	: 0.00	_		=		0.00				
Aporte de Humedad A. Fino	: 800.65	х	0.1043			83.508				
Aporte de Humedad P. Poliestireno	3.49	X	0.0000							
Aporte de Humedad F. Pollestireno	. 3.49	^	0.0000	=			L.			
						83.51	L.			
Agua Efectiva de Diseño	: 156.69	-	83.51	=		73.18	L.			
8. VALORES DE DISEÑO CORREGIDO HUMEDAD	S POR									
Cemento	: 400.0	Kg/m3								
Agua		L/m3								
Agregado Fino		Kg/m3								
Perla de Poliestireno		Kg/m3								
Aditivo 1		Kg/m3								
Aditivo 2		Kg/m4								
9. PROPORCIÓN EN PESO (Kg)		,	400.00			4.00				
Cemento	: 400.00	/	400.00			1.00				
Agregado Fino	: 889.7		400.00			2.22				
Agregado Grueso	3.5	/	400.00	=		0.01				
Agua	: 0.18	Х	42.50	=		7.65				
_		С			AF		AG		Agua	
DOSIFICACIÓN EN PESO	:	1	:		2.22	:	0.01	:	7.65	L/m3
10. PROPORCIÓN EN VOLUMEN (Pie3)										
Peso Unitario Suelto Húmedo A. fino	:	1479.23								
Peso Unitario Suelto Húmedo A. Polies	:	12.00	Kg/m3							
DOSIFICACIÓN EN VOLUMEN		С 1			AF 2.17		AG 1.24		Agua 7.65	L/m3
	-							•] [/1110
11. DOSIFICACIÓN POR BOLSA DE CEMENTO										
Cemento	: 42.5									
Agregado Fino	92.2	-								
Agregado Grueso		Kg								
Agua Efectiva	: 7.7	L.								
Aditivo 01	: 0.383	Kg								
Aditivo 02	: 0.004	ka								

PESO UNITARIO DE PRODUCCIÓN Y CONTENIDO DE AIRE DEL CONCRETO ASTM C-138

			ASTM	I C-138				
Relación agua/cemento:		0.40)	CON	ADITIVO			0.009
DOSIFICACIÓN POR MI	ETRO CÚB	ICO	DEL CONCRE	TO (ARE	NA SATUR	ADA S	SUPERFICIAL	
								JMEN
CEMENTO					PESO			LUTO
			:		400.00	·		.12698 m3
AGREGADO FINO (ESTADO PERLA DE POLIESTIRENO			•		806.18	J		.30780 m3
S.S.S*) AGUA					3.49	·		.20521 m3
ADITIVO NEOPLAST 8500 F	4P				156.69 3.60	J		.15669 m3
ADITIVO EUCOCELL			•			_		.00327 m3
					0.04			.00004 m3
PESO TOTAL DE MATERIA	LES				1370.00	кg		0.800 m3
S.S.S.* - saturado superficialm seco	ente							
PESO UNITARIO TEÓRICO DE O				PRESENCIA	A DE AIRE ATR	RAPADO	D)	
	• -		0kg =	1712.	53	kg/m	13	
PESO UNITARIO DEL CONC	_	.800n	13					
				6776			6998	6853
(A) PESO DE MUESTRA + MO	DLDE (g)			2895			2895	2895
(B) PESO DE MOLDE (g)	1)		3881					
(C=A-B) PESO DE MUESTRA							4103	3958
(D) VOLUMEN DE MOLDE (cr	•		2827			2827	2827	
(D/C) PESO UNITARIO (g/cm3	•			1.373			1.451	1.400
PESO UNITARIO PROMEDIO					1.40			
PESO UNITARIO PROMEDIO	· · · ·		4070.01		1408			
RENDIMIENTO	=		1370.0 kg.	=	0.972951	m3		
			1408.09 kg/m3					
RENDIMIENTO RELATIVO	=		0.972951m3	=	0.973			
			1m3					0.67
CONTENIDO DE CEMENTO	=		400 m3.	=	411.122 k	g/m3	=	9.67 bolsas/m3
REAL			0.972951 m3					·
CONTENIDO DE AIRE ATRAPADO=		<u>1712</u>	.53– 1408.09	X 100			=	17.78%
(Método Volumétrico)		٠	1712.53					
COMPOSICIÓN DE UN	METRO C	UBIC				RREG	IDO POR CAM	BIO DE AIRE
			ATRAPA	DO REA	L			
CEMENTO					PESO			N ABSOLUTO
CEMENTO	C C*/		:		411.12	0	0.131 m	
AGREGADO FINO (ESTADO S.	•	O*\	:		828.59	•	0.316 m	
PERLA DE POLIESTIRENO (ES	1 ADO 5.5	.o")	:		3.59	•	0.211 m	
AGUA			:		161.05		0.161 m	
ADITIVO FUCOCELL			:		3.70	Ū	0.00336 m	
ADITIVO EUCOCELL AIRE			:		0.04	kg	0.00004 m	13
ATRAPADO					0.00	_	0.178_ m	13
TOTAL				•	1100.00			_

TOTAL

1.0000 m3

1408.08 kg

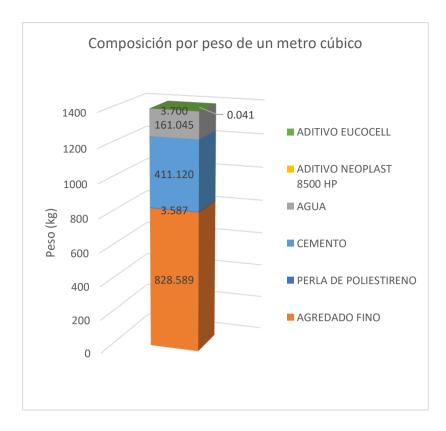


GRÁFICO N° 25 Composición por peso de un metro cúbico – 0.009/ 0.0001

Fuente: Elaboración propia (2019).

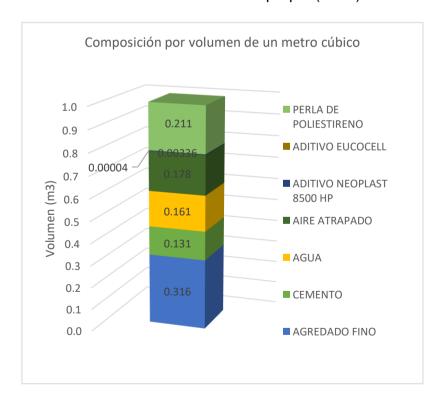


GRÁFICO N° 26 Composición por volumen de un metro Cúbico – 0.005 / 0.0001 Fuente: Elaboración propia (2019).

4.3 ENSAYO AL CONCRETO FRESCO

Se realizaron conforme a la norma ASTM C-172. Los ensayos se realizaron dentro de los 10 min de haberse tomado la primera muestra.

4.3.1 Peso Unitario

Se realizó conforme la norma ASTM C138 y la NTP 339.046.

FOTO N° 7 Peso Unitario y Rendimiento

Fuente: Elaboración propia (2019).

Tabla N° 48 Peso Unitario 0.006 Neoplast y 0.0001 Eucocell

PESO UNITARIO SEGÚN NTP 33	0.006 Neo; 0.0001 Euco		
Descripción	M1	M2	М3
(A) PESO DE MUESTRA + MOLDE (g)	6868	6917	7004
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	3973	4022	4109
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.405	1.423	1.453
Peso unitario promedio (g/cm3) 1.42719			9
Peso unitario promedio (kg/m3)	1427.19		

Tabla N° 49 Peso Unitario 0.006 Neoplast y 0.0002 Eucocell

PESO UNITARIO SEGÚN NTP 3	0.006 Neo; 0.0002 Euco		
Descripción	M1	M2	М3
(A) PESO DE MUESTRA + MOLDE (g)	6829	7021	7114
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	3934	4126	4219
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.392	1.460	1.492
Peso unitario promedio (g/cm3) 1.44782			2
Peso unitario promedio (kg/m3)	1447.82		

Tabla N° 50 Peso Unitario 0.006 Neoplast y 0.00005 Eucocell

PESO UNITARIO SEGÚN NTP	0.006 Neo; 0.00005 Euco		
Descripción	M1	M2	M3
(A) PESO DE MUESTRA + MOLDE (g)	7156	7284	7335
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	4261	4389	4440
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.507	1.553	1.571
Peso unitario promedio (g/cm3) 1.543			5
Peso unitario promedio (kg/m3)	1543.45		

Fuente: Elaboración propia (2019).

Tabla N° 51 Peso Unitario 0.006 Neoplast y 0.0003 Eucocell

PESO UNITARIO SEGÚN NTF	0.006 Neo; 0.0003 Euco			
Descripción	M1	M2	M3	
(A) PESO DE MUESTRA + MOLDE (g)	6555	6664	6596	
(B) PESO DE MOLDE (g)	2895	2895	2895	
(C=A-B) PESO DE MUESTRA (g)	3660	3769	3701	
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827	
(D/C) PESO UNITARIO (g/cm3)	1.295	1.333	1.309	
Peso unitario promedio (g/cm3) 1.31			35	
Peso unitario promedio (kg/m3)		1312.35		

Tabla N° 52 Peso Unitario 0.006 Neoplast y 0.000 Eucocell

PESO UNITARIO SEGÚN NTP 33	0.006 Neo; 0 Euco		
Descripción	M1	M2	М3
(A) PESO DE MUESTRA + MOLDE (g)	7428	7489	7615
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	4533	4594	4720
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.603	1.625	1.670
Peso unitario promedio (g/cm3)	1.63271		
Peso unitario promedio (kg/m3)	1632.71		

Tabla N° 53 Peso Unitario 0.004 Neoplast y 0.0001 Eucocell

PESO UNITARIO SEGÚN NTF	0.004 Neo; 0.0001 Euco		
Descripción	M1	M2	М3
(A) PESO DE MUESTRA + MOLDE (g)	6976	7042	7027
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	4081	4147	4132
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.444	1.467	1.462
Peso unitario promedio (g/cm3)		38	
Peso unitario promedio (kg/m3)	1457.38		

Fuente: Elaboración propia (2019).

Tabla N° 54 Peso Unitario 0.008 Neoplast y 0.0001 Eucocell

PESO UNITARIO SEGÚN NT	0.008 Neo; 0.0001 Euco			
Descripción	M1	M2	М3	
(A) PESO DE MUESTRA + MOLDE (g)	6871	6883	6903	
(B) PESO DE MOLDE (g)	2895	2895	2895	
(C=A-B) PESO DE MUESTRA (g)	3976	3988	4008	
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827	
(D/C) PESO UNITARIO (g/cm3)	1.406	1.411	1.418	
Peso unitario promedio (g/cm3) 1.411			63	
Peso unitario promedio (kg/m3)		1411.63		

Tabla N° 55 Peso Unitario 0.005 Neoplast y 0.0001 Eucocell

PESO UNITARIO SEGÚN NTP 339	0.005 Neo; 0.0001 Euco		
Descripción	m1	m2	m3
(A) PESO DE MUESTRA + MOLDE (g)	7058	7144	7080
(B) PESO DE MOLDE (g)	2895	2895	2895
(C=A-B) PESO DE MUESTRA (g)	4163	4249	4185
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827
(D/C) PESO UNITARIO (g/cm3)	1.473	1.503	1.480
Peso unitario promedio (g/cm3)	eso unitario promedio (g/cm3)		
Peso unitario promedio (kg/m3)	1485.32		

Tabla N° 56 Peso Unitario 0.009 Neoplast y 0.0001 Eucocell

PESO UNITARIO SEGÚN NTP 3	0.009 Neo; 0.0001 Euco			
Descripción	M1	M2	M3	
(A) PESO DE MUESTRA + MOLDE (g)	6776	6998	6853	
(B) PESO DE MOLDE (g)	2895	2895	2895	
(C=A-B) PESO DE MUESTRA (g)	3881	4103	3958	
(D) VOLUMEN DE MOLDE (cm3)	2827	2827	2827	
(D/C) PESO UNITARIO (g/cm3)	1.373	1.451	1.400	
Peso unitario promedio (g/cm3)			1.40809	
Peso unitario promedio (kg/m3)		1408.09		

4.3.2 Rendimiento

El ensayo de peso unitario se realizó conforme la norma ASTM C138 y la NTP 339.046.

Tabla N° 57 Rendimiento 0.006 Neoplast y 0.0001 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.006 Neo; 0.0001 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	878.075
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	85.881
Aditivo 01 - neoplast	2.400
Aditivo 02 - eucocell	0.040
Peso unitario (kg/m3)	1427.19
Volumen de concreto (m3)	0.960
Rendimiento (m3/bolsa)	0.102

Fuente: Elaboración propia (2019).

Tabla N° 58 Rendimiento 0.006 Neoplast y 0.0002 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.006 Neo; 0.0002 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	901.134
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	62.785
Pditivo 01 - neoplast	2.400
Aditivo 02 - eucocell	0.080
Peso unitario (kg/m3)	1447.82
Volumen de concreto (m3)	0.946
Rendimiento (m3/bolsa)	0.101

Tabla N° 59 Rendimiento 0.006 Neoplast y 0.00005 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.006 Neo; 0.00005 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	875.99
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	87.98
Aditivo 01 - neoplast	2.400
Aditivo 02 - eucocell	0.020
Peso unitario (kg/m3)	1543.45
Volumen de concreto (m3)	0.888
Rendimiento (m3/bolsa)	0.094

Tabla N° 60 Rendimiento 0.006 Neoplast y 0.00003 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.006 Neo; 0.0003 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	926.915
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	36.966
Aditivo 01 - neoplast	2.400
Aditivo 02 - eucocell	0.120
Peso unitario (kg/m3)	1312.35
Volumen de concreto (m3)	1.044
Rendimiento (m3/bolsa)	0.111

Fuente: Elaboración propia (2019).

Tabla N° 61 Rendimiento 0.006 Neoplast y 0.000 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.006 Neo; 0 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	908.900
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	55.094
Aditivo 01 - neoplast	2.400
Aditivo 02 - eucocell	0.000
Peso unitario (kg/m3)	1632.71
Volumen de concreto (m3)	0.839
Rendimiento (m3/bolsa)	0.089

Tabla N° 62 Rendimiento 0.004 Neoplast y 0.0001 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.004 Neo; 0.0001 Euco
descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	851.333
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	113.350
Aditivo 01 - neoplast	1.600
Aditivo 02 - eucocell	0.040
Peso unitario (kg/m3)	1457.38
Volumen de concreto (m3)	0.940
Rendimiento (m3/bolsa)	0.100

Tabla N° 63 Rendimiento 0.008 Neoplast y 0.0001 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.008 Neo; 0.0001 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	866.386
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	96.844
Aditivo 01 - neoplast	3.200
Aditivo 02 - eucocell	0.040
Peso unitario (kg/m3)	1411.63
Volumen de concreto (m3)	0.970
Rendimiento (m3/bolsa)	0.103

Fuente: Elaboración propia (2019).

Tabla N° 64 Rendimiento 0.005 Neoplast y 0.0001 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.005 Neo; 0.0001 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	943.408
Peso de la perla de poliestireno (g)	3.490
Peso del agua (L)	20.912
Aditivo 01 - neoplast	2.000
Aditivo 02 - eucocell	0.040
Peso unitario (kg/m3)	1485.32
Volumen de concreto (m3)	0.922
Rendimiento (m3/bolsa)	0.098

Tabla N° 65 Rendimiento 0.009 Neoplast y 0.0001 Eucocell

RENDIMIENTO SEGÚN NTP 339.046	0.009 Neo; 0.0001 Euco
Descripción	Muestra
N° de bolsas de cemento	9.412
Peso bolsa de cemento (g)	42.500
Peso del agregado fino (g)	889.684
Peso de la perla de poliestireno (g)	3.490
Peso del agua (I)	73.181
Aditivo 01 - neoplast	3.600
Aditivo 02 - eucocell	0.040
Peso unitario (kg/m3)	1408.09
Volumen de concreto (m3)	0.973
Rendimiento (m3/bolsa)	0.103

4.3.3 Contenido de Aire

Se realizó conforme la norma ASTM C-138 y la NTP 339.046.

Tabla N° 66 Contenido de Aire 0.006 Neoplast y 0.0001 Eucocell

CONTENIDO DE AIRE 339.046	0.006 Neo; 0.0001 Euco
Descripción	M3
T (Densidad Teórica del concreto kg/m3)	1712.39
D (Densidad de concreto kg/m3)	1427.19
Contenido de Aire	16.66%

Fuente: Elaboración propia (2019).

Tabla N° 67 Contenido de Aire 0.006 Neoplast y 0.0002 Eucocell

CONTENIDO DE AIRE 339.046	0.006 Neo; 0.0002 Euco
Descripción	M3
T (Densidad Teórica del concreto kg/m3)	1712.39
D (Densidad de concreto kg/m3)	1447.82
Contenido de Aire	15.45%

Fuente: Elaboración propia (2019).

Tabla N° 68 Contenido de Aire 0.006 Neoplast y 0.00005 Eucocell

CONTENIDO DE AIRE 339.046	0.006 Neo; 0.00005 Euco
Descripción	M3
T (Densidad Teórica del concreto kg/m3)	1712.39
D (Densidad de concreto kg/m3)	1543.45
Contenido de Aire	9.87%

Tabla N° 69 Contenido de Aire 0.006 Neoplast y 0.0003 Eucocell

CONTENIDO DE AIRE 339.046	0.006 Neo; 0.0003 Euco
Descripción	M3
T (Densidad teórica del concreto kg/m3)	1712.39
D (Densidad de concreto kg/m3)	1312.35
Contenido de Aire	23.36%

Tabla N° 70 Contenido de Aire 0.006 Neoplast y 0.000 Eucocell

CONTENIDO DE AIRE 339.046	0.006 Neo; 0.000 Euco
Descripción	M3
T (Densidad Teórica del concreto kg/m3)	1712.38
D (Densidad de concreto kg/m3)	1632.71
Contenido de Aire	4.65%

Fuente: Elaboración propia (2019).

Tabla N° 71 Contenido de Aire 0.004 Neoplast y 0.0001 Eucocell

CONTENIDO DE AIRE 339.046	0.004 Neo; 0.0001 Euco
Descripción	M3
T (Densidad teórica del concreto kg/m3)	1712.29
D (Densidad de concreto kg/m3)	1457.38
Contenido de Aire	14.89%

Fuente: Elaboración propia (2019).

Tabla N° 72 Contenido de Aire 0.008 Neoplast y 0.0001 Eucocell

CONTENIDO DE AIRE 339.046	0.008 Neo; 0.0001 Euco
Descripción	M3
T (Densidad teórica del concreto kg/m3)	1712.48
D (Densidad de concreto kg/m3)	1411.63
Contenido de Aire	17.57%

Fuente: Elaboración propia (2019).

Tabla N° 73 Contenido de Aire 0.005 Neoplast y 0.0001 Eucocell

CONTENIDO DE AIRE 339.046	0.005 Neo; 0.0001 Euco
Descripción	M3
T (Densidad teórica del concreto kg/m3)	1712.34
D (Densidad de concreto kg/m3)	1485.32
Contenido de Aire	13.26%

Tabla N° 74 Contenido de Aire 0.009 Neoplast y 0.0001 Eucocell

CONTENIDO DE AIRE 339.046	0.009 Neo; 0.0001 Euco
Descripción	М3
T (Densidad teórica del concreto kg/m3)	1712.53
D (Densidad de concreto kg/m3)	1408.09
Contenido de Aire	17.78%

4.3.4 Asentamiento

Se realizó conforme la norma ASTM C138 y la NTP 339.046.

FOTO N° 8 Asentamiento del Concreto Ligero

Fuente: Elaboración propia (2019).

Tabla N° 75 Asentamiento de 0.006 Neoplast y 0.0001Eucocell

ASENTAMIENTO 339.046	0.006 Neo; 0.0001 Euco
Descripción	Resultado
Asentamiento (pulg)	9 1/2 "
Asentamiento (pulg)	9 1/2 "

Fuente: Elaboración propia (2019).

Tabla N° 76 Asentamiento de 0.006 Neoplast y 0.0002Eucocell

ASENTAMIENTO 339.046	0.006 Neo; 0.0002 Euco
Descripción	Resultado
Asentamiento (pulg)	10 "
Asentamiento (pulg)	10 "

Tabla N° 77 Asentamiento de 0.006 Neoplast y 0.00005Eucocell

ASENTAMIENTO 339.046	0.006 Neo; 0.00005 Euco
Descripción	Resultado
Asentamiento (pulg)	9 "
Asentamiento (pulg)	9 "

Tabla N° 78 Asentamiento de 0.006 Neoplast y 0.0003 Eucocell

ASENTAMIENTO 339.046	0.006 Neo; 0.0003 Euco
Descripción	Resultado
Asentamiento (pulg)	9 1/2"
Asentamiento (pulg)	9 1/2"

Fuente: Elaboración propia (2019).

Tabla N° 79 Asentamiento de 0.006 Neoplast y 0.000 Eucocell

ASENTAMIENTO 339.046	0.006 Neo; 0 Euco
Descripción	Resultado
Asentamiento (pulg)	3"
Asentamiento (pulg)	3"

Fuente: Elaboración propia (2019).

Tabla N° 80 Asentamiento de 0.004 Neoplast y 0.0001 Eucocell

ASENTAMIENTO 339.046	0.004 Neo; 0.0001 Euco
Descripción	Resultado
Asentamiento (pulg)	9 1/4"
Asentamiento (pulg)	9 1/4"

Fuente: Elaboración propia (2019).

Tabla N° 81 Asentamiento de 0.008 Neoplast y 0.0001 Eucocell

ASENTAMIENTO 339.046	0.008 Neo; 0.0001 Euco
Descripción	Resultado
Asentamiento (pulg)	10 1/4"
Asentamiento (pulg)	10 1/4"

Fuente: Elaboración propia (2019).

Tabla N° 82 Asentamiento de 0.005 Neoplast y 0.0001 Eucocell

ASENTAMIENTO 339.046	0.005 Neo; 0.0001 Euco
Descripción	Resultado
Asentamiento (pulg)	10"
Asentamiento (pulg)	10"

Tabla N° 83 Asentamiento de 0.009 Neoplast y 0.0001 Eucocell

ASENTAMIENTO 339.046	0.009 Neo; 0.0001 Euco
Descripción	Resultado
Asentamiento (pulg)	10 1/4"
Asentamiento (pulg)	10 1/4"

4.3.5 Exudación

Se realizó conforme la norma ASTM C138 y la NTP 339.046. No se encontró exudación en los diseños de mezclas.

FOTO N° 9 Ensayo de exudación en recipiente de 10" de diámetro Fuente: Elaboración propia (2019).

4.3.6 Temperatura del concreto

Se realizó conforme la norma ASTM C138 y la NTP 339.046.

FOTO N° 10 Temperatura del Concreto ligero

Tabla N° 84 Temperatura del Concreto 0.006 Neoplast y 0.0001Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.006 Neo; 0.0001 Euco
Descripción	Resultado
Temperatura (°C)	32.4°C
Temperatura (°C)	32.4°C

Tabla N° 85 Temperatura del Concreto 0.006 Neoplast y 0.0002Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.006 Neo; 0.0002 Euco
Descripción	Resultado
Temperatura (°C)	32.3°C
Temperatura (°C)	32.3°C

Fuente: Elaboración propia (2019).

Tabla N° 86 Temperatura del Concreto 0.006 Neoplast y 0.00005Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.006 Neo; 0.00005 Euco
Descripción	Resultado
Temperatura (°C)	37.7°C
Temperatura (°C)	37.7°C

Fuente: Elaboración propia (2019).

Tabla N° 87 Temperatura del Concreto 0.006 Neoplast y 0.0003 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.006 Neo; 0.0003 Euco
Descripción	Resultado
Temperatura (°C)	34.6°C
Temperatura (°C)	34.6°C

Fuente: Elaboración propia (2019).

Tabla N° 88 Temperatura del Concreto 0.006 Neoplast y 0.000 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.006 Neo; 0 Euco
Descripción	Resultado
Temperatura (°C)	32.2°c
Temperatura (°C)	32.2°c

Fuente: Elaboración propia (2019).

Tabla N° 89 Temperatura del Concreto 0.004 Neoplast y 0.0001 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.004 Neo; 0.0001 Euco
Descripción	Resultado
Temperatura (°C)	33.3°C
Temperatura (°C)	33.3°C

Tabla N° 90 Temperatura del Concreto 0.008 Neoplast y 0.0001 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.008 Neo; 0.0001 Euco
Descripción	Resultado
Temperatura (°C)	33.1°C
Temperatura (°C)	33.1°C

Tabla N° 91 Temperatura del Concreto 0.005 Neoplast y 0.0001 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.005 Neo; 0.0001 Euco
Descripción	Resultado
Temperatura (°C)	33.0°C
Temperatura (°C)	33.0°C

Fuente: Elaboración propia (2019).

Tabla N° 92 Temperatura del Concreto 0.009 Neoplast y 0.0001 Eucocell

TEMPERATURA DEL CONCRETO 339.114	0.009 Neo; 0.0001 Euco
Descripción	Resultado
Temperatura (°C)	35.0°C
Temperatura (°C)	35.0°C

4.4 ENSAYOS AL CONCRETO ENDURECIDO

Las pruebas de concreto endurecido fueron realizadas de una misma tanda de diseño de mezclas, conforme a la norma; se utilizaron probetas de plástico de 4" x 8" de la marca Forney y vigas de acero proporcionada por el Laboratorio de Mecánica de Suelos y Ensayo de Materiales de la Universidad Científica del Perú. Por haberse utilizado aditivos, las probetas fueron ensayadas luego de transcurrido el tiempo necesario de fraguado.

FOTO N° 11 Proceso del Concreto Endurecido y curado

4.4.1 Resistencia a la Compresión

Se realizaron de acuerdo a la norma ASTM C-39 y la NTP 339.034 con la muestra de 3 testigos por cada edad de 7,14 y 28 días.

FOTO N° 12 Rotura del Concreto a compresión

Tabla N° 93 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes		CONCRETO LIVIANO											
Nomenclatura		0.006 NEOPLAST / 0.0001 EUCOCELL									PROMEDIO		
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días	
Edad de Ensayo		7 días			14 días			28 días					
Diametro	10.11	10.16	10.16	10.16	10.15	10.18	10.12	10.09	10.12	10.14	10.16	10.11	
Precarga (kN)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	
Carga máxima de rotura (Kg)	11124.363	10754.33	10108.05301	11443.4	11030.58	10707.441	9932.722	12259.939	10897.044	10662.25	11060.48	11029.90	
Resistencia a la Compresion Maxima (kg/cm2)	138.63	132.69	125.96	141.19	136.38	131.60	123.53	153.32	135.52	132.43	136.39	137.46	
Resistencia a la Compresion Maxima (Mpa)	13.59	13.01	12.35	13.85	13.37	12.91	12.11	15.04	13.29	12.99	13.38	13.48	

GRÁFICO N° 27 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST - 0.0001 EUCOCELL

Tabla N° 94 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0002 EUCOCELL

Datos Especimenes		CONCRETO LIVIANO											
Nomenclatura	0.006 NEOPLAST / 0.0002 EUCOCELL										PROMEDIO		
Nomencatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días	
Edad de Ensayo		7 días			14 días			28 días					
Diametro	10.15	10.15	10.14	10.18	10.17	10.16	10.13	10.17	10.16	10.15	10.17	10.15	
Precarga (kN)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	
Carga máxima de rotura (Kg)	11622.83	8409.79	10238.53	9765.55	11150.87	9712.54	10585.12	10298.67	10144.75	10090.38	10209.65	10342.85	
Resistencia a la Compresion Maxima (kg/cm2)	143.70	103.97	126.80	120.02	137.32	119.84	131.38	126.82	125.17	124.82	125.73	127.79	
Resistencia a la Compresion Maxima (Mpa)	14.09	10.20	12.43	11.77	13.47	11.75	12.88	12.44	12.27	12.24	12.33	12.53	

GRÁFICO Nº 28 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST - 0.0002 EUCOCELL

Tabla N° 95 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.00005 EUCOCELL

Datos Especimenes						CONCRETO	LIVIANO					
Nomenclatura			0.0	06 NEOPLA	ST / 0.0000	5 EUCOCELL					PROMEDIO	
Nomencatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.14	10.14	10.15	10.18	10.15	10.15	10.18	10.23	10.15	10.14	10.16	10.19
Precarga (kN)	10.14 10.14 10.15 20.00 20.00 20.00			20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	12828.75	12110.09	12701.33	13181.45	12415.90	12409.79	14778.80	13735.98	12975.535	12546.72	12669.05	13830.11
Resistencia a la Compresion Maxima (kg/cm2)	158.91	150.01	157.03	162.00	153.5	153.43	181.64	167.17	160.41	155.32	156.31	169.74
Resistencia a la Compresion Maxima (Mpa)	15.58	14.71	15.40	15.89	15.05	15.05	17.81	16.39	15.73	15.23	15.33	16.65

GRÁFICO Nº 29 Resistencia a la Compresión vs Edad de ensayo 0.006 NEOPLAST / 0.00005 EUCOCELL

Tabla N° 96 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0003 EUCOCELL

Datos Especimenes						CONCRETO	LIVIANO					
Nomenclatura			0.0	006 NEOPLA	AST / 0.0003	EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.14	10.13	10.16	10.15	10.15	10.13	10.17	10.15	10.17	10.14	10.14	10.16
Precarga (kN)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	7654.43	8435.27	8387.36	8575.94	8103.98	8392.46	9874.62	9002.04	9472.9867	8159.02	8357.46	9449.88
Resistencia a la Compresion Maxima (kg/cm2)	94.82	104.69	103.48	106.03	100.19	104.17	121.60	111.30	116.66	101.00	103.46	116.52
Resistencia a la Compresion Maxima (Mpa)	9.30	10.27	10.15	10.40	9.83	10.22	11.92	10.91	11.44	9.90	10.15	11.43

GRÁFICO Nº 30 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST - 0.00005 EUCOCELL

Tabla N° 97 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	006 NEOPLA	AST / 0.0003	B EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.15	10.14	10.14	10.15	10.13	10.15	10.17	10.15	10.16	10.14	10.14	10.16
Precarga (kN)	10.15 10.14 10.14 20.00 20.00 20.00			20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	13647.30	13751.27	14821.61	15342.51	14815.49	14363.91	16401.63	14728.85	16355.759	14073.39	14840.64	15828.75
Resistencia a la Compresion Maxima (kg/cm2)	168.72	170.35	183.60	189.68	183.89	177.58	201.97	182.09	201.80	174.22	183.72	195.29
Resistencia a la Compresion Maxima (Mpa)	16.55	16.71	18.01	18.60	18.03	17.41	19.81	17.86	19.79	17.09	18.02	19.15

GRÁFICO Nº 31 Resistencia a la Compresión vs Edad de ensayo / 0.006 NEOPLAST - 0.000 EUCOCELL

Tabla N° 98 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.004 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					-	CONCRETO	LIVIANO					
Nomenclatura			0.0	004 NEOPLA	AST / 0.0001	L EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.05	10.06	10.14	10.15	10.16	10.15	10.13	10.17	10.21	10.08	10.15	10.17
Precarga (kN)	10.05 10.06 10.14 20.00 20.00 20.00			20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	10929.66	10018.35	11639.14	11023.45	11594.29	11670.74	12218.14	12655.45	12878.695	10862.39	11429.49	12584.10
Resistencia a la Compresion Maxima (kg/cm2)	137.82	126.34	146.77	136.29	142.25	144.29	151.65	155.85	157.36	136.98	140.94	154.95
Resistencia a la Compresion Maxima (Mpa)	13.52	12.39	14.39	13.37	13.95	14.15	14.87	15.28	15.43	13.43	13.82	15.20

GRÁFICO Nº 32 Resistencia a la Compresión vs Edad de ensayo / 0.004 NEOPLAST - 0.0001 EUCOCELL

Tabla N° 99 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.008 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	008 NEOPLA	AST / 0.0001	EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.17 10.16 10.15			10.15	10.16	10.15	10.19	10.15	10.15	10.16	10.15	10.16
Precarga (kN)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	5091.74	5188.58	4668.71	6130.48	5029.56	4277.27	6085.63	6047.91	5341.4883	4983.01	5145.77	5825.01
Resistencia a la Compresion Maxima (kg/cm2)	62.70	64.02	57.72	75.79	62.06	52.88	75.60	74.76	66.03	61.48	63.58	72.13
Resistencia a la Compresion Maxima (Mpa)	6.15	6.28	5.66	7.43	6.09	5.19	7.41	7.33	6.48	6.03	6.23	7.07

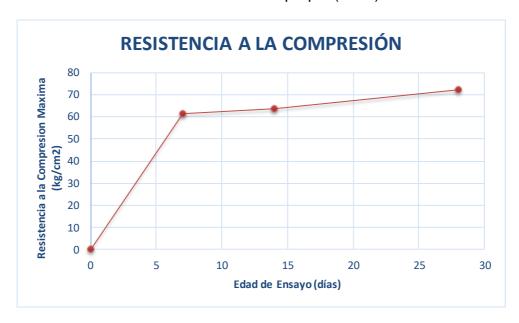


GRÁFICO Nº 33 Resistencia a la Compresión vs Edad de ensayo / 0.008 NEOPLAST - 0.0001 EUCOCELL

Tabla N° 100 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.005 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	005 NEOPLA	AST / 0.0001	LEUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro	10.15	10.15	10.15	10.17	10.17	10.18	10.14	10.15	10.10	10.15	10.17	10.13
Precarga (kN)	10.15 10.15 10.15 20.00 20.00 20.00			20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	6118.25	8576.96	8142.71	8264.02	9459.73	8971.46	7352.70	9363.91	10446.483	7612.64	8898.40	9054.37
Resistencia a la Compresion Maxima (kg/cm2)	75.64	106.03	100.67	101.77	116.49	110.26	91.08	115.76	130.43	94.11	109.51	112.42
Resistencia a la Compresion Maxima (Mpa)	7.42	10.40	9.87	9.98	11.42	10.81	8.93	11.35	12.79	9.23	10.74	11.02

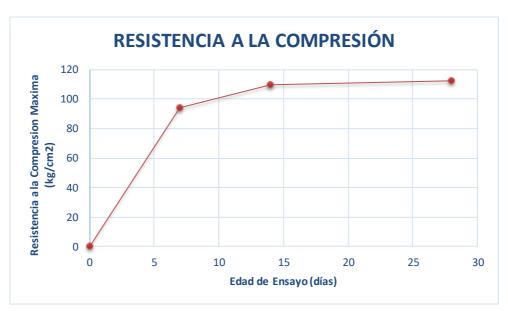


GRÁFICO N° 34 Resistencia a la Compresión vs Edad de ensayo / 0.005 NEOPLAST - 0.0001 EUCOCELL

Tabla N° 101 Especímenes ensayados a compresión, a los 7, 14 y 28 días con 0.009 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes						CONCRETO	LIVIANO					
Nomenclatura			0.0	009 NEOPLA	AST / 0.0001	L EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 01	PBT - 02	PBT - 03	PBT - 04	PBT - 05	PBT - 06	PBT - 07	PBT - 08	PBT - 09	7 días	14 días	28 días
Edad de Ensayo	7 días				14 días			28 días				
Diametro	10.16	10.16	10.14	10.17	10.17	10.18	10.15	10.16	10.16	10.15	10.17	10.15
Precarga (kN)	10.16 10.16 10.14 20.00 20.00 20.00			20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Velocidad (Kg/cm2)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Carga máxima de rotura (Kg)	8189.60	8321.10	8019.37	7953.11	9153.92	9435.27	9374.11	8467.89	8826.7074	8176.69	8847.43	8889.57
Resistencia a la Compresion Maxima (kg/cm2)	101.05	102.67	99.34	97.94	112.72	115.96	115.90	104.49	108.91	101.02	108.87	109.77
Resistencia a la Compresion Maxima (Mpa)	9.91	10.07	9.74	9.60	11.05	11.37	11.37	10.25	10.68	9.91	10.68	10.76

GRÁFICO N° 35 Resistencia a la Compresión vs Edad de ensayo / 0.009 NEOPLAST - 0.0001 EUCOCELL

4.4.2 Resistencia a la tracción por compresión diametral

Se realizaron de acuerdo a la norma ASTM C-496 y la NTP 339.084 con la muestra de 3 testigos por cada edad de 7,14 y 28 días.

FOTO N° 13 Rotura de concreto liviano por resistencia a la tracción Fuente: Elaboración propia (2019).

Tabla N° 102 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	006 NEOPLA	AST / 0.0001	EUCOCELL					PROMEDIO	
Nomendatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo	7 días 10.16				14 días			28 días				
Diametro (cm)	10.15	10.18	10.16	10.11	10.19	10.18	10.17	10.11	10.12	10.16	10.16	10.14
Longitud (cm)	20.40	20.25	20.22	20.37	20.31	20.34	20.32	20.41	20.32	20.29	20.34	20.35
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	2460.75	2854.23	2586.14	3520.90	3385.32	2597.35	3952.09	3174.3119	3033.64	2633.71	3167.86	3386.68
Esfuerzo a la traccion por compresion diametral (kg/cm2)	7.57	8.81	8.02	10.89	10.41	7.99	12.17	9.79	9.39	8.13	9.76	10.45
Esfuerzo a la traccion por compresion diametral (MPa)	0.74	0.86	0.79	1.07	1.02	0.78	1.19	0.96	0.92	0.80	0.96	1.02

GRÁFICO Nº 36 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.0001 EUCOCELL

Tabla N° 103 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0002 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	006 NEOPLA	AST / 0.0002	EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 10				PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo	7 días				14 días			28 días				
Diametro (cm)	10.23	10.10	10.09	10.16	10.13	10.12	10.15	10.16	10.22	10.14	10.14	10.18
Longitud (cm)	20.44	20.36	20.22	20.33	20.22	20.26	20.30	20.36	20.33	20.34	20.27	20.33
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	3256.88	2725.79	2531.09	3658.51	3627.93	2738.02	3984.71	3774.7197	3361.88	2837.92	3341.49	3707.10
Esfuerzo a la traccion por compresion diametral (kg/cm2)	9.92	8.44	7.90	11.28	11.27	8.50	12.31	11.62	10.30	8.75	10.35	11.41
Esfuerzo a la traccion por compresion diametral (MPa)	0.97	0.83	0.77	1.11	1.11	0.83	1.21	1.14	1.01	0.86	1.02	1.12

GRÁFICO Nº 37 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.0002 EUCOCELL

Tabla N° 104 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.00005 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	06 NEOPLA	ST / 0.0000	5 EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro (cm)	10.13	10.09	10.09	10.11	10.17	10.17	10.17	10.13	10.20	10.11	10.15	10.17
Longitud (cm)	20.31	20.28	20.28	20.30	20.25	20.30	20.34	20.33	20.34	20.29	20.28	20.33
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	2661.57	2748.22	3648.32	4244.65	3006.12	2861.37	3910.30	3501.5291	4957.19	3019.37	3370.71	4123.00
Esfuerzo a la traccion por compresion diametral (kg/cm2)	8.23	8.55	11.35	13.17	9.29	8.82	12.03	10.83	15.21	9.38	10.43	12.69
Esfuerzo a la traccion por compresion diametral (MPa)	0.81	0.84	1.11	1.29	0.91	0.86	1.18	1.06	1.49	0.92	1.02	1.24

GRÁFICO Nº 38 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.00005 EUCOCELL

Tabla N° 105 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.0003 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	006 NEOPLA	AST / 0.0003	EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo	7 días				14 días			28 días				
Diametro (cm)	10.18	10.14	10.15	10.15	10.11	10.18	10.12	10.15	10.16	10.15	10.15	10.14
Longitud (cm)	20.30	20.27	20.23	20.25	20.27	20.35	20.28	20.44	20.34	20.26	20.29	20.35
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	2586.14	2645.26	2765.55	2226.30	3183.49	3413.86	4132.52	3261.9776	2927.62	2665.65	2941.22	3440.71
Esfuerzo a la traccion por compresion diametral (kg/cm2)	7.97	8.20	8.58	6.90	9.89	10.49	12.82	10.02	9.02	8.25	9.09	10.62
Esfuerzo a la traccion por compresion diametral (MPa)	0.78	0.80	0.84	0.68	0.97	1.03	1.26	0.98	0.88	0.81	0.89	1.04

GRÁFICO Nº 39 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.0003 EUCOCELL

Tabla N° 106 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.006 NEOPLAST / 0.000 EUCOCELL

Nomenclatura			0.	006 NEOPL	AST / 0.000	EUCOCELL					PROMEDIO	
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro (cm)	10.20	10.16	10.15	10.19	10.16	10.15	10.08	10.14	10.09	10.17	10.17	10.10
Longitud (cm)	20.32	20.25	20.21	20.29	20.33	20.31	20.31	20.35	20.24	20.26	20.31	20.30
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	4828.75	3120.29	3494.39	3307.85	4370.03	3850.15	5326.20	3941.896	5310.91	3814.48	3842.68	4859.67
Esfuerzo a la traccion por compresion diametral (kg/cm2)	14.84	9.65	10.85	10.19	13.47	11.89	16.56	12.16	16.56	11.78	11.85	15.09
Esfuerzo a la traccion por compresion diametral (MPa)	1.45	0.95	1.06	1.00	1.32	1.17	1.62	1.19	1.62	1.16	1.16	1.48

GRÁFICO Nº 40 Esfuerzo a la tracción vs Edad de ensayo / 0.006 NEOPLAS - 0.000 EUCOCELL

Tabla N° 107 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.004 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	004 NEOPLA	AST / 0.0001	EUCOCELL				PROMEDIO		
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro (cm)	10.16	10.18	10.12	10.17	10.16	10.20	10.16	10.03	10.19	10.15	10.18	10.13
Longitud (cm)	20.39	20.26	20.33	20.33	20.27	20.25	20.32	20.36	20.32	20.33	20.28	20.33
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	3223.24	2386.34	3000.00	2511.72	2596.33	3640.16	2851.17	3940.8767	3524.97	2869.86	2916.07	3439.01
Esfuerzo a la traccion por compresion diametral (kg/cm2)	9.91	7.37	9.29	7.74	8.03	11.22	8.79	12.28	10.84	8.85	8.99	10.64
Esfuerzo a la traccion por compresion diametral (MPa)	0.97	0.72	0.91	0.76	0.79	1.10	0.86	1.20	1.06	0.87	0.88	1.04

GRÁFICO Nº 41 Esfuerzo a la tracción vs Edad de ensayo / 0.004 NEOPLAS - 0.0001 EUCOCELL

Tabla N° 108 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.008 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	008 NEOPLA	AST / 0.0001	EUCOCELL				PROMEDIO		
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días 14 días					28 días					
Diametro (cm)	10.20	10.18	10.17	10.12	10.15	10.09	10.17	10.22	10.13	10.18	10.12	10.17
Longitud (cm)	20.23	20.15	20.20	20.25	20.30	20.20	20.13	20.18	20.20	20.19	20.25	20.17
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	1510.70	1781.86	1237.51	1992.86	1912.33	1306.83	1997.96	1861.366	1540.27	1510.02	1737.34	1799.86
Esfuerzo a la traccion por compresion diametral (kg/cm2)	4.66	5.53	3.84	6.19	5.91	4.08	6.22	5.75	4.79	4.68	5.39	5.59
Esfuerzo a la traccion por compresion diametral (MPa)	0.46	0.54	0.38	0.61	0.58	0.40	0.61	0.56	0.47	0.46	0.53	0.55

GRÁFICO Nº 42 Esfuerzo a la tracción vs Edad de ensayo / 0.008 NEOPLAS - 0.0001 EUCOCELL

Tabla N° 109 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.005 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	005 NEOPLA	ST / 0.0001	EUCOCELL				PROMEDIO		
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días			14 días			28 días				
Diametro (cm)	10.18	10.15	10.17	10.23	10.14	10.09	10.14	10.20	10.16	10.16	10.15	10.16
Longitud (cm)	20.24	20.25	20.18	20.25	20.25	20.27	20.27	20.35	20.24	20.22	20.26	20.29
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	2183.49	2846.08	2034.66	3095.82	2226.30	4027.52	4041.79	2502.5484	3347.60	2354.74	3116.55	3297.32
Esfuerzo a la traccion por compresion diametral (kg/cm2)	6.75	8.82	6.31	9.52	6.90	12.54	12.52	7.68	10.37	7.29	9.65	10.19
Esfuerzo a la traccion por compresion diametral (MPa)	0.66	0.86	0.62	0.93	0.68	1.23	1.23	0.75	1.02	0.72	0.95	1.00

GRÁFICO Nº 43 Esfuerzo a la tracción vs Edad de ensayo / 0.005 NEOPLAS - 0.0001 EUCOCELL

Tabla N° 110 Especímenes ensayados a tracción, a los 7, 14 y 28 días con 0.005 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes					(CONCRETO	LIVIANO					
Nomenclatura			0.0	009 NEOPLA	AST / 0.0001	EUCOCELL				PROMEDIO		
Nomenciatura	PBT - 10	PBT - 11	PBT - 12	PBT - 13	PBT - 14	PBT - 15	PBT - 16	PBT - 17	PBT - 18	7 días	14 días	28 días
Edad de Ensayo		7 días	14 días				28 días					
Diametro (cm)	10.17	10.18	10.16	10.18	10.16	10.18	10.14	10.12	10.16	10.17	10.17	10.14
Longitud (cm)	20.27	20.42	20.28	20.43	20.40	20.35	20.32	20.42	20.47	20.32	20.39	20.40
Precarga(kN)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Carga máxima de rotura (kg)	2242.61	1998.98	1847.09	2092.76	2460.75	1875.64	2223.24	1743.1193	2489.30	2029.56	2143.05	2151.89
Esfuerzo a la traccion por compresion diametral (kg/cm2)	6.93	6.12	5.71	6.41	7.56	5.77	6.87	5.37	7.62	6.25	6.58	6.62
Esfuerzo a la traccion por compresion diametral (MPa)	0.68	0.60	0.56	0.63	0.74	0.57	0.67	0.53	0.75	0.61	0.65	0.65

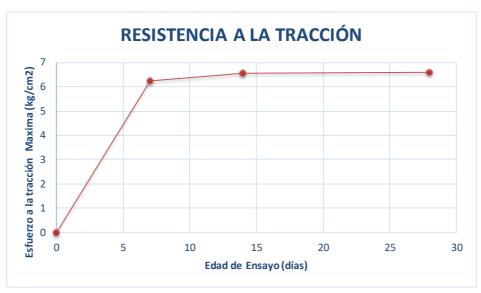


GRÁFICO Nº 44 Esfuerzo a la tracción vs Edad de ensayo / 0.009 NEOPLAS - 0.0001 EUCOCELL

4.4.3 Resistencia a la flexión del concreto

Se realizó de acuerdo a la norma ASTM C-78 y NTP 339.078 con la muestra de 6 vigas de concreto a la edad de 28 días.

FOTO N° 14 Rotura de concreto liviano por resistencia a la flexión Fuente: Elaboración propia (2019).

Tabla N° 111 Resistencia a la flexión de 0.006 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes			CONC	CRETO LIVIA	NO				
Nomenclatura		0.006 N	NEOPLAST / 0	.00005 EUC	OCELL		PROMEDIO		
Nomenciacura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06			
Edad de Ensayo	28 días								
Ancho (cm)	15.44	15.41	15.21	15.59	15.45	15.53	15.00		
Alto (cm)	15.38	15.45	15.52	15.61	15.55	15.66	16.00		
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50		
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00		
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Carga máxima de rotura (kg)	2425.08	2380.22	1857.29	2348.62	2130.48	1709.48	2142.00		
Modulo de rotura (kg/cm2)	30.90	30.08	23.57	28.76	26.52	20.87	26.78		
Modulo de Rotura (MPa)	3.03	2.95	2.31	2.82	2.60	2.05	2.63		

El módulo de rotura del concreto a los 28 días de 26.78 Kg/cm2.

Tabla Nº 112 Resistencia a la flexión de 0.006 NEOPLAST / 0.0002 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes			CONC	CRETO LIVIA	ANO						
Nomenclatura		0.006	NEOPLAST / C	.0002 EUCC	CELL		PROMEDIO				
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06					
Edad de Ensayo		28 días									
Ancho (cm)	15.40	15.41	15.52	15.41	15.48	15.50	15.00				
Alto (cm)	15.47	15.42	15.46	15.44	15.47	15.53	15.00				
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50				
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00				
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Carga máxima de rotura (kg)	2104.99	1980.63	2328.24	2144.75	2141.69	2236.49	2156.00				
Modulo de rotura (kg/cm2)	26.57	25.12	29.20	27.14	26.89	27.84	27.13				
Modulo de Rotura (MPa)	2.61	2.46	2.86	2.66	2.64	2.73	2.66				

El módulo de rotura del concreto a los 28 días de 27.13 Kg/cm2.

Tabla Nº 113 Resistencia a la flexión de 0.006 NEOPLAST / 0.00005 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes			CONC	CRETO LIVIA	NO					
Nomenclatura		0.006 N	NEOPLAST / 0.	.00005 EUC	OCELL		PROMEDIO			
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo	28 días									
Ancho (cm)	15.43	15.36	15.36	15.56	15.66	15.89	16.00			
Alto (cm)	15.40	15.49	15.45	15.42	15.66	15.61	16.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	2534.15	1980.63	2496.43	3194.70	2784.91	3306.83	2716.00			
Modulo de rotura (kg/cm2)	32.19	24.97	31.68	40.16	33.73	39.70	33.74			
Modulo de Rotura (MPa)	3.16	2.45	3.11	3.94	3.31	3.89	3.31			

El módulo de rotura del concreto a los 28 días de 33.74 Kg/cm2.

Tabla N° 114 Resistencia a la flexión de 0.006 NEOPLAST / 0.0003 EUCOCELL

Datos Especimenes			CONC	RETO LIVIA	NO					
Nomenclatura		0.006	NEOPLAST / (0.0003EUCC	CELL		PROMEDIO			
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo	28 días									
Ancho (cm)	15.40	15.38	15.48	15.59	15.38	15.47	15.00			
Alto (cm)	15.55	15.55	15.39	15.49	15.41	15.45	15.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	1772.68	1581.04	1621.81	1489.30	1514.78	1781.86	1627.00			
Modulo de rotura (kg/cm2)	22.14	19.77	20.56	18.52	19.29	22.43	20.45			
Modulo de Rotura (MPa)	2.17	1.94	2.02	1.82	1.89	2.20	2.01			

El módulo de rotura del concreto a los 28 días de 20.45 Kg/cm2.

Tabla Nº 115 Resistencia a la flexión de 0.006 NEOPLAST / 0.000 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes			CONC	RETO LIVIA	NO					
Nomenclatura		0.006	NEOPLAST/	0.000EUCO	CELL		PROMEDIO			
Nomencatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo	28 días									
Ancho (cm)	15.67	15.72	15.59	15.53	15.54	15.42	16.00			
Alto (cm)	16.25	15.60	15.59	15.44	15.59	15.45	16.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	2985.73	2898.06	2725.79	3112.13	2807.34	2772.68	2884.00			
Modulo de rotura (kg/cm2)	33.53	35.22	33.47	39.07	34.55	35.04	35.15			
Modulo de Rotura (MPa)	3.29	3.45	3.28	3.83	3.39	3.44	3.45			

El módulo de rotura del concreto a los 28 días de 35.15 Kg/cm2.

Tabla N° 116 Resistencia a la flexión de 0.004 NEOPLAST / 0.0001 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes			CONC	CRETO LIVIA	NO					
Nomenclatura		0.0041	NEOPLAST / C	.0001 EUCC	CELL		PROMEDIO			
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo	28 días									
Ancho (cm)	15.36	15.49	15.39	15.37	15.54	15.38	15.00			
Alto (cm)	15.42	15.47	15.77	15.52	15.57	15.41	16.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	1659.53	1971.46	2044.85	1703.36	1709.48	1404.69	1749.00			
Modulo de rotura (kg/cm2)	21.13	24.73	24.83	21.40	21.11	17.87	21.85			
Modulo de Rotura (MPa)	2.07	2.43	2.43	2.10	2.07	1.75	2.14			

El módulo de rotura del concreto a los 28 días de 21.85 Kg/cm2.

Tabla N° 117 Resistencia a la flexión de 0.008 NEOPLAST / 0.0001 EUCOCELL

Datos Especimenes			CONC	CRETO LIVIA	NO							
Nomenclatura		0.0081	NEOPLAST / C	.0001 EUCC	OCELL		PROMEDIO					
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06						
Edad de Ensayo		28 días										
Ancho (cm)	15.14	15.22	15.58	15.45	15.38	15.35	15.00					
Alto (cm)	15.54	15.39	15.63	15.40	15.41	15.45	15.00					
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50					
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00					
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00					
Carga máxima de rotura (kg)	936.80	1152.91	1049.95	829.77	1242.61	1067.28	1047.00					
Modulo de rotura (kg/cm2)	11.91	14.87	12.83	10.53	15.83	13.54	13.25					
Modulo de Rotura (MPa)	1.17	1.46	1.26	1.03	1.55	1.33	1.30					

El módulo de rotura del concreto a los 28 días de 13.25 Kg/cm2.

Tabla Nº 118 Resistencia a la flexión de 0.005 NEOPLAST / 0.0001 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes			CONC	CRETO LIVIA	NO					
Nomenclatura		0.005	NEOPLAST / C	0.0001 EUCC	CELL		PROMEDIO			
Nomendatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo	28 días									
Ancho (cm)	15.24	15.49	15.45	15.27	15.29	15.21	15.00			
Alto (cm)	15.44	15.53	15.41	15.43	15.39	15.53	15.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	1284.40	1353.72	1208.97	1727.83	1619.78	1725.79	1487.00			
Modulo de rotura (kg/cm2)	16.43	16.85	15.32	22.11	20.80	21.88	18.90			
Modulo de Rotura (MPa)	1.61	1.65	1.50	2.17	2.04	2.15	1.85			

El módulo de rotura del concreto a los 28 días de 18.90 Kg/cm2.

Tabla Nº 119 Resistencia a la flexión de 0.009 NEOPLAST / 0.0001 EUCOCELL

Fuente: Elaboración propia (2019).

Datos Especimenes		CONCRETO LIVIANO								
Nomenclatura		1 000.0	NEOPLAST / C	.0001 EUCC	CELL		PROMEDIO			
Nomenciatura	VIGA - 01	VIGA - 02	VIGA - 03	VIGA - 04	VIGA - 05	VIGA - 06				
Edad de Ensayo				28 días						
Ancho (cm)	15.38	15.23	15.66	15.45	15.48	15.35	15.00			
Alto (cm)	15.68	15.58	15.48	15.34	15.45	15.58	16.00			
Longitud (cm)	46.50	46.50	46.50	46.50	46.50	46.50	46.50			
Precarga(kN)	5.00	5.00	5.00	5.00	5.00	5.00	5.00			
Velocidad (Kg/cm2)	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Carga máxima de rotura (kg)	1671.76	1384.30	1909.28	1596.33	1238.53	1588.18	1565.00			
Modulo de rotura (kg/cm2)	20.55	17.42	23.65	20.41	15.60	19.82	19.58			
Modulo de Rotura (MPa)	2.02	1.71	2.32	2.00	1.53	1.94	1.92			

El módulo de rotura del concreto a los 28 días de 19.58 Kg/cm2.

4.4.4 Ensayo de Módulo de elasticidad

Se realizaron de acuerdo a la norma ASTM C-469 con la muestra de 4 testigos a la edad de 28 días.

FOTO N° 15 Ensayo de módulo de elasticidad en concreto liviano no estructural

Tabla N° 120 Módulos de elasticidad de especímenes a los 28 días

CONCRETO LIVIANO NO ESTRUCTURAL									
N°	Aditivo (aditivo/cemento) Neoplast - Eucocell	Código de Especímen	Módulo de Elasticidad (kg/m2) 28 días	Prom. Módulo de Elasticidad (kg/m2) 28 días					
Patron	0.006 - 0.0001	PBT - 19 PBT - 20 PBT - 21 PBT - 22	166,258 167,717 231,303 165,464	182,686					
1	0.006 - 0.0002	PBT - 19 PBT - 20 PBT - 21 PBT - 22	150,211 159,076 149,695 172,895	157,969					
2	0.006 - 0.00005	PBT - 19 PBT - 20 PBT - 21 PBT - 22	237,424 190,172 179,506 192,466	199,892					
3	0.006 - 0.0003	PBT - 19 PBT - 20 PBT - 21 PBT - 22	130,883 111,165 159,078 136,642	134,442					
4	0.006 - 0.000	PBT - 19 221,589		206,910					
5	0.004 - 0.0001	PBT - 19 PBT - 20 PBT - 21 PBT - 22	154,466 157,811 176,235 151,757	160,067					
6	0.008 - 0.0001	PBT - 19 PBT - 20 PBT - 21 PBT - 22	101,388 121,676 107,221 152,525	120,703					
7	0.005 - 0.0001	PBT - 19 PBT - 20 PBT - 21 PBT - 22	142,654 160,759 174,704 156,403	158,630					
8	0.009 - 0.0001	PBT - 19 PBT - 20 PBT - 21 PBT - 22	148,592 142,688 228,987 131,552	162,955					

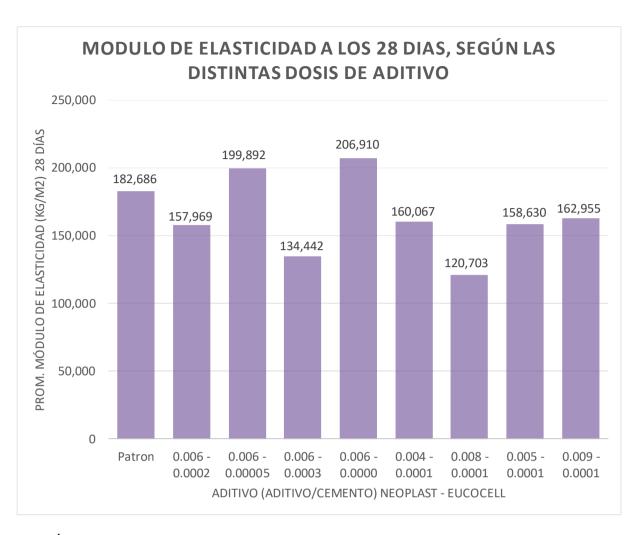


GRÁFICO N° 45 Promedio Módulo de Elasticidad vs dosificación de aditivos Fuente: Elaboración propia (2019).

CAPITULO V: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

En el capítulo IV obtuvimos los resultados del trabajo de investigación, los cuales se resumen en cuadros y analizan e interpretan a continuación:

5.1 ANÁLISIS DE LAS CARACTERÍSTICAS DE LOS MATERIALES

Tabla N° 121 Resumen de las características de materiales

CUADRO RESUMEN DE LAS CARACTERISTICAS DE LOS MATERIALES										
DESCRIPCIÓN	AGREGADO	PERLA DE	CEMENTO	NEOPLAST	EUCOCELL					
DESCRIPCION	FINO	POLIESTIRENO	SOL TIPO I	8500 HP	100					
Peso especifico (gr/cc)	2.601	0.017	3.15	1.1	1.05					
Peso unitario suelto (kg/m3)	1367.00	12.00	1	-	-					
Peso unitario compactado (kg/m3)	1550.00	12.00	-	-	-					
Porcentaje de absorción (%)	0.69	0	-	-	-					
Modulo de fineza	1.31	5.85	-	-	-					
Tamaño maximo nominal	-	1/4"	-	-	-					
Humedad de diseño (%)	17.83	0	1	-	-					

Fuente: Elaboración propia (2019).

El mayor porcentaje retenido de la arena se encuentra en el tamiz N°100. La arena se considera un agregado marginal, pues su módulo de fineza es de 1.31, fuera del rango considerado en la NTP 400.011 la cual indica que el módulo de finura de una arena adecuada para producir concreto debe estar entre 2.3 y 3.1; no obstante ser muy finas, tiene un peso específico de 2.601 gr/cm3 cumpliendo así con el peso específico, según el rango propuesto por (BENITES ESPINOZA, 2011) quien sustenta que el peso específico de las arenas varía entre 2.5 y 2.7 gr/cm3.

Las perlas de poliestireno cuentan con un mayor porcentaje retenido en los tamices 1/4" y N°04; siendo su tamaño máximo nominal de 1/4". Las perlas de poliestireno al ser un material hermético no absorben agua, por el cual su % de absorción es cero.

Los aditivos Neoplast 8500 Hp y Eucocell 1000 son producidos por la empresa Química Suiza Industrial del Perú S.A y gozan de confiabilidad en el mercado.

5.2 ANÁLISIS DE FASE ÓPTIMA

5.2.1 Análisis de diseño de mezclas

En la Tabla N°122 se muestran los diseños realizados hasta obtener el diseño óptimo para el concreto liviano no estructural. La variación en la adición de los aditivos se efectuó, partiendo de un diseño patrón, manteniéndose constante la proporción de sus agregados 60% ag. fino, 40% de poliestireno, estimación de agua, relación a/c, factor cemento y contenido de aire atrapado. Partiendo del diseño patrón, se utilizó el 0.6% por peso de cemento de aditivo Neoplast 8500 Hp, siendo éste un factor constante en D-1 a D-4 y en D-5 a D-8 se utilizó desde 0.4% a 0.9%; utilizándose el 0.01% por peso de cemento de aditivo Eucocell 1000, siendo este un factor constante en D-5 a D-8 y en D-1 a D-4 se utilizó desde 0% a 0.03%.

Tabla N° 122 Diseño de mezclas "Concreto liviano no estructural"

	CUADRO RESUMEN DE DISEÑO DE MEZCLAS										
DOSIS	PATRON	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8		
Proporción de los agregados	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno	60% Ag. Fino - 40% Poliestireno		
Estimacion de agua (lt/m3)	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00		
Relación agua/Cemento	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40		
Factor cemento (Bls/m3)	9.41	9.41	9.41	9.41	9.41	9.41	9.41	9.41	9.41		
Contenido de aire atrapado (%)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00		
Relacion aditivo 01/Cemento	0.006	0.006	0.006	0.006	0.006	0.004	0.008	0.005	0.009		
Relacion aditivo 02/Cemento	0.0001	0.0002	0.00005	0.0003	0	0.0001	0.0001	0.0001	0.0001		
Cant. Aditivo 01- Neoplast 8500Hp (Kg/m3)	2.400	2.400	2.400	2.400	2.400	1.600	3.200	2.000	3.600		
Cant. Aditivo 02- Eucocell 1000 (Kg/m3)	0.040	0.080	0.020	0.120	0	0.040	0.040	0.040	0.040		

5.2.2 Análisis de densidad y resistencia a la compresión

Tabla N°123 Resumen de la densidad vs resistencia a la compresión

CUADRO DE RESUMEN DE DENSIDAD Y RESISTENCIA A LA COMPRESIÓN DEL CONCRETO										
DESCRIPCIÓN	PATRON	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	
NEOPLAST 8500Hp	0.006	0.006	0.006	0.006	0.006	0.004	0.008	0.005	0.009	
EUCOCELL 1000	0.0001	0.0002	0.00005	0.0003	0	0.0001	0.0001	0.0001	0.0001	
Densidad (kg/m3)	1427.19	1447.82	1543.45	1312.35	1632.71	1457.38	1411.63	1485.32	1408.09	
Resis. Compresion a los 28 días (kg/cm2)	137.00	128.00	170.00	117.00	195.00	155.00	72.00	112.00	110.00	

En la Tabla N° 123 se presenta el diseño patrón y los 8 diseños de concreto liviano no estructural: D-1 a D-8, de los cuales se obtuvieron resultados de densidad del concreto en estado fresco y resistencia a la compresión a los 28 días. En el diseño patrón se obtuvo una densidad de 1427.19 kg/m³ y una resistencia de 137 kg/cm². En el diseño D-1 se obtuvo una densidad de 1447.82kg/m³ y una resistencia de 128 kg/cm². En el diseño D-2 se obtuvo una densidad de 1543.45 kg/m³ y una resistencia de 170 kg/cm². En el diseño D-3 se obtuvo una densidad de 1312.35 kg/m³ y una resistencia de 117 kg/cm². En el diseño D-4 se obtuvo una densidad de 1632.71kg/m³ y una resistencia de 1457.38kg/m³ y una resistencia de 155 kg/cm². En el diseño D-6 se obtuvo una densidad de 1411.63kg/m³ y una resistencia de 72 kg/cm². En el diseño D-7 se obtuvo una densidad de 1485.32kg/m³ y una resistencia de 112 kg/cm². En el diseño D-8 se obtuvo una densidad de 1408.09kg/m³ y una resistencia de 110 kg/cm².

Por consiguiente, al elegir el diseño Concreto liviano no estructural óptimo, se eligió del diseño más cercano a la resistencia a compresión de 17Mpa y la densidad que fluctué entre 1000 – 1800 kg/m³ según la Tabla N°38 "Categorización de los concretos livianos"; eligiéndose diseño D-2. No se eligió el diseño de D-4 por tener una resistencia mayor a 17Mpa, pero es un resultado importante ya que se puede considerar un concreto estructural elaborado usándose perlas de poliestireno expandido.

Asimismo, los valores de resistencia a la compresión obtenidos de los diseños D-1 a D-8, que se muestran en la tabla, superan a la resistencia de compresión mínima recomendada por la Norma E070 para unidades de albañilería (ladrillos de arcilla), lo cual indica la factibilidad técnica de

elaboración de unidades de albañilería a base de perlas de poliestireno y adición de aditivos.

5.2.3 Análisis de los ensayos al concreto fresco

Tabla N°124 Resumen de ensayos al concreto fresco

CUADRO RESUMEN ENSAYOS AL CONCRETO FRESCO										
DESCRIPCIÓN	PATRON	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	
NEOPLAST 8500Hp	0.006	0.006	0.006	0.006	0.006	0.004	0.008	0.005	0.009	
EUCOCELL 1000	0.0001	0.0002	0.00005	0.0003	0	0.0001	0.0001	0.0001	0.0001	
Peso Unitario (kg/m3)	1427.19	1447.82	1543.45	1312.35	1632.71	1457.38	1411.63	1485.32	1408.09	
Rendimiento (m3/Bolsa)	0.102	0.101	0.094	0.111	0.839	0.100	0.103	0.098	0.103	
Contenido de aire (%)	16.66	15.45	9.87	23.36	4.65	14.89	15.57	13.26	17.78	
Asentamiento (cm)	24.13	25.40	22.86	24.13	7.62	23.50	26.04	25.40	26.04	
Exudacion (%)	-	-	-	-	-	-	-	-	-	
Temperatura (°C)	32.4	32.3	37.7	34.6	32.2	33.3	33.1	33.0	35.0	

Fuente: Elaboración propia (2019)

Para el diseño D-4 se obtuvo un asentamiento verdadero, y para el diseño patrón, D-1 a D-3 y D-5 a D-8 se obtuvo un asentamiento de derrumbamiento, como nos muestra el anexo B de la NTP 339.035. En cuanto a la exudación, al no encontrarse acumulación de agua en la superficie del recipiente, se concluyó que los diseños de concreto liviano mostrados no presentan exudación. La temperatura de los concretos se encuentra expresada en Grados Celsius.

5.2.4 Análisis de los ensayos al concreto endurecido

Se muestra los ensayos al concreto endurecido realizados a los diseños en la Fase óptima: resistencia a la compresión, resistencia a la tracción, módulo de elasticidad y resistencia a la flexión, en edades de 7, 14 y 28 días.

Tabla N°125 Resumen de ensayos al concreto endurecido

CUADRO DE RESUMEN DE ENSAYOS AL CONCRETO ENDURECIDO									
DESCRIPCIÓN	PATRON	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8
NEOPLAST 8500Hp									
	0.006	0.006	0.006	0.006	0.006	0.004	0.008	0.005	0.009
EUCOCELL 1000	0.0001	0.0002	0.00005	0.0003	0	0.0001	0.0001	0.0001	0.0001
Resistencia a la Compresión (kg/cm2)									
F'c 7 días	132.00	125.00	155.00	101.00	174.00	137.00	61.00	94.00	101.00
F'c 14 días	136.00	126.00	156.00	103.00	184.00	141.00	64.00	110.00	109.00
F'c 28 días	137.00	128.00	170.00	117.00	195.00	155.00	72.00	112.00	110.00
Resistencia a la tracción (kg/cm2)									
F'c 7 días	8.13	8.75	9.38	8.24	11.78	8.85	4.68	7.29	6.25
F'c 14 días	9.76	10.35	10.43	9.09	11.85	8.99	5.40	9.65	6.58
F'c 28 días	10.45	11.41	12.69	10.62	15.09	10.64	5.58	10.19	6.62
Resistencia a la Flexión (kg/cm2)									
F'c 28 días	26.78	27.12	39.20	20.45	35.15	21.85	13.25	18.90	19.58
Modulo de elasticidad (kg/cm2)									
F'c 28 días	182,686	157,969	199,892	134,442	206,910	160,067	120,703	158,630	162,955

La resistencia a compresión de los diseños del Patrón a D-9, a excepción del diseño D- 4, que se mantuvieron en el rango 5 MP a 17MPA a los 28 días; requisito fundamentalmente para ser considerados Concreto liviano no estructural.

La resistencia a tracción los diseños D-1 a D-3 tuvieron una variación de 1 a 2 números de diferencia en las edades de 7,14 y 28 días, en el caso del diseño Patrón y D-8 si existió una variación en la resistencia a tracción a los 7 días, luego se mantuvo constante hasta los 28 días. Para D-4 a D-6 existió una variación en la resistencia a tracción a partir de los 28 días.

El módulo de elasticidad para los diseños Patrón a D-8, se tomó los datos a los 28 días, edad en el cual los especímenes ya obtuvieron el 100% de resistencia a la compresión. Los resultados de la resistencia a la flexión se determinaron a los 28 días.

5.3 VERIFICACIÓN DE HIPÓTESIS

5.3.1 Hipótesis General

La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia y desarrollo de resistencia del concreto (cemento – arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño

máximo nominal \emptyset =1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

Tabla N°126 Verificación de hipótesis

	CUADRO DE CUMPLIMIENTO DE HIPOTESIS											
DESCRIPCIÓN				DENSIDAD		RESISTENCIA A LA COMPRESIÓN						
N°	NEOPLAST 8500Hp (relación aditivo/cemento)	EUCOCELL 1000 (relación aditivo/cemento)	DENSIDAD (kg/m3)	RANGO	CONDICIÓN	RESISTENCIA 28 días (kg/cm2)	RANGO	CONDICIÓN				
Patrón	0.006	0.0001	1427.19		Cumple	137.00		Cumple				
D-1	0.006	0.0002	1447.82		Cumple	128.00		Cumple				
D-2	0.006	0.00005	1543.45		Cumple	170.00		Cumple				
D-3	0.006	0.0003	1312.35		Cumple	117.00		Cumple				
D-4	0.006	0	1632.71	1000-1800	Mejor	195.00	50.99-173.35	Mejor				
D-5	0.004	0.0001	1457.38		Cumple	155.00		Cumple				
D-6	0.008	0.0001	1411.63		Cumple	72.00		Cumple				
D-7	0.005	0.0001	1485.32		Cumple	112.00		Cumple				
D-8	0.009	0.0001	1408.09		Cumple	110.00		Cumple				

Fuente: Elaboración propia (2019)

En la Tabla N°126 se verificó que los Concretos Livianos a base de poliestireno: Concreto liviano no estructural realizadas en la presente tesis cumplen con el rango de aceptación propuesta por el "Portland Cement Association" descritos en la Tabla N°38 "Categorización de los concretos livianos". Por consiguiente, se confirma la hipótesis planteada.

5.3.2 Hipótesis estadística (Ho: Hipótesis nula vs Ha: Hipótesis alterna)

Nivel de significación: 5%

Estadística de prueba: Análisis de correlación (análisis multivariable)

Decisión: Si p= significación bilateral es menor de 0.05, se rechaza la hipótesis nula, caso contrario se acepta.

Conclusión: Si se acepta la hipótesis nula, las muestras del ensayo son homogéneas, lo cual indica sostenibilidad y confiabilidad de los resultados del proceso.

Los resultados de la verificación estadística de análisis de correlación se observan en el Anexo 04.

5.4 ANÁLISIS DE COSTOS

En la Tabla N° 127 se presenta un resumen de los costos por cada producto, y se comparan con diseños elaborados en el Laboratorio de Mecánica de Suelos y Ensayo de Materiales de la Universidad Científica del Perú.

Tabla N°127 Resumen de precios

CUADRO RESUMEN DE PRECIOS									
DESCRIPCIÓN	CONCRETO LIVIANO OPTIMO (S/.)	CONCRETO CEMENTO - ARENA NORMAL (S/.)	DIFERENCIA						
Concreto liviano no estructural	363.56	330.89	32.68						

El concreto liviano no estructural, con perlas de poliestireno, tiene un costo por m³ de S/ 363.56 descrito en la tabla N°128 (Costo m³ de concreto liviano no estructural). En la ciudad de Iquitos existe una empresa (ECOPOR) que fabrica las perlas de poliestireno expandido. El producto fue comparado con un concreto (cemento-arena) f´c= 175 kg/cm² de un costo de S/ 330.89 descrito en la tabla N°129 (Costo m³ de concreto cemento -arena f´c 175 kg/cm²), encontrándose una diferencia de producción de S/ 32.68 en contra.

CAPITULO VI: DISCUSIÓN

Del análisis de los resultados de la presente investigación y su comparación con los resultados alcanzados en otras investigaciones, en las cuales también se usó aditivos y perlas de poliestireno como materiales constituyentes de las mezclas de concreto, se colige:

1. La densidad encontrada en esta investigación fue 1427.19Kg/m3, utilizando el 60% de agregado fino de módulo de fineza 1.31 y 40% de perlas de poliestireno expandido de módulo de fineza 5.85, y con adición de aditivo/cemento 0.006 superplastificante y 0.0001 incorporador de aire, habiéndose utilizado una relación A/C de 0.40; mientras que Barba y García (2018) para la misma relación A/C v semejante dosificación de aditivos obtuvieron una densidad de 1273.32Kg/m3, utilizando el 60% de agregado fino de módulo de fineza 1.04 y 40% de perlas de poliestireno expandido de módulo de fineza 6, correspondiendo la densidad en ambas investigaciones al rango de 1000 - 1800 Kg/m3 establecida para los concretos livianos por la Portland Cement Association. En cuanto a la resistencia a la compresión de este diseño Patrón a los 7 y 28 días alcanzó 132 y 137 kg/cm2 respectivamente; sin embargo, Barba y García (2018) lograron resistencias a la compresión con adición de aditivo/cemento 0.006 superplastificante y 0.0002 incorporador de aire a los 7 y 28 días de 89 y 139 kg/cm2 respectivamente, perteneciendo en ambas investigaciones al rango de 5 -17 Mpa (51 Kg/cm2 - 173.4 Kg/cm2), como estipula el cuadro de "Categorización de los concretos livianos" del Portland Cement Association. Por su parte Rodríguez Chico (2017), utilizando el 7.61% de perla de poliestireno expandido modificado con densidad de 154.17 Kg/m3 y el 92.39% de arena con módulo de fineza 2.47, con relación A/C de 0.47, encontró un concreto con densidad aparente de 1600 Kg/m3 que alcanzó una resistencia a la compresión de 30.37 Kg/cm2 y 62.75 Kg/cm2 a los 7 y 28 días respectivamente, y un módulo de elasticidad de 69601.40Kg/cm2 a los 28 días. Pero, en Venezuela, Contreras (2016) efectuando una variación en la adición de poliestireno del 15% y del 75% y utilizando agregado fino de módulo de fineza de 2.1 y 3.1, logró un concreto de 1000kg/m3 de densidad promedio y unas resistencias promedio de 19,5 Kg/cm² y 19,22 Kg/cm², respectivamente.

- 2. Al no usar el incorporador de aire, manteniéndose sin variación la dosificación A/C y el porcentaje de agregado fino y de las perlas de poliestireno expandido, los resultados a los 7y 28 días, comparados con los del concreto patrón varió de 132 y 137 kg/cm2 a 174 y 195kg/cm2, respectivamente; y, la densidad se incrementó de 1427.19 Kg/m3 a 1632.71 Kg/m3.
- 3. La dosificación optima de la adición de aditivos encontrada en esta investigación es de 0.006 Neoplast 8500 Hp y 0.00005 Eucocell 1000, utilizando el 60% de agregado fino de módulo de fineza 1.31 y 40% de perlas de poliestireno expandido de módulo de fineza 5.85, con una relación A/C de 0.40; se obtuvieron una densidad de 1543.45kg/m3, y la resistencia a la compresión a los 7 y 28 días alcanzó 155 y 170kg/cm2 respectivamente; mientras que Barba y García (2018) para la misma relación A/C, dosificación de aditivos de 0.006 Neoplast 8500 HP y 0.0002 Eucocell 100, obtuvieron una densidad de 1273.32Kg/m3, utilizando el 60% de agregado fino de módulo de fineza 1.04 y 40% de perlas de poliestireno expandido de módulo de fineza 6, se obtuvieron la resistencia a los 7 y 28 días de 89 y 139 kg/cm2 respectivamente, perteneciendo en ambas investigaciones al rango de 5 17 Mpa (51 Kg/cm2 173.4 Kg/cm2), como estipula el cuadro de "Categorización de los concretos livianos" del Portland Cement Association.
- 4. La fiabilidad de los resultados que se obtuvieron en las pruebas en estado endurecido (resistencia a la compresión, resistencia a la tracción por compresión diametral, módulo de elasticidad y resistencia a flexión), ha quedado comprobada en la investigación; puesto que, las muestras se sometieron a un Análisis Multivariable Análisis de Correlación, verificándose su homogeneidad (las muestras tienen varianzas iguales) con un nivel de confianza del 95%.

CAPITULO VII: CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

- 1. Del análisis de los resultados obtenidos en la presente investigación, tal como se muestra en la prueba estadística correspondiente, la hipótesis resultó confirmada, es decir: "La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia y desarrollo de resistencia del concreto cemento arena liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto".
- 2. La dosificación óptima para lograr las características deseadas del concreto liviano no estructural, fue 0.006 Neoplast y 0.00005 Eucocell para la densidad de 1543.45 (kg/m3), con una resistencia a la compresión promedio a la edad de 28 días de 170 kg/cm2.
- 3. La resistencia a la compresión y el módulo de elasticidad aumentan considerablemente al incorporar solamente el aditivo superplastificante Neoplast a la mezcla de concreto liviano elaborado con perlas de poliestireno expandido. Al adicionar el 0.006 de este aditivo según peso del cemento en la mezcla, el concreto aumenta su resistencia de 137 Kg/m2 a 195 Kg/m2 de la muestra patrón; y, su módulo de elasticidad aumenta de 182,686 Kg/m2 a 206,910 Kg/m2, con relación a la muestra patrón.
- 4. La incorporación de aditivos superplastificante e incorporador de aire a la mezcla de concreto liviano elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4", generan disminución considerable tanto de la resistencia a la compresión, como también del módulo de elasticidad referidos a la mezcla patrón. Así, al incorporar el 0.008 de aditivo Neoplast y el 0.0001 de Eucocell ambos referidos según peso del cemento, el concreto disminuyó su resistencia de 137 Kg/m2 a 72 Kg/m2; y, el módulo de elasticidad de 182,686 Kg/m2 a 120,703 Kg/m2. Sin embargo, se observa que, el módulo de elasticidad de los concretos livianos está por debajo de la mitad de los concretos tradicionales.

- 5. La dosis óptima de aditivo encontrada es de 387.60 g Neoplast y 3.23 g Eucocell por m3 de concreto; para lo cual se obtuvo una resistencia a la compresión de 170.00 kg/cm2 a los 28 días de curado. Cuando se incorpora a la mezcla el aditivo Neoplast en un valor constante de 0.006 y variando el aditivo Eucocell en la proporción de 0.0001 a 0.0003, el concreto disminuye la resistencia a la compresión de 137kg/cm2 a 117 kg/cm2. Pero, cuando se incorpora aditivo Neoplast en un valor de 0.004 a 0.005 y se mantiene constante el aditivo Eucocell en 0.0001 el concreto disminuye la resistencia a la compresión de 155 kg/cm2 a 112 kg/cm2. Sin embargo, cuando se incorpora a la mezcla el aditivo Neoplast en un valor de 0.008 y se mantiene constante el aditivo Eucocell en 0.0001 el concreto disminuye la resistencia a la compresión hasta 72 kg/cm2. Y cuando se incorpora aditivo Neoplast en un valor de 0.009 y se mantiene constante el aditivo Eucocell en 0.0001 el concreto aumenta la resistencia a la compresión a 110 kg/cm2, y el tiempo de fraguado se hace lento debiéndose dejar reposar 24 horas, para proceder al curado. En consecuencia, la resistencia a la compresión aumenta fuertemente a medida que disminuye la dosis de aditivo incorporador de aire obteniéndose la resistencia más alta con la dosis máxima utilizada de aditivo.
- 6. Utilizando los aditivos Neoplast 8500 HP y Eucocell 1000, se reduce la cantidad de agua prevista en el diseño, manteniendo la trabajabilidad de la mezcla; y, se logra retardar el tiempo de fraguado en todos los diseños.
- 7. El concreto liviano con perlas de poliestireno posee muy baja retracción y no produce grietas durante el fraguado, por consiguiente, pudiese aplicarse en grandes superficies sin necesidad de juntas de dilatación.
- 8. La producción de 1 m3 de concreto liviano no estructural con resistencia a la compresión de 170Kg/cm2 resulta 4.30 % más caro que un concreto cemento-arena convencional con una resistencia a la compresión de 175Kg/cm2, lo cual demuestra que en términos monetarios no acarrea grandes beneficios.

7.2 RECOMENDACIONES

- 1. Para iniciar el proceso de mezclado de la masa de concreto se deben colocar en la mezcladora los materiales en el orden siguiente: agregado fino, cemento, agua y aditivos; mezclar hasta observar una mezcla homogénea; seguidamente adicionar el poliestireno expandido y continuar hasta que la mezcla sea homogénea.
- Al concreto liviano fabricado a base de perlas de poliestireno expandido, no deberá vibrarse, para evitar la segregación de los elementos constitutivos de la mezcla, debido a la baja densidad de los agregados.
- 3. El concreto liviano no estructural a base de perlas de poliestireno expandido se recomienda para la elaboración de unidades de albañilería y tabiquería (no estructural). Asimismo, se puede usar para la construcción de coberturas livianas, aislamientos, rellenos masivos, falsas zapatas, cimientos, sobrecimientos y elementos de amortiguación de impactos.
- 4. Continuar con la línea de investigación, buscándose alcanzar resistencias en este tipo de concretos no mayores a 80kg/cm², pero disminuyendo sustancialmente la proporción de cemento.
- 5. Se recomienda realizar pruebas de aislamiento térmico y acústico en los diseños de elementos de concreto liviano con perla de poliestireno para determinar su eficiencia como materiales aislantes y acústicos.

CAPITULO VIII: BIBLIOGRAFÍA

- ACI 213 87. (1987). "Guide to structural Lightweight Agregate Concrete". ACI manual of concrete Pactice, Parte 1, American Concrete Institute: Farmington Hills. MI.
- 2. Alvarez, & Irigoin. (2014). evaluación de los impactos ambientales durante la explotación de las canteras para la obtención de material pétreo
- 3. Ari Queque, I. (2002). "Estudio de las propiedades del concreto fresco y endurecido, de mediana a ata resistencia, con aditivo superplastificante y retardador de fraguado, con cemento Portland tipo I". Lima: Universidad Nacional de Ingenieria.
- 4. Barba, C., & García, V. (2018). "Estudio exploratorio en diseño de mezclas del concreto cemento -arena liviano empleando perlitas de poliestireno, arcilla expandida y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, Iquitos 2018". Iquitos: Universidad Cientifica del Perú.
- 5. Bazan, E., & Meli, R. (2001). *Diseño Sísmico de edificios.* Noriega: Editores Limusa.
- 6. Benites Espinoza, C. M. (2011). Concreto (hormigón) con cemento Pórtland Puzolánico tipo IP Atlas de resistencias tempranas con la tecnología SIKA Viscocrete 20HE. Lima- Perú: Tesis.
- 7. Campos. (2014). concretos ligeros estructurales.
- 8. Cemex. (2012). concreto ligero es un concreto con peso volumétrico en estado fresco.
- 9. Chavez, & Pinchi. (2015). "Produccion Industrial de agregados y concreto en la ciudad de tarapoto", Tesis de Maestria dirigida por Ms. Ing. Ana Torre Carillo, Maestria en Tecnologia de la Construcción. Lima: Universidad Nacional de Ingeniería.
- 10. Contreras Sutherland, M. (2016). "Diseño de mezcla de concreto a base de perlas de poliestireno expandido como agregado para la elaboración de bloques destinados a mampostería de concreto aligerado". Venezuela: Universidad Nueva Esparta.
- 11. DÍAZ LÓPEZ, S. (2017). Determinación de la resistencia a compresión del hormigón adicionado árido de arcilla expandida (arlita) en sustitución parcial del agregado grueso. Ambato-Ecuador: Universidad técnica de Ambato.
- 12. Gonzáles. (2002). calidad del concreto depende de la calidad de la pasta y del agregado y de la unión entre los dos. Universidad de Coruña.
- 13. Hernandez, N. (2010). Tecnología del Concreto clasifica al concreto, tomando en cuenta su masa unitaria.
- 14. Kosmotks, & Kerkhoff. (2004). Diseño y Control de Mezclas de Concreto. PCA.

- 15. Manrique. (2016). Diseño de una mezcla de concreto experimental sustituyendo el agregado grueso por perlas de poliestireno de 3/4" y un asentamiento de 3", para lograr una resistencia a la compresión f'c=210kg/cm2. Tesis para optar el titulo de Ingeneiro civil. Venezuela: Universidad Bolivariana de Venezuela.
- 16. Nilson. (1999). concretos en un amplio rango de propiedades ajustando apropiadamente las proporciones de los materiales constitutivos, y/o utilizando agregados especiales.
- 17. Paulino Fierro, J. C., & Espino Almeyda, R. A. (2017). ANÁLISIS COMPARATIVO DE LA UTILIZACIÓN DEL CONCRETO SIMPLE Y EL CONCRETO LIVIANO CON PERLITAS DE POLIESTIRENO COMO AISLANTE TÉRMICO Y ACÚSTICO APLICADO A UNIDADES DE ALBAÑILERÍA EN EL PERÚ. Lima: Universidad Peruana de Ciencias Aplicadas (UPC).
- 18. QUESADA VÍQUEZ, N. M. (2014). Estudio exploratorio en diseños de mezclas de concreto liviano para Holcim (Costa Rica) S.A. . COSTA RICA: --.
- 19. Quimbay, R. (2012). Estimación del módulo de elasticidad del concreto y del mortero mediante TCTM. Colombia: Universidad Nacional de Colombia.
- 20. Rios. (2011). El concreto.
- 21. Rivva Lopez, E. (2013). Diseño de Mezclas. Lima: Imprenta Williams E.I.R.L.
- 22. Rodriguez Chico, H. E. (2017). "Concreto liviano a base de poliestireno expandido para la prefabricación de unidades de albañilería no estructural Cajamarca".
- 23. Sánchez Zárate, K. E. (2017). la influencia del uso de aditivo superplastificante en la consistencia y desarrollo de resistencias de concreto para f'c= 175, 210, 245 kg/cm2.
- 24. Valdez Guzman, L., & Suarez Alcivar, G. (2010). *Hormigones Livianos.* Ecuador: Escuela Superior Politecnica del Litoral.
- 25. Villablanca. (2006). la influencia del aditivo incorporador de aire en la resistencia mecánica del hormigón.
- 26. YAGUAL VERA, D. G., & VILLACÍS APOLINARIO, D. W. (2015). HORMIGÓN LIVIANO DE ALTO DESEMPEÑO CON ARCILLA EXPANDIDA. La libertad-Ecuador:
- 27. Young, & Darwin. (s.f.). Concreto de Mindes.
- 28. Yzquierdo. (2015). "Influencia del aditivo Chema Estruct en la resistencia a la compresión del concreto con agregados grueso y fino con cemento Pacasmayo y cemento Inka.

ANEXOS

ANEXO N°01. MATRIZ DE CONSISTENCIA

Título: "Influencia del aditivo incorporador de aire en las propiedades físicas y mecánicas del concreto cemento -arena liviano, elaborado con perlas de poliestireno
expandido y agregado fino. Iquitos, 2018"

	exp	andido y agregado fino. Iquitos, 2018"	,		
Problemas	Objetivos	Hipótesis	Variables	Indicadores	Metodología
Problema General:	Objetivo General	H ₀ : Hipótesis General	Variable Independiente X:	Variable Independiente X:	Tipo de Investigación
¿Cómo Influyen los aditivos incorporador de aire y superplastificante en las propiedades físicas y mecánicas	Determinar las influencias de los aditivos incorporador de aire y superplastificante en las propiedades físicas y mecánicas del concreto	La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en	Dosificación y propiedades de los materiales	Módulos de fineza de agregado fino y perlas de poliestireno.	Tipo Experimental: se manipulará la
del concreto (cemento – arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loret?	(cemento – arena) liviano, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto Objetivos Específicos	la consistencia y desarrollo de resistencia del concreto (cemento – arena) liviano elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto	constituyentes de la mezcla de diseño óptimo de concreto ligero sustituyendo totalmente el agregado grueso por perlas de poliestireno expandido y adición	2.Proporciones adecuadas de perlas de poliestireno expandido de tamaño máximo Ø=1/4", agregado fino de la cantera Irina Gabriela (arena), cemento, agua, aditivos	variable independiente (adición del incorporador de aire y superplastificante) , para determinar efectos en la variable
Problemas específicos 1. ¿Cuáles son los valores de las propiedades físicas y mecánicas obtenidos en laboratorio del diseño óptimo de mezcla del concreto (cementoarena) convencional elaborado	1. Determinar los valores de las propiedades físicas y mecánicas obtenidos en laboratorio de los diseños de mezcla del concreto (cemento- arena) convencional elaborado con el agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas,	Hipótesis Secundarias La utilización de los aditivos incorporador de aire y superplastificante en proporciones apropiadas, influyen positivamente en la consistencia del concreto (cemento – arena) liviano no estructural,	de aditivos incorporador de aire y plastificante y uso de las arenas de la cantera Irina Gabriela del ámbito del distrito de San Juan Bautista-Loreto.	incorporador de aire y superplastificante, correspondientes a un diseño óptimo para concreto (cemento-arena) liviano no estructural y propiedades mecánicas	dependiente; no obstante, también describirse los elementos de la variable independiente.
con el agregado fino de la cantera	departamento de Loreto.	elaborado con perlas de poliestireno		dentro del rango para	Investigación

Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto?

- ¿Cuál es el diseño óptimo de mezcla del concreto (cemento- arena) liviano no estructural, empleando perlitas de poliestireno de tamaño máximo nominal $\emptyset = 1/4$ incorporando aditivos inclusor de aire y superplastificante y agregado fino de la cantera Irina Gabriela, que permita obtener resistencia a la compresión y densidad menores al concreto tradicional, para la elaboración de "concreto liviano no estructural?
- ¿Cuáles son los valores 3. las propiedades físicas y mecánicas obtenidos laboratorio de los diseños de mezcla del concreto (cemento arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal $\emptyset = 1/4$ ", incorporando aditivos inclusor de

- 2. Determinar las proporciones óptimas de los aditivos inclusor de aire y superplastificante correspondientes al diseño óptimo de mezcla de concreto (cemento arena) liviano empleando perlitas de poliestireno de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, que permita obtener resistencia a la compresión y densidad menores al concreto tradicional, para la elaboración de "concreto liviano no estructural".
- 3. Determinar los valores de las propiedades físicas y mecánicas obtenidos en laboratorio de los diseños de mezcla del concreto (cemento arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4", incorporando aditivos inclusor de aire y superplastificante y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto".

expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

La utilización de los aditivos incorporador de aire superplastificante en proporciones apropiadas, influyen positivamente en el desarrollo de la resistencia del concreto (cemento - arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela. distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.

Variable dependiente Y:

Propiedades físicas y mecánicas concreto (cemento arena) liviano no estructural, elaborado con perlas poliestireno expandido de tamaño máximo nominal Ø=1/4" en sustitución total del agregado grueso y adición de aditivos incorporador de aire y plastificante y uso de las arenas de cantera Irina Gabriela del ámbito del distrito de San Juan Bautista Loreto.

concretos no
estructurales livianos

Variable Dependiente

Y:

1.Asentamiento para relación a/c de diseño óptimo de C° liviano no estructural antes y después de incorporar aditivos.
2.Temperaturas alcanzadas para la mezcla en proceso de hidratación del C° (cemento – arena)

liviano no estructural

antes y después de

liviano no estructural

antes y después de

4.Tiempo de fragua

inicial y final del C°

liviano antes y después

de incorporar aditivos.

incorporar

3.Densidad

(cemento

incorporar

(cemento -

5.Resistencia

aditivos.

C°

arena)

aditivos.

arena)

a la

del

La investigación pertenece al diseño descriptivo

aire y superplastificante y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto?

- 4. ¿Cómo se ve afectada, al adicionarse solamente el aditivo incorporador de aire, la resistencia a la compresión del concreto (cemento-arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto?
- 5. ¿Cómo se ve afectada, al adicionarse solamente el aditivo superplastificante, la resistencia a la compresión del concreto (cemento-arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan
- 4. Establecer un análisis comparativo de los valores obtenidos de las propiedades físicas y mecánicas para observar en qué medida se ve afectada, al adicionarse solamente aditivo incorporador de aire, la resistencia a la compresión del concreto (cemento arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la cantera Irina Gabriela, distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto.
- Establecer análisis un comparativo de los valores obtenidos de las propiedades físicas y mecánicas para observar en qué medida se ve afectada, al adicionarse solamente aditivo superplastificante, la resistencia a la compresión del concreto (cemento arena) liviano no estructural, elaborado con perlas de poliestireno expandido de tamaño máximo nominal Ø=1/4" y agregado fino de la

compresión del C° (cemento – arena) liviano antes y después de incorporar aditivos. 6.Resistencia a la flexión (Módulo de rotura) del C° (cemento – arena) liviano antes y después de incorporar aditivos. 6.Módulo de elasticidad del C° (cemento – arena) liviano antes y después de incorporar aditivos.

Bautista, provincia de Maynas,	cantera Irina Gabriela, distrito de San		
departamento de Loreto?	Juan Bautista, provincia de Maynas,		
	departamento de Loreto.		
6. ¿Cuáles son las influencias de			
los aditivos incorporador de aire y	6. Determinar las influencias de los		
superplastificante en las	aditivos incorporador de aire y		
propiedades físicas y mecánicas	superplastificante en las propiedades		
del concreto (cemento - arena)	físicas y mecánicas del concreto		
liviano no estructural, elaborado	(cemento – arena) liviano no		
con perlas de poliestireno	estructural, elaborado con perlas de		
expandido de tamaño máximo	poliestireno expandido de tamaño		
nominal Ø=1/4" y agregado fino de	máximo nominal Ø=1/4" y agregado		
la cantera Irina Gabriela, distrito	fino de la cantera Irina Gabriela,		
de San Juan Bautista, provincia de	distrito de San Juan Bautista,		
Maynas, departamento de Loreto?	provincia de Maynas, departamento		
	de Loreto.		

ANEXO N°02: ENSAYOS

> Resistencia a la Compresión

			ENS	AYO DE C	ОМР	RESIÓN				
				SEGÚN NORM	1A AST	M - 39				
1	Patron					AST 8500 HP	EUCOCE			
Polacio	on agua / cemento	0.40	Polacion ad	itivo / cemento	Super	plastificante 0.006	Incorpo 0.00		7 dís	as de curado
Neracio	on agua / cemento	0.40	iveración au	itivo / temento		0.000	0.00	01	7 uic	is de curado
N°		Fecha de	Fecha de		Diam.	Carga Máx.	Carga	Área	Res. Obt.	
Mst.	Descripción	vaciado	ensayo	Edad (días)	(cm)	(KN)	Máx. (Kg)	(cm2)	(kg/cm2)	Resist. Promedio
1	Tooting	12/02/2010	10/02/2010	7	10.11	100.13	11124.20	00.20	120.62	
1	Testigo	12/03/2019	19/03/2019	7	10.11	109.13	11124.36	80.28	138.63	-
2	Testigo	12/03/2019	19/03/2019	7	10.16	105.50	10754.33	81.07	132.69	132.43
3	Testigo	12/03/2019	19/03/2019	7	10.16	99.16	10108.05	81.07	125.96	
2										
					NEPL	AST 8500 HP	EUCOCE	LL 1000		
					Super	plastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion ad	itivo / cemento		0.006	0.00	02	7 día	as de curado
						_		,		
N°	Descripción	Fecha de	Fecha de	Edad (días)	Diam.	Carga Máx.	Carga	Área	Res. Obt.	Resist. Promedio
Mst.	-	vaciado	ensayo		(cm)	(KN)	Máx. (Kg)	(cm2)	(kg/cm2)	
1	Taskina	44/02/2040	40/02/2040	7	10.15	111.02	44622.02	00.01	142.70	
2	Testigo Testigo	11/03/2019 11/03/2019	18/03/2019 18/03/2019	7 7	10.15	114.02 82.50	11622.83 8409.79	80.91 80.91	143.70 103.97	124.82
3	Testigo	11/03/2019	18/03/2019	7	10.13	100.44	10238.53	80.75	126.80	124.02
		, ,	-,,							
3					NEPL	AST 8500 HP	EUCOCE	LL 1000		
					Super	plastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion ad	itivo / cemento		0.006	0.000	005	7 día	as de curado
		Fecha de	Fecha de		Diam.	Carga Máy	Carga	Área	Res. Obt.	
N°	Descripción	vaciado	ensayo	Edad (días)	(cm)	Carga Máx. (KN)	Carga Máx. (Kg)	(cm2)	(kg/cm2)	Resist. Promedio
Mst.		Vaciado	ciisayo		(6,	(1)	man (ng)	(61112)	(1.8/ 01112)	
1	Testigo	13/03/2019	20/03/2019	7	10.14	125.85	12828.75	80.75	158.91	
2	Testigo	13/03/2019	20/03/2019	7	10.14	118.80	12110.09	80.75	150.01	155.32
3	Testigo	13/03/2019	20/03/2019	7	10.15	124.60	12701.33	80.91	157.03	
4					NEOD	LAST 8500 HP	EUCOCE	11 1000		
4						plastificante	Incorpo			
Relacio	on agua / cemento	0.40	Relacion ad	itivo / cemento	Jupei	0.006	0.00		7 día	as de curado
	20227 30	50	1.2.00.011 dd	,			5.50		, an	
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
		11/05/2222	04/00/5555	_	40 : -				06.77	
1	Testigo	14/03/2019	21/03/2019	7	10.12	75.09	7654.43	80.44	94.82	101.00
2	Testigo	14/03/2019	21/03/2019	7 7	10.16	82.75	8435.27	81.07	104.69	101.00
3	Testigo	14/03/2019	21/03/2019	/	10.25	82.28	8387.36	82.52	103.48	

GRÁFICO N° 46 Ensayo a los 7 días.

			ENS	AYO DE C	ОМР	RESIÓN				
				SEGÚN NORM						
5	1					AST 8500 HP	EUCOCEI			
					Super	plastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion ad	itivo / cemento		0.006	0		7 día	s de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	15/03/2019	22/03/2019	7	10.15	133.88	13647.30	80.91	168.72	
2	Testigo	15/03/2019	22/03/2019	7	10.14	134.90	13751.27	80.75	170.35	174.22
3	Testigo	15/03/2019	22/03/2019	7	10.14	145.40	14821.61	80.75	183.60	
6					NFPI	AST 8500 HP	EUCOCEI	I 1000		
-						plastificante	Incorpo			
Polaci	on agua / cemento	0.40	Pelacion ad	itivo / cemento	Super	0.004	0.00		7 día	ıs de curado
relació	on agaa / cemento	0.40	Refacion ad	itivo / cemento		0.004	0.00	OI.	7 010	la de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	18/03/2019	25/03/2019	7	10.05	107.22	10929.66	79.33	137.82	
2	Testigo	18/03/2019	25/03/2019	7	10.06	98.28	10018.35	79.49	126.34	136.98
3	Testigo	18/03/2019	25/03/2019	7	10.14	114.18	11639.14	80.75	146.77	
7					NEDI	A CT 0500 UD	FUCOCE	1 1000		
7						AST 8500 HP	EUCOCEI			
	, .	0.40		,	Super	plastificante	Incorpo		7 7 1/	
кетаск	on agua / cemento	0.40	Relacion ad	itivo / cemento		0.008	0.00	01	/ dia	s de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
	Tostico	10/02/2010	26/02/2010	7	10.17	40.05	F001 74	01.22	62.70	
1	Testigo	19/03/2019	26/03/2019	7 7	10.17	49.95	5091.74	81.23	62.70	64.40
2	Testigo	19/03/2019	26/03/2019		10.16	64.02	6525.99	81.07	64.02	61.48
3	Testigo	19/03/2019	26/03/2019	7	10.15	57.72	5883.79	80.91	57.72	
8					NEPL	AST 8500 HP	EUCOCEI	L 1000		
					Super	plastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion ad	itivo / cemento		0.005	0.00	01	7 día	s de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	20/03/2019	27/03/2019	7	10.15	60.02	6118.25	80.91	75.64	
1 2	Testigo Testigo	20/03/2019	27/03/2019 27/03/2019	7	10.15	60.02 84.14	6118.25 8576.96	80.91 80.91	75.64 106.03	94.11
1 2 3	Testigo Testigo Testigo	20/03/2019 20/03/2019 20/03/2019	27/03/2019 27/03/2019 27/03/2019	7 7 7	10.15 10.15 10.15	60.02 84.14 79.88	6118.25 8576.96 8142.71	80.91 80.91 80.91	75.64 106.03 100.67	94.11
3	Testigo	20/03/2019	27/03/2019	7	10.15 10.15	84.14 79.88	8576.96 8142.71	80.91 80.91	106.03	94.11
2	Testigo	20/03/2019	27/03/2019	7	10.15 10.15 NEPL	84.14 79.88 AST 8500 HP	8576.96 8142.71 EUCOCEI	80.91 80.91 LL 1000	106.03	94.11
3 9	Testigo	20/03/2019	27/03/2019 27/03/2019	7	10.15 10.15 NEPL	84.14 79.88	8576.96 8142.71	80.91 80.91 LL 1000 rador	106.03 100.67	94.11
3 9	Testigo Testigo	20/03/2019 20/03/2019	27/03/2019 27/03/2019	7 7	10.15 10.15 NEPL	84.14 79.88 AST 8500 HP plastificante	8576.96 8142.71 EUCOCEI Incorpo	80.91 80.91 LL 1000 rador	106.03 100.67	
3 9	Testigo Testigo	20/03/2019 20/03/2019	27/03/2019 27/03/2019	7 7	10.15 10.15 NEPL	84.14 79.88 AST 8500 HP plastificante	8576.96 8142.71 EUCOCEI Incorpo	80.91 80.91 LL 1000 rador	106.03 100.67	as de curado
2 3 9 Relacio	Testigo Testigo on agua / cemento Descripción	20/03/2019 20/03/2019 0.40 Fecha de vaciado	27/03/2019 27/03/2019 Relacion ad Fecha de ensayo	7 7 itivo / cemento Edad (días)	10.15 10.15 NEPL Super	84.14 79.88 AST 8500 HP plastificante 0.009 Carga Máx. (KN)	8576.96 8142.71 EUCOCEI Incorpo 0.00 Carga Máx. (Kg)	80.91 80.91 LL 1000 rador 01 Área (cm2)	106.03 100.67 7 día Res. Obt. (kg/cm2)	as de curado
2 3 9 Relacio	Testigo Testigo on agua / cemento	20/03/2019 20/03/2019 0.40	27/03/2019 27/03/2019 Relacion ad	7 7 itivo / cemento	10.15 10.15 NEPL Super	84.14 79.88 AST 8500 HP plastificante 0.009	8576.96 8142.71 EUCOCEI Incorpo 0.00	80.91 80.91 LL 1000 rador 01 Área	106.03 100.67 7 día	

GRÁFICO N° 47 Ensayo a los 7 días

			ENSA	YO DE C	OMF	RESIÓ	N			
			S	EGÚN NORM	1A AST	M - 39				
1	Patron				NEPLA	ST 8500 HP	EUCOCEL	L 1000		
					Superp	lastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion adi	tivo / cemento	(0.006	0.00	01	14 dí	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	12/03/2019	26/03/2019	14	10.16	112.26	11443.43	81.073	141.19	
2	Testigo	12/03/2019	26/03/2019	14	10.15	108.21	11030.58	80.914	136.38	136.39
3	Testigo	12/03/2019	26/03/2019	14	10.18	105.04	10707.44	81.39	131.60	
2										
					NEPLA	ST 8500 HP	EUCOCEL	L 1000		
					Superp	lastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion adi	tivo / cemento	(0.006	0.00	02	14 dí	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	11/03/2019	25/03/2019	14	10.18	98.80	10071.36	81.39	120.02	
2	Testigo	11/03/2019	25/03/2019	14	10.17	109.39	11150.87	81.23	137.32	125.73
3	Testigo	11/03/2019	25/03/2019	14	10.16	95.28	9712.54	81.07	119.84	
3					NEDLA	ST 8500 HP	EUCOCEI	1 1000		
3						lastificante	Incorpo			
Polaci	on agua / cemento	0.40	Polacion adi	tivo / cemento).006	0.000		14 46	as de curado
Relacio	on agua / cemento	0.40	Relacion au	tivo / cemento		7.000	0.000	103	14 01	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	13/03/2019	27/03/2019	14	10.18	129.31	13181.45	81.39	162.00	
2	Testigo	13/03/2019	27/03/2019	14	10.15	121.80	12415.90	80.91	153.50	156.31
3	Testigo	13/03/2019	27/03/2019	14	10.15	121.74	12409.79	80.91	153.43	150.51
4						ST 8500 HP lastificante	EUCOCEI Incorpo			
Relacio	on agua / cemento	0.40	Relacion adi	tivo / cemento	(0.006	0.00	03	14 dí	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
_	-	44/00/55:5	20/02/55:5		40 :=	0.1.	05==	00.5	400	
1	Testigo	14/03/2019	28/03/2019	14	10.15	84.13	8575.94	80.91	106.03	402.46
2	Testigo	14/03/2019	28/03/2019	14	10.15	79.50	8103.98	80.91	100.19	103.46
3	Testigo	14/03/2019	28/03/2019	14	10.13	82.33	8392.46	80.60	104.17	

GRÁFICO Nº 48 Ensayo a los 14 días

			ENSA	YO DE C	ОМР	RESIÓ	N			
			S	EGÚN NORM	IA AST	M - 39				
5					NEPLA	ST 8500 HP	EUCOCEL	L 1000		
					Superp	lastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion adit	tivo / cemento	(0.006	0		14 día	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
IVIST.										
1	Testigo	15/03/2019	29/03/2019	14	10.15	150.51	15342.51	80.91	189.68	
2	Testigo	15/03/2019	29/03/2019	14	10.13	145.34	14815.49	80.60	183.89	183.72
3	Testigo	15/03/2019	29/03/2019	14	10.15	140.91	14363.91	80.91	177.58	
6					NFPLA	ST 8500 HP	EUCOCEL	I 1000		
U						lastificante	Incorpo			
D - I: -		0.40	Dalasias adi	/					44-16	
кетасіс	on agua / cemento	0.40	Relacion adi	tivo / cemento		0.004	0.00)1	14 013	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	18/03/2019	01/04/2019	14	10.14	108.14	11023.45	80.75	136.29	
2	Testigo	18/03/2019	01/04/2019	14	10.15	113.74	11594.29	80.91	142.25	140.94
3	Testigo	18/03/2019	01/04/2019	14	10.16	114.49	11670.74	81.07	144.29	
7					NEPLA	ST 8500 HP	EUCOCEL	L 1000		
					Superp	lastificante	Incorpo	rador		
Relacio	on agua / cemento	0.40	Relacion adi	tivo / cemento	C	800.0	0.00	01	14 día	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Tostica	10/02/2010	02/04/2010	1.4	10.15	CO 14	C120 40	00.01	75.79	
-	Testigo	19/03/2019	02/04/2019	14	10.15	60.14	6130.48	80.91		62.50
2	Testigo	19/03/2019	02/04/2019	14	10.15	49.34	5029.56	80.91	62.06	63.58
3	Testigo	19/03/2019	02/04/2019							
8				14	10.15	41.96	4277.27	80.91	52.88	
				14		41.96 ST 8500 HP	4277.27 EUCOCEL		52.88	
				14	NEPLA	ST 8500 HP	EUCOCEL	L 1000	52.88	
Relacio	on agua / cemento	0.40	Relacion adi	tivo / cemento	NEPLA Superp			L 1000 rador		as de curado
Relacio	on agua / cemento	0.40	Relacion adit		NEPLA Superp	ST 8500 HP lastificante	EUCOCEL	L 1000 rador		as de curado
N° Mst.	on agua / cemento Descripción	0.40 Fecha de vaciado	Relacion adii Fecha de ensayo		NEPLA Superp	ST 8500 HP lastificante	EUCOCEL Incorpor 0.000	L 1000 rador		
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	tivo / cemento Edad (días)	NEPLA Superp (Diam. (cm)	ST 8500 HP lastificante 0.005 Carga Máx. (KN)	EUCOCEL Incorpo 0.000 Carga Máx. (Kg)	L 1000 rador 01 Área (cm2)	14 día Res. Obt. (kg/cm2)	
N° Mst.	Descripción Testigo	Fecha de vaciado	Fecha de ensayo 03/04/2019	tivo / cemento Edad (días)	NEPLA Superp (Diam. (cm)	ST 8500 HP lastificante 0.005 Carga Máx. (KN)	EUCOCEL Incorpor 0.000 Carga Máx. (Kg)	L 1000 rador 01 Área (cm2)	14 día Res. Obt. (kg/cm2)	Resist. Promedio
N° Mst.	Descripción Testigo Testigo	Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 03/04/2019 03/04/2019	tivo / cemento Edad (días) 14 14	NEPLA Superp (cm) Diam. (cm)	ST 8500 HP lastificante 0.005 Carga Máx. (KN) 81.07 92.80	Carga Máx. (Kg) 8264.02 9459.73	Area (cm2) 80.91 81.23	14 dis	
N° Mst.	Descripción Testigo	Fecha de vaciado	Fecha de ensayo 03/04/2019	tivo / cemento Edad (días)	NEPLA Superp (Diam. (cm)	ST 8500 HP lastificante 0.005 Carga Máx. (KN)	EUCOCEL Incorpor 0.000 Carga Máx. (Kg)	L 1000 rador 01 Área (cm2)	14 día Res. Obt. (kg/cm2)	Resist. Promedio
N° Mst.	Descripción Testigo Testigo	Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 03/04/2019 03/04/2019	tivo / cemento Edad (días) 14 14	NEPLA Superp (cm) Diam. (cm) 10.15 10.17 NEPLA	ST 8500 HP lastificante 0.005 Carga Máx. (KN) 81.07 92.80	EUCOCEL Incorpor 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46	Área (cm2) 80.91 81.23 81.23	14 dis	Resist. Promedio
N° Mst. 1 2 3	Descripción Testigo Testigo	Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019	tivo / cemento Edad (días) 14 14	Diam. (cm) 10.15 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01	EUCOCEL Incorpor 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46	Área (cm2) 80.91 81.23 81.23 L 1000 rador	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26	Resist. Promedio
N° Mst. 1 2 3	Descripción Testigo Testigo Testigo Testigo	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019	Edad (días) 14 14 14	Diam. (cm) 10.15 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP lastificante	Carga Máx. (Kg) 8264.02 9459.73 8971.46	Área (cm2) 80.91 81.23 81.23 L 1000 rador	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26	Resist. Promedio
N° Mst. 1 2 3	Descripción Testigo Testigo Testigo Testigo	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019	Edad (días) 14 14 14	Diam. (cm) 10.15 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP lastificante	EUCOCEL Incorpoi 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46 EUCOCEL Incorpoi 0.000 Carga	Área (cm2) 80.91 81.23 81.23 L 1000 rador	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26	Resist. Promedio
N° Mst. 1 2 3 9 Relacio	Descripción Testigo Testigo Testigo Testigo on agua / cemento	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion adit	Edad (días) 14 14 14 tivo / cemento	NEPLA Superp (cm) Diam. (cm) 10.15 10.17 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP astificante 0.009 Carga	EUCOCEL Incorpoi 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46 EUCOCEL Incorpoi 0.000 Carga	Area (cm2) 80.91 81.23 81.23 L 1000 rador	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26 14 día Res. Obt.	Resist. Promedio
N° Mst. 1 2 3 9 Relacio	Descripción Testigo Testigo Testigo Testigo on agua / cemento	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion adit	Edad (días) 14 14 14 tivo / cemento	NEPLA Superp (cm) Diam. (cm) 10.15 10.17 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP astificante 0.009 Carga	EUCOCEL Incorpoi 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46 EUCOCEL Incorpoi 0.000 Carga	Area (cm2) 80.91 81.23 81.23 L 1000 rador	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26 14 día Res. Obt.	Resist. Promedio
N° Mst. 1 2 3 9 Relacio	Testigo Testigo Testigo Testigo Testigo Descripción	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de vaciado	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion adit	Edad (días) 14 14 14 tivo / cemento Edad (días)	Diam. (cm) 10.15 10.17 10.17 NEPLA Superp	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP lastificante 0.009 Carga Máx. (KN)	EUCOCEL Incorpoi 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46 EUCOCEL Incorpoi 0.000 Carga Máx. (Kg)	Area (cm2) Area (cm2) Area (cm2)	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26 14 día Res. Obt. (kg/cm2)	Resist. Promedio
N° Mst. 1 2 3 9 Relacio	Descripción Testigo Testigo Testigo Testigo Descripción Testigo	Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de vaciado 21/03/2019	Fecha de ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion adit Fecha de ensayo 04/04/2019	Edad (días) 14 14 14 tivo / cemento Edad (días)	Diam. (cm) 10.15 10.17 10.17 NEPLA Superp (cm) Diam. (cm)	Carga Máx. (KN) 81.07 92.80 88.01 ST 8500 HP lastificante 0.009 Carga Máx. (KN)	EUCOCEL Incorpoi 0.000 Carga Máx. (Kg) 8264.02 9459.73 8971.46 EUCOCEL Incorpoi 0.000 Carga Máx. (Kg)	Area (cm2) Area (cm2) 80.91 81.23 81.23 Area (cm2)	14 día Res. Obt. (kg/cm2) 101.77 116.49 110.26 14 día Res. Obt. (kg/cm2)	Resist. Promedio 109.51 as de curado Resist. Promedio

GRÁFICO N° 49 Ensayo a los 14 días.

			EN	SAYO DE C	OMF	RESIÓN				
				SEGÚN NORI	MA AST	M - 39				
1	Patron					AST 8500 HP	EUCOCEL			
					Supe	rplastificante	Incorpo			
Relacio	on agua / cemento	0.40	Relacion ac	ditivo / cemento		0.006	0.00	01	28 dí	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	12/03/2019	09/04/2019	28	10.12	97.44	9932.72	80.44	123.53	
2	Testigo	12/03/2019	09/04/2019	28	10.12	120.27	12259.94	79.96	153.38	137.48
3	Testigo	12/03/2019	09/04/2019	28	10.03	106.90	10897.04	80.44	135.52	-
	1000.60		55/ 5 1/ 2525					-		
2					NED	A CT OF OO LID	FULCOSFI	1 4000		
						AST 8500 HP	EUCOCEL			
Dalas:		0.40	Dalasian a	d:4: /	Super	rplastificante	Incorpo		20 4	
Kelacio	on agua / cemento	0.40	Relacion ac	ditivo / cemento		0.006	0.00	02	28 01	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	11/03/2019	08/04/2019	28	10.13	103.84	10585.12	80.60	131.38	
2	Testigo	11/03/2019	08/04/2019	28	10.17	101.03	10298.67	81.23	126.82	127.79
3	Testigo	11/03/2019	08/04/2019	28	10.16	99.52	10144.75	81.07	125.17	
3						AST 8500 HP	EUCOCEL			
Relacio	on agua / cemento	0.40	Relacion ad	ditivo / cemento	Supei	rplastificante 0.006	0.000		28 4 (as de curado
Relacio	on agua / cemento	0.40	Relacion ac	attivo / cemento		0.000	0.000	103	28 UI	as de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
			22470		(5)	(-414)	(118)	(32)	(1
1	Testigo	13/03/2019	10/04/2019	28	10.18	144.98	14778.80	81.39	181.64	
2	Testigo	13/03/2019	10/04/2019	28	10.23	134.75	13735.98	82.19	167.17	169.74
3	Testigo	13/03/2019	10/04/2019	28	10.15	127.29	12975.54	80.91	160.41	
4					NEDI	AST 8500 HP	EUCOCEL	1 1000		
4						rplastificante	Incorpo			
Relacio	on agua / cemento	0.40	Relacion ad	ditivo / cemento	Juper	0.006	0.00		28 dí	as de curado
	on agacity contents	00				0.000	0.00			
212							_			
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Área (cm2)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Toctico	14/02/2010	11/04/2010	28	10.17	06.07	0974 62	01 22	121 60	
1	Testigo	14/03/2019	11/04/2019		10.17	96.87	9874.62	81.23	121.60	4
2	Testigo	14/03/2019	11/04/2019	28	10.15	88.31	9002.04	80.91	111.30	116.52

GRÁFICO N° 50 Ensayo a los 28 días.

Area (cm2) 81.23 80.91 81.07 LL 1000 brador 001 Area (cm2)	Res. Obt. (kg/cm2) 201.97 182.09 201.80 28 d	195.29
Area (cm2) 81.23 80.91 81.07 LL 1000 brador 001 Área	Res. Obt. (kg/cm2) 201.97 182.09 201.80 28 d	Resist. Promedic
Área (cm2) 81.23 80.91 81.07 LL 1000 orador 001 Área	Res. Obt. (kg/cm2) 201.97 182.09 201.80 28 d	Resist. Promedio
Área (cm2) 81.23 80.91 81.07 LL 1000 orador 001 Área	Res. Obt. (kg/cm2) 201.97 182.09 201.80 28 d	Resist. Promedic
Área (cm2) 81.23 80.91 81.07 LL 1000 orador 001 Área	Res. Obt. (kg/cm2) 201.97 182.09 201.80 28 d	Resist. Promedic
81.23 80.91 81.07 LL 1000 orador 001	201.97 182.09 201.80 28 d	195.29
81.23 80.91 81.07 LL 1000 orador 001	201.97 182.09 201.80 28 d	195.29
80.91 81.07 LL 1000 orador 001 Área	182.09 201.80 28 d	ías de curado
80.91 81.07 LL 1000 orador 001 Área	182.09 201.80 28 d	ías de curado
LL 1000 orador 001 Área	28 d	
001 Área	Res. Obt.	
001 Área	Res. Obt.	
Área	Res. Obt.	
(cm2)		Resist. Promedio
	(kg/cm2)	
80.60	151.65	
81.23	155.85	154.95
81.87	157.36	
LL 1000		
rador		
001	28 d	ías de curado
Área	Res. Obt.	Resist. Promedio
(cm2)	(kg/cm2)	
81.55	75.60	
80.91	74.76	72.13
80.91	66.03	
LL 1000		
001	28 d	ías de curado
Área		Resist. Promedio
(CITIZ)	(Rg/CIII2)	
80.75	91.08]
80.91	115.76	112.42
80.12	130.43	
LL 1000		
001	28 d	ías de curado
Á	De - 01 :	
	Res. Obt. (kg/cm2)	Resist. Promedio
80.91 81.07	115.90 104.49	109.77
	104.49	- 103.77
	81.55 80.91 80.91 80.91 LL 1000 brador 001 Area (cm2) 80.75 80.91 80.12 LL 1000 brador 001 Area	Area (cm2) (kg/cm2) Area (cm2) (kg/cm2) 81.55 75.60 80.91 74.76 80.91 66.03 ELL 1000 Area (cm2) (kg/cm2) Area (cm2) (kg/cm2) 80.75 91.08 80.91 115.76 80.12 130.43 ELL 1000 Brador (cm2) (kg/cm2) Area (kg/cm2) 80.75 91.08 80.91 12.76 80.12 130.43

GRÁFICO N° 51 Ensayo a los 28 días

> Resistencia a la Tracción

				ENSAY	O DE TR	ACCIÓI	V			
				SEGÚN N	ORMA NTI	P - 339.084	1			
1					N	EPLAST 8500 I	HP	EUCOC	ELL 1000	
					Su	perplastifica	nte	Incorp	orador	
Relacion ago	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006		0.0001	7 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	12/03/2019	19/03/2019	7	10.15	20.40	24.12	2458.72	7.56	
2	Testigo	12/03/2019	19/03/2019	7	10.18	20.25	28.00	2854.23	8.81	8.13
3	Testigo	12/03/2019	19/03/2019	7	10.16	20.22	25.37	2586.14	8.01	
2					N	EPLAST 8500 I	HP	EUCOC	ELL 1000	
					Su	perplastifica	nte	Incorp	orador	
Relacion ag	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006		0.0002	7 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	11/03/2019	18/03/2019	7	10.23	20.44	31.95	3256.88	9.92	
2	Testigo	11/03/2019	18/03/2019	7	10.10	20.36	26.74	2725.79	8.44	8.75
3	Testigo	11/03/2019	18/03/2019	7	10.09	20.22	24.83	2531.09	7.90	
3					N	EPLAST 8500 I	HD	FLICOC	ELL 1000	
3						perplastifica:		Incorp		
Relacion agi	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006	itt	0.00005		de curado
neración agi	du / cemento	0.40	Neideron duren	707 cemento		0.000		0.00003	7 0103	ac caraco
	December 16	Fecha de	Fecha de	Fd-4/4/\	Diam (2001)	1 ()	Carga Máx.	Carga Máx.	Res. Obt.	Resist.
N° Mst.	Descripción	vaciado	ensayo	Edad (días)	Diam. (cm)	Long. (cm)	(KN)	(Kg)	(kg/cm2)	Promedio
1	Testigo	13/03/2019	20/03/2019	7	10.13	20.31	26.11	2661.57	8.24	
2	Testigo	13/03/2019		7	10.13	20.31	26.11	2748.22	8.55	9.38
3	Testigo	13/03/2019		7	10.09	20.28	35.79	3648.32	11.35	3.30
	restigo	13/03/2013	20/03/2013	,	10.03	20.20	33.73	30-10.32	11.55	
4					N	EPLAST 8500 I	HP	FUCOC	ELL 1000	
-						perplastifica:		Incorp		
Relacion agi	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006		0.0003		de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
		44/00/00/5	24/02/22/5	_	40.10	20.00	25.25	2505.11	7.0-	
1	Testigo	14/03/2019		7	10.18	20.30	25.37	2586.14	7.97	
2	Testigo	14/03/2019	21/03/2019	7	10.14	20.27	25.95	2645.26	8.19	8.24
3	Testigo	14/03/2019	21/03/2019	7	10.15	20.23	27.13	2765.55	8.57	

GRÁFICO N° 52 Ensayo a los 7 días

						ACCIÓN	-			
				SEGUN N	ORMA NT	P - 339.084	1			
5						EPLAST 8500 H			ELL 1000	
					Su	perplastificar	nte	Incorpo		
telacion agi	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006		0	7 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	15/03/2019	22/03/2019	7	10.20	20.32	47.37	4828.75	14.83	
2	Testigo	15/03/2019	22/03/2019	7	10.16	20.25	30.61	3120.29	9.66	11.78
3	Testigo	15/03/2019	22/03/2019	7	10.15	20.21	34.28	3494.39	10.84	
6					N	EPLAST 8500 H	HP.	EUCOCE	ELL 1000	
					Su	perplastificar	nte	Incorpo	orador	
alacion ag	ua / cemento	0.40	Relacion aditiv	o / cemento	-	0.004		0.0001		de curado
eracion agi	ua / cemento	0.40	Netacion auti	70 / cemento		0.004		0.0001	7 dias	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedic
1	Testigo	18/03/2019	25/03/2019	7	10.16	20.39	31.62	3223.24	9.91	
2			25/03/2019	7		20.26	23.41			0 05
	Testigo	18/03/2019		7	10.18			2386.34	7.37	8.85
3	Testigo	18/03/2019	25/03/2019	/	10.12	20.33	29.43	3000.00	9.28	
7					N	EPLAST 8500 H	HP.	EUCOCE	LL 1000	
					Su	perplastificar	nte	Incorpo	orador	
elacion agi	ua / cemento	0.40	Relacion aditiv	o / cemento		0.008		0.0001	7 días	de curado
	Descripción	Fecha de	Fecha de	Edad (días)	Diam. (cm)	Long (cm)	Carga Máx.	Carga Máx.	Res. Obt.	Resist.
N° Mst.	Descripcion	vaciado	ensayo	Euau (uias)	Diam. (cm)	Long. (cm)	(KN)	(Kg)	(kg/cm2)	Promedio
1	Testigo	19/03/2019	26/03/2019	7	10.20	20.23	14.82	1510.70	4.66	
					10.20	20.25	14.62	1510.70		
2	Testigo	19/03/2019	26/03/2019					+		
3	Testigo			7	10.18	20.15	17.48	1781.86	5.53	4.68
		19/03/2019	26/03/2019	7	10.18 10.17	20.15 20.20	17.48 12.14	+		4.68
Q		19/03/2019	26/03/2019					1781.86	5.53	4.68
8		19/03/2019	26/03/2019		10.17		12.14	1781.86 1237.51	5.53	4.68
0		19/03/2019	26/03/2019		10.17	20.20	12.14 HP	1781.86 1237.51	5.53 3.83 ELL 1000	4.68
	ua / cemento	0.40	26/03/2019 Relacion adition	7	10.17	20.20 EPLAST 8500 F	12.14 HP	1781.86 1237.51 EUCOCE	5.53 3.83 ELL 1000 orador	4.68 de curado
	ua / cemento			7	10.17	20.20 EPLAST 8500 F perplastificar	12.14 HP	1781.86 1237.51 EUCOCE	5.53 3.83 ELL 1000 orador	
	ua / cemento Descripción			7	10.17	20.20 EPLAST 8500 F perplastificar	12.14 HP	1781.86 1237.51 EUCOCE	5.53 3.83 ELL 1000 orador	de curado Resist.
elacion ago	Descripción	0.40 Fecha de vaciado	Relacion aditiv	7 /o / cemento Edad (días)	N Su	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm)	12.14 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg)	5.53 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2)	de curado Resist.
N° Mst.	Descripción Testigo	0.40 Fecha de vaciado 20/03/2019	Relacion aditiv	7 /o / cemento Edad (días)	10.17 N Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm)	12.14 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpt 0.0001 Carga Máx. (Kg)	5.53 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2)	de curado Resist. Promedio
N° Mst.	Descripción Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7	10.17 NI Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25	12.14 HP nte Carga Máx. (KN) 21.42 27.92	1781.86 1237.51 EUCOCE Incorpt 0.0001 Carga Máx. (Kg)	5.53 3.83 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2)	de curado
elacion ago N° Mst.	Descripción Testigo	0.40 Fecha de vaciado 20/03/2019	Relacion aditiv	7 /o / cemento Edad (días)	10.17 N Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm)	12.14 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpt 0.0001 Carga Máx. (Kg)	5.53 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2)	de curado Resist. Promedio
N° Mst.	Descripción Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96	1781.86 1237.51 EUCOCE Incorpt 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66	5.53 3.83 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31	de curado Resist. Promedio
N° Mst.	Descripción Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66	5.53 3.83 3.83 ELL 1000 orador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31	de curado Resist. Promedio
N° Mst. 1 2 3	Descripción Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7 7	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96	1781.86 1237.51 EUCOCE Incorpt 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66	5.53 3.83 ELL 1000 prador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31	de curado Resist. Promedio
N° Mst. 1 2 3	Descripción Testigo Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7 7	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18 EPLAST 8500 H perplastificar	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66	5.53 3.83 ELL 1000 prador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31	de curado Resist. Promedio 7.29
N° Mst. 1 2 3	Descripción Testigo Testigo Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019 20/03/2019	Fecha de ensayo 27/03/2019 27/03/2019 27/03/2019	7 /o / cemento Edad (días) 7 7 7	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18 EPLAST 8500 H perplastificar	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66	5.53 3.83 ELL 1000 prador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31	de curado Resist. Promedio 7.29 de curado Resist.
N° Mst. 1 2 3 9 elacion agu	Descripción Testigo Testigo Testigo Testigo Descripción	0.40 Fecha de vaciado 20/03/2019 20/03/2019 0.40 Fecha de vaciado	Fecha de ensayo 27/03/2019 27/03/2019 27/03/2019 Relacion aditiv	7 /o / cemento Edad (días) 7 7 7 7 Co / cemento Edad (días)	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17 Ni Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18 EPLAST 8500 H perplastificar 0.009 Long. (cm)	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66 EUCOCE Incorpo 0.0001 Carga Máx. (Kg)	5.53 3.83 ELL 1000 Drador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31 ELL 1000 Drador 7 días Res. Obt. (kg/cm2)	Resist. Promedic 7.29
N° Mst. 1 2 3 9 elacion ago	Descripción Testigo Testigo Testigo Testigo Descripción Testigo	0.40 Fecha de vaciado 20/03/2019 20/03/2019 0.40 Fecha de vaciado	Fecha de ensayo 27/03/2019 27/03/2019 27/03/2019 Relacion aditiv	7 /o / cemento Edad (días) 7 7 7 /o / cemento Edad (días)	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17 Ni Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18 EPLAST 8500 H perplastificar 0.009 Long. (cm)	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66 EUCOCE Incorpo 0.0001 Carga Máx. (Kg)	5.53 3.83 3.83 ELL 1000 brador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31 ELL 1000 brador 7 días Res. Obt. (kg/cm2)	de curado Resist. Promedio 7.29 de curado Resist. Promedio
N° Mst. 1 2 3 9 Relacion agu	Descripción Testigo Testigo Testigo Testigo Descripción	0.40 Fecha de vaciado 20/03/2019 20/03/2019 0.40 Fecha de vaciado	Fecha de ensayo 27/03/2019 27/03/2019 27/03/2019 Relacion aditiv	7 /o / cemento Edad (días) 7 7 7 7 Co / cemento Edad (días)	10.17 Ni Su Diam. (cm) 10.18 10.15 10.17 Ni Su Diam. (cm)	20.20 EPLAST 8500 H perplastificar 0.005 Long. (cm) 20.24 20.25 20.18 EPLAST 8500 H perplastificar 0.009 Long. (cm)	12.14 HP nte Carga Máx. (KN) 21.42 27.92 19.96 HP nte Carga Máx. (KN)	1781.86 1237.51 EUCOCE Incorpo 0.0001 Carga Máx. (Kg) 2183.49 2846.08 2034.66 EUCOCE Incorpo 0.0001 Carga Máx. (Kg)	5.53 3.83 ELL 1000 Drador 7 días Res. Obt. (kg/cm2) 6.75 8.82 6.31 ELL 1000 Drador 7 días Res. Obt. (kg/cm2)	de curado Resist. Promedio 7.29 de curado Resist.

GRÁFICO N° 53 Ensayo a los 7 días

				ENSAY	O DE TR	ACCIÓI	V			
				SEGÚN N	ORMA NTI	- 339.084	1			
1					N	EPLAST 8500 I	HP	EUCOC	ELL 1000	
					Su	perplastificar	nte	Incorp	orador	
Relacion ag	ua / cemento	0.40	Relacion aditiv	vo / cemento		0.006		0.0001	14 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	12/03/2019	26/03/2019	14	10.11	20.37	34.54	3520.90	10.88	
2	Testigo	12/03/2019	26/03/2019	14	10.19	20.31	33.21	3385.32	10.41	9.76
3	Testigo	12/03/2019	26/03/2019	14	10.18	20.34	25.48	2597.35	7.99	
2					N	EPLAST 8500 I	HP	EUCOC	ELL 1000	
					Su	perplastifica	nte	Incorp	orador	
Relacion ag	ua / cemento	0.40	Relacion aditiv	vo / cemento		0.006		0.0002	14 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	11/03/2019	25/03/2019	14	10.16	20.33	35.89	3658.51	11.28	
2	Testigo	11/03/2019	25/03/2019	14	10.13	20.22	35.59	3627.93	11.28	10.35
3	Testigo	11/03/2019	25/03/2019	14	10.12	20.26	26.86	2738.02	8.50	
3						EPLAST 8500 I			ELL 1000	
					Su	perplastificar	nte	Incorp		
Relacion ag	ua / cemento	0.40	Relacion aditiv	vo / cemento		0.006		0.00005	14 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	13/03/2019	27/03/2019	14	10.11	20.30	41.64	4244.65	13.17	
2	Testigo	13/03/2019	27/03/2019	14	10.11	20.25	29.49	3006.12	9.29	10.43
3	Testigo	13/03/2019	27/03/2019	14	10.17	20.30	28.07	2861.37	8.82	20.10
4						EPLAST 8500 I			ELL 1000	
						perplastificar	nte	Incorp		
Relacion ag	ua / cemento	0.40	Relacion aditiv	vo / cemento		0.006		0.0003	14 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	14/03/2019	28/03/2019	14	10.15	20.25	21.84	2226.30	6.90	
2	Testigo	14/03/2019	28/03/2019	14	10.11	20.27	31.23	3183.49	9.89	9.09
3	Testigo	14/03/2019	28/03/2019	14	10.18	20.35	33.49	3413.86	10.49	

GRÁFICO N° 54 Ensayo a los 14 días

				FNSAY	O DE TR	ACCIÓI	\ \			
				L1107 (11						
5						EPLAST 8500 I			ELL 1000	
	, .	0.40	 	, .		perplastifica	nte	Incorp		
elacion agu	ua / cemento	0.40	Relacion aditiv	o / cemento		0.006		0	14 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	15/03/2019	29/03/2019	14	10.19	20.29	32.45	3307.85	10.19	
2	Testigo	15/03/2019	29/03/2019	14	10.16	20.33	42.87	4370.03	13.47	11.85
3	Testigo	15/03/2019	29/03/2019	14	10.15	20.31	37.77	3850.15	11.89	
6					N	EPLAST 8500 I	HP	EUCOCI	ELL 1000	
					Su	perplastifica	nte	Incorporador		
elacion agu	ua / cemento	0.40	Relacion aditiv	o / cemento	0.004		0.0001 14 días		de curado	
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	18/03/2019	01/04/2019	14	10.17	20.33	24.64	2511.72	7.73	0.65
2	Testigo	18/03/2019	01/04/2019	14	10.16	20.27	25.47	2596.33	8.03	8.99
3	Testigo	18/03/2019	01/04/2019	14	10.20	20.25	35.71	3640.16	11.22	
7						EPLAST 8500 I			ELL 1000	
.	/	0.40	Dalasian aditi	/	f e	perplastifica	nte	Incorp		4
етастоп адс	ua / cemento	0.40	Relacion aditiv	70 / cemento		0.008		0.0001	14 01as	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
			/ /							
1	Testigo	19/03/2019	02/04/2019	14	10.12	20.30	19.55	1992.86	6.18	F 40
3	Testigo	19/03/2019 19/03/2019	02/04/2019 02/04/2019	14 14	10.15 10.09	20.20	18.76 12.82	1912.33	5.94 4.10	5.40
3	Testigo	19/05/2019	02/04/2019	14	10.09	20.13	12.62	1306.83	4.10	
8					N	EPLAST 8500 I	HD	FUCOCI	ELL 1000	
J						perplastifica		Incorp		
elacion agı	ua / cemento	0.40	Relacion aditiv	o / cemento		0.005		0.0001		de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
	·	vaciado	ensayo				(KN)	(Kg)	(kg/cm2)	
1	Testigo	vaciado 20/03/2019	ensayo 03/04/2019	14	10.23	20.25	(KN) 30.37	(Kg) 3095.82	(kg/cm2) 9.51	Promedio
1 2	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 03/04/2019 03/04/2019	14 14	10.23 10.14	20.25 20.25	30.37 21.84	(Kg) 3095.82 2226.30	9.51 6.90	
1	Testigo	vaciado 20/03/2019	ensayo 03/04/2019	14	10.23	20.25	(KN) 30.37	(Kg) 3095.82	(kg/cm2) 9.51	Promedio
1 2	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 03/04/2019 03/04/2019	14 14	10.23 10.14 10.09	20.25 20.25	30.37 21.84 39.51	(Kg) 3095.82 2226.30 4027.52	9.51 6.90	Promedio
1 2 3	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 03/04/2019 03/04/2019	14 14	10.23 10.14 10.09	20.25 20.25 20.27	30.37 21.84 39.51	(Kg) 3095.82 2226.30 4027.52	9.51 6.90 12.54	Promedio
1 2 3	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 03/04/2019 03/04/2019	14 14 14	10.23 10.14 10.09 N	20.25 20.25 20.27 EPLAST 8500	30.37 21.84 39.51	(Kg) 3095.82 2226.30 4027.52	9.51 6.90 12.54 ELL 1000 orador	Promedio
1 2 3	Testigo Testigo Testigo	20/03/2019 20/03/2019 20/03/2019 20/03/2019	ensayo 03/04/2019 03/04/2019 03/04/2019	14 14 14	10.23 10.14 10.09 N	20.25 20.25 20.27 EPLAST 8500 perplastifical	30.37 21.84 39.51	(Kg) 3095.82 2226.30 4027.52 EUCOCI Incorp	9.51 6.90 12.54 ELL 1000 orador	Promedio 9.65
1 2 3 9 elacion agu	Testigo Testigo Testigo Testigo Testigo Descripción	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de vaciado	ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion adition Fecha de ensayo	14 14 14 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	10.23 10.14 10.09 N Su	20.25 20.25 20.27 20.27 EPLAST 8500 perplastifical 0.009	30.37 21.84 39.51 HP inte	3095.82 2226.30 4027.52 EUCOCI Incorp 0.0001	9.51 6.90 12.54 ELL 1000 orador 14 días Res. Obt. (kg/cm2)	9.65 de curado Resist.
1 2 3 9 elacion agu	Testigo Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de	ensayo 03/04/2019 03/04/2019 03/04/2019 Relacion aditiv	14 14 14 14 00/cemento	10.23 10.14 10.09 N Su	20.25 20.25 20.27 20.27 EPLAST 8500 perplastifical 0.009	30.37 21.84 39.51 HP inte	3095.82 2226.30 4027.52 EUCOCI Incorp 0.0001	9.51 6.90 12.54 ELL 1000 orador 14 días	9.65 de curado Resist.

GRÁFICO N° 55 Ensayo a los 14 días

				ENSAYO	DE TRAC	CIÓN				
				SEGÚN NOR	MA NTP - 3	39.084				
1						EPLAST 8500			ELL 1000	
					Su	perplastifica	nte	Incorp		
elacion agu	ua / cemento	0.40	Relacion adi	tivo / cemento		0.006		0.0001	28 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Testigo	12/03/2019	09/04/2019	28	10.17	20.32	38.77	3952.09	12.17	
2	Testigo	12/03/2019	09/04/2019	28	10.11	20.41	31.14	3174.31	9.79	10.45
3	Testigo	12/03/2019	09/04/2019	28	10.12	20.32	29.76	3033.64	9.39	
-		,,	,-,	-						
2		NEPLAST 8500 HP					HP	EUCOCI	ELL 1000	
	Superplastificante		nte	Incorp	orador					
elacion agu	ua / cemento	0.40	Relacion adi	tivo / cemento			0.0002		de curado	
				,						
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedic
1	Testigo	11/03/2019	08/04/2019	28	10.15	20.30	39.09	3984.71	12.31	
2	Testigo	11/03/2019	08/04/2019	28	10.16	20.36	37.03	3774.72	11.62	11.41
3	Testigo	11/03/2019	08/04/2019	28	10.22	20.33	32.98	3361.88	10.30	
3					N	EPLAST 8500 I	HP	EUCOCI	ELL 1000	
					Su	perplastifica	nte	Incorp	orador	
telacion agu	ua / cemento	0.40	Relacion adi	tivo / cemento		0.006		0.00005	28 días	de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist.
			Cilian				()	(1.6)	(/	
1	Testigo	13/03/2019	10/04/2019	28	10.17	20.34	38.36	3910.30	12.03	
2	Testigo	13/03/2019	10/04/2019	28	10.13	20.33	34.35	3501.53	10.82	12.69
3	Testigo	13/03/2019	10/04/2019	28	10.20	20.34	48.63	4957.19	15.21	
4					N	EPLAST 8500 I	HP	EUCOCI	ELL 1000	
						perplastifica		Incorp	orador	
Relacion agu	ua / cemento	0.40	Relacion adi	tivo / cemento		0.006		0.0003		de curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedic
1	Tostico	14/02/2010	11/04/2010	20	10.13	20.20	40.54	4122.52	12.02	
1	Testigo	14/03/2019	11/04/2019	28	10.12	20.28	40.54	4132.52	12.82	10.62
2	Testigo	14/03/2019	11/04/2019	28	10.15	20.44	32.00	3261.98	10.01	10.62
3	Testigo	14/03/2019	11/04/2019	28	10.16	20.34	28.72	2927.62	9.02	

GRÁFICO Nº 56 Ensayo a los 28 días

				ENSAYO	DE TRAC	CIÓN				
				SEGÚN NOR	MA NTP - 3	39.084				
5						EPLAST 8500	НP	EUCOCE	LL 1000	
					Su	perplastifica	nte	Incorpo	orador	
Relacion agua	a / cemento	0.40	Relacion adi	tivo / cemento		0.006		0	28 días	de curado
		Fecha de	Fecha de				Carga Máx.	Carga Máx.	Res. Obt.	Resist.
N° Mst.	Descripción	vaciado	ensayo	Edad (días)	Diam. (cm)	Long. (cm)	(KN)	(Kg)	(kg/cm2)	Promedio
			,				(/	(1-6)	()	
1	Testigo	15/03/2019	12/04/2019	28	10.08	20.31	52.25	5326.20	16.56	
2	Testigo	15/03/2019	12/04/2019	28	10.14	20.35	38.67	3941.90	12.16	15.09
3	Testigo	15/03/2019	12/04/2019	28	10.09	20.24	52.1	5310.91	16.56	
6					N	EPLAST 8500	НP	EUCOCE	LL 1000	
					Su	perplastifica	nte	Incorpo	orador	
Relacion agua	a / cemento	0.40	Relacion adi	tivo / cemento		0.004		0.0001	28 días	de curado
		Fecha de	Fecha de				Carga Máx.	Carga Máx.	Res. Obt.	Resist.
N° Mst.	Descripción	vaciado	ensayo	Edad (días)	Diam. (cm)	Long. (cm)	(KN)	(Kg)	(kg/cm2)	Promedio
14 14156		Vaciado	ciisayo				(KIV)	(148)	(Rg/CITIZ)	Tromedio
1	Testigo	18/03/2019	15/04/2019	28	10.16	20.32	27.97	2851.17	8.79	
2	Testigo	18/03/2019	15/04/2019	28	10.03	20.36	38.66	3940.88	12.29	10.64
3	Testigo	18/03/2019	15/04/2019	28	10.19	20.32	34.58	3524.97	10.84	10.04
7					N	EPLAST 8500	-IP	EUCOCE	:11 1000	
•						perplastifica		Incorpo		
Relacion agua	a / cemento	0.40	Relacion adi	tivo / cemento	50	0.008		0.0001		de curado
teración ague	a / cemento	0.40	riciación adi	tivo / cemento		0.000		0.0001	20 0103	ac carado
N° Mst.	Descripción	Fecha de vaciado	Fecha de	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx.	Carga Máx.	Res. Obt.	Resist. Promedio
IN INIST.		Vaciado	ensayo				(KN)	(Kg)	(kg/cm2)	Promedio
1	Testigo	19/03/2019	16/04/2019	28	10.17	20.13	19.60	1997.96	6.21	
			16/04/2019	28	+					5.58
3	Testigo	19/03/2019 19/03/2019		28	10.22 10.13	20.18	18.26 15.11	1861.37 1540.27	5.75 4.79	3.36
3	Testigo	19/03/2019	16/04/2019	20	10.13	20.20	15.11	1540.27	4.79	
8					NI	EPLAST 8500	-IP	EUCOCE	11 1000	
						perplastifica		Incorpo		
Relacion agua	a / cemento	0.40	Relacion adi	tivo / cemento	54	0.005	ite	0.0001		de curado
	,			,				3.335		
		Fecha de	Fecha de				Carga Máx	Carga Máx	Res. Oht.	Resist.
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensavo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Diam. (cm)	Long. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
	•	vaciado	ensayo				(KN)	(Kg)	(kg/cm2)	
1	Testigo	vaciado 20/03/2019	ensayo 17/04/2019	28	10.14	20.27	(KN) 39.65	(Kg) 4041.79	(kg/cm2) 12.52	Promedio
	•	vaciado	ensayo				(KN)	(Kg)	(kg/cm2)	
1 2	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 17/04/2019 17/04/2019	28	10.14	20.27	(KN) 39.65 24.55	(Kg) 4041.79 2502.55	12.52 7.68	Promedio
1 2	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 17/04/2019 17/04/2019	28	10.14 10.20 10.16	20.27	39.65 24.55 32.84	(Kg) 4041.79 2502.55	12.52 7.68 10.36	Promedio
1 2 3	Testigo Testigo	vaciado 20/03/2019 20/03/2019	ensayo 17/04/2019 17/04/2019	28	10.14 10.20 10.16	20.27 20.35 20.24	39.65 24.55 32.84	(Kg) 4041.79 2502.55 3347.60	12.52 7.68 10.36	Promedio
1 2 3	Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019	17/04/2019 17/04/2019 17/04/2019	28	10.14 10.20 10.16	20.27 20.35 20.24 EPLAST 8500	39.65 24.55 32.84	(Kg) 4041.79 2502.55 3347.60	12.52 7.68 10.36 ELL 1000 prador	Promedio
1 2 3	Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019	17/04/2019 17/04/2019 17/04/2019	28 28 28	10.14 10.20 10.16	20.27 20.35 20.24 EPLAST 8500 perplastifica	39.65 24.55 32.84	(Kg) 4041.79 2502.55 3347.60 EUCOCE	12.52 7.68 10.36 ELL 1000 prador	Promedio 10.19
1 2 3	Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40	17/04/2019 17/04/2019 17/04/2019 Relacion adi	28 28 28	10.14 10.20 10.16	20.27 20.35 20.24 EPLAST 8500 perplastifica	39.65 24.55 32.84 HP	(Kg) 4041.79 2502.55 3347.60 EUCOCE Incorpe 0.0001	12.52 7.68 10.36 ELL 1000 prador 28 días	10.19 de curado
1 2 3 3 9 Relacion agua	Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de	17/04/2019 17/04/2019 17/04/2019 Relacion adi	28 28 28	10.14 10.20 10.16	20.27 20.35 20.24 EPLAST 8500 perplastifica	39.65 24.55 32.84 HP nte	(Kg) 4041.79 2502.55 3347.60 EUCOCE Incorpo 0.0001 Carga Máx.	12.52 7.68 10.36 ELL 1000 orador 28 días	10.19 de curado Resist.
1 2 3	Testigo Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40	17/04/2019 17/04/2019 17/04/2019 Relacion adi	28 28 28 28	10.14 10.20 10.16 NI Su	20.27 20.35 20.24 EPLAST 8500 perplastifical 0.009	39.65 24.55 32.84 HP	(Kg) 4041.79 2502.55 3347.60 EUCOCE Incorpe 0.0001	12.52 7.68 10.36 ELL 1000 prador 28 días	10.19 de curado Resist.
1 2 3 9 Relacion agua	Testigo Testigo Testigo Testigo A / cemento Descripción	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de vaciado	17/04/2019 17/04/2019 17/04/2019 17/04/2019 Relacion adi	28 28 28 28 tivo / cemento	10.14 10.20 10.16 NI Su	20.27 20.35 20.24 EPLAST 8500 operplastificat 0.009	39.65 24.55 32.84 HP nte	(Kg) 4041.79 2502.55 3347.60 EUCOCE Incorpo 0.0001 Carga Máx. (Kg)	12.52 7.68 10.36 ELL 1000 orador 28 días Res. Obt. (kg/cm2)	10.19 de curado
1 2 3 3 9 Relacion agua	Testigo Testigo Testigo Testigo	vaciado 20/03/2019 20/03/2019 20/03/2019 0.40 Fecha de	17/04/2019 17/04/2019 17/04/2019 Relacion adi	28 28 28 28	10.14 10.20 10.16 NI Su	20.27 20.35 20.24 EPLAST 8500 perplastifical 0.009	39.65 24.55 32.84 HP nte	4041.79 2502.55 3347.60 EUCOCE Incorpo 0.0001	12.52 7.68 10.36 ELL 1000 orador 28 días	Promedio 10.19 de curado Resist.

GRÁFICO N° 57 Ensayo a los 28 días

> Resistencia a la Flexion del concreto

		ENSA	YO DE R	ESISTENCI	A A FLEX	KION DI	E CONC	RETO			
			DE VIGA S	SIMPLE CON CAR	GA AL TERCIO	O MEDIO DE	LA LUZ				
				AS	STM C-78						
1					NEPLAST				ELL 1000		
· ~				/	Superpla				orador	00.1/	
f'c de diseño	50 < X > 175	Kg / cm2	Relacion ad	itivo / cemento	0.0	006		0.0	001	28 dias d	le curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Viga de Concreto	12/03/2019	09/04/2019	28	15.44	15.38	46.50	23.79	2425.08	30.88	
2	Viga de Concreto	12/03/2019	09/04/2019	28	15.41	15.45	46.50	23.35	2380.22	30.09	1
3	Viga de Concreto	12/03/2019	09/04/2019	28	15.41	15.52	46.50	18.22	1857.29	23.57	1
4	Viga de Concreto	12/03/2019	09/04/2019	28	15.59	15.61	46.50	23.04	2348.62	28.75	26.78
5	Viga de Concreto	12/03/2019	09/04/2019	28	15.45	15.55	46.50	20.90	2130.48	26.52	
6	Viga de Concreto	12/03/2019	09/04/2019	28	15.53	15.66	46.50	16.77	1709.48	20.87	
Ů	Viga de contreto	12/03/2013	03/01/2013	20	13.33	13.00	10.30	10.77	1703.10	20.07	
ESPECIFICACION	IES :	-	Los ensayos re	e realizaron segúi	n Norma ASTM	C-78 y la NTF	P . 339.078.				
	_				<u> </u>		~				
OBSERVACIONE	S :	-		nortero fueron ela			eño de mezcl	a solicitado.			
		-		nsayaron en cond							
		-	La fractura se	lozalizó dentro d	el tercio medi	o de la luz.					
		-	Las dimension	nes promedio del	especimen se	realizaron ei	n la sección d	le falla.			
RESULTADOS	:	-	El Modulo de	rotura del concre	to es de 26.78	kg/cm2					
NESOLIADOS	•		Li Modulo de	Totala aci concic	10 03 00 20.70	Kg/ CITIZ					
2					NEPLAST	8500 HP		EUCOC	ELL 1000		
					Superpla	stificante		Incorporador			
f'c de diseño	50 < X > 175	Kg/cm2	Relacion ad	itivo / cemento	0.0	006		0.0	002	28 días d	le curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom	Alto Prom.	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
		100.000	ciicaye		(4,	(5)	(4)	()	(1.6)	(1.8/ 4/	
1	Viga de Concreto	11/03/2019	08/04/2019	28	15.40	15.47	46.50	20.65	2104.99	26.56	
2	Viga de Concreto	11/03/2019	08/04/2019	28	15.41	15.42	46.50	19.43	1980.63	25.14]
3	Viga de Concreto	11/03/2019	08/04/2019	28	15.52	15.46	46.50	22.84	2328.24	29.19	27.12
4	Viga de Concreto	11/03/2019	08/04/2019	28	15.41	15.44	46.50	21.04	2144.75	27.15	
5	Viga de Concreto	11/03/2019	08/04/2019	28	15.48	15.47	46.50	21.01	2141.69	26.88	
6	Viga de Concreto	11/03/2019	08/04/2019	28	15.50	15.53	46.50	21.94	2236.49	27.82	
ESPECIFICACION	IES :	-	Los ensayos re	e realizaron segúi	n Norma ASTM	C-78 y la NTF	· . 339.078.				
OBSERVACIONE	S :	-	Las vigas de m	nortero fueron ela	aborados de ad	cuerdo al dise	eño de mezcl	a solicitado.			
		-		nsayaron en cond							
		-		lozalizó dentro d							
		-		nes promedio del			n la sección d	le falla.			
RESULTADOS	:	_	El Modulo de	rotura del concre	to es de 27.12	kg/cm2					

GRÁFICO N° 58 Ensayo a los 28 días

		ENSA	YO DE R	ESISTENCI	A FLE	XION DI	E CONC	RETO			
			DE VIGA S	IMPLE CON CAF	RGA AL TERCI	O MEDIO DE	LA LUZ				
				AS	STM C-78						
_											
3						8500 HP			ELL 1000		
f'c de diseño	50 < X > 175	Kg / cm2	Polacion ad	itivo / cemento		stificante 106			orador 0005	20 días s	le curado
i cue disello	30< X > 1/3	Kg / CIIIZ	Relacion au	itivo / cemento	0.0	000		0.0	0003	20 ulas t	le curauo
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Viga de Concreto	13/03/2019	10/04/2019	28	15.43	15.40	46.50	23.31	2376.15	30.19	
2	Viga de Concreto	13/03/2019	10/04/2019	28	15.36	11.33	46.50	24.86	2534.15	59.76]
3	Viga de Concreto	13/03/2019	10/04/2019	28	15.36	15.45	46.50	24.49	2496.43	31.66	39.20
4	Viga de Concreto	13/03/2019	10/04/2019	28	15.56	15.42	46.50	31.34	3194.70	40.15	1
5	Viga de Concreto	13/03/2019	10/04/2019	28	15.66	15.66	46.50	27.32	2784.91	33.72	
6	Viga de Concreto	13/03/2019	10/04/2019	28	15.89	15.61	46.50	32.44	3306.83	39.71	
ESPECIFICACIO	NES :	-	Los ensayos re	realizaron segú	n Norma ASTM	I C-78 y la NTF	. 339.078.				
OBSERVACIONE	· ·	_	Lac vigas do m	ortero fueron el	ahorados de a	cuerdo al disc	ño de mezcl	a colicitado			
OBSERVACIONE		-	_	isayaron en cond			illo de illezci	a soncitado.			
			-	lozalizó dentro d							
		-		es promedio del			n la sección c	le falla.			
RESULTADOS	:	-	El Modulo de i	rotura del concre	to es de 39.20	kg/cm2					
4					ΝΕΡΙΔΩ	8500 HP		FLICOC	ELL 1000		
·					Superpla				orador		
f'c de diseño	50 < X > 175	Kg/cm2	Relacion ad	itivo / cemento		006			0003	28 días c	le curado
		Fecha de	Fecha de		Ancho Prom	Alto Drom	Luz Prom.	Carga Máx.	Carga Máx.	Res. Obt.	Resist.
N° Mst.	Descripción	vaciado	ensayo	Edad (días)	(cm)	(cm)	(cm)	(KN)	(Kg)	(kg/cm2)	Promedio
1	Viga de Concreto	14/03/2019	11/04/2019	28	15.40	15.55	46.50	17.39	1772.68	22.14	
2	Viga de Concreto	14/03/2019	11/04/2019	28	15.38	15.55	46.50	15.51	1581.04	19.77	1
3	Viga de Concreto	14/03/2019	11/04/2019	28	15.48	15.39	46.50	15.91	1621.81	20.57	†
<u> </u>	0. 22 22	,,	, : , =020							22.37	20.45
4	Viga de Concreto	14/03/2019	11/04/2019	28	15.59	15.49	46.50	14.61	1489.30	18.51	
5	Viga de Concreto	14/03/2019	11/04/2019	28	15.38	15.41	46.50	14.86	1514.78	19.29	1
6	Viga de Concreto	14/03/2019	11/04/2019	28	15.47	15.45	46.50	17.48	1781.86	22.44	
ESPECIFICACION	NES :	-	Los ensayos re	realizaron segú	n Norma ASTN	ı C- /8 y la NTF	. 339.078.				
OBSERVACIONE	S:	-	_	ortero fueron ela			ño de mezcl	a solicitado.			
		-		isayaron en cond							
		-		lozalizó dentro d les promedio del			n la sección c	le falla.			
DE01117											
RESULTADOS	:	-	El Modulo de i	rotura del concre	to es de 20.45						

GRÁFICO N° 59 Ensayo los 28 días

		ENSA	YO DE R	ESISTENCI	A A FLE	XION DI	CONC	RETO			
			DE VIGA S	SIMPLE CON CAR	GA AL TERCIO	O MEDIO DE	LA LUZ				
				AS	TIVI C-76						
5					NEPLAST	8500 HP		EUCOC	ELL 1000		
					Superpla	stificante		Incorp	orador		
f'c de diseño	50 < X > 175	Kg/cm2	Relacion ad	itivo / cemento	0.0	006			0	28 días d	e curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Viga de Concreto	15/03/2019	12/04/2019	28	15.67	16.25	46.50	29.29	2985.73	33.55	
2	Viga de Concreto	15/03/2019	12/04/2019	28	15.72	15.6	46.50	28.43	2898.06	35.23	
3	Viga de Concreto	15/03/2019	12/04/2019	28	15.59	15.59	46.50	26.74	2725.79	33.45	
4	Viga de Concreto	15/03/2019	12/04/2019	28	15.53	15.44	46.50	30.53	3112.13	39.09	35.15
5	Viga de Concreto	15/03/2019	12/04/2019	28	15.54	15.59	46.50	27.54	2807.34	34.56	
6	Viga de Concreto	15/03/2019	12/04/2019	28	15.42	15.45	46.50	27.20	2772.68	35.03	
ESPECIFICACION	VES :	-	Los ensayos re	e realizaron segúr	n Norma ASTN	I C- /8 y Ia N I I	⁷ . 339.078.				
OBSERVACIONE	S:	-	Las vigas de m	ortero fueron ela	aborados de a	cuerdo al dise	ño de mezcl	a solicitado.			
		-		nsayaron en cond							
		-	La fractura se	lozalizó dentro de	el tercio medi	o de la luz.					
		-	Las dimension	nes promedio del	especimen se	realizaron e	n la sección d	e falla.			
RESULTADOS	:	-	El Modulo de	rotura del concre	to es de 35.15	kg/cm2					
DESVIAC	IÓN ESTANDAR			VARIANZA					COEFIC	ENTE DE VAR	IACIÓN
6					NFPI AST	8500 HP		FLICOC	ELL 1000		
U						stificante			orador		
f'c de diseño	50 < X > 175	Kg/cm2	Relacion ad	itivo / cemento		004			001	28 días d	e curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Viga de Concreto	18/03/2019	15/04/2019	28	15.36	15.42	46.50	16.28	1659.53	21.13	
2	Viga de Concreto	18/03/2019	15/04/2019	28	15.49	15.47	46.50	19.34	1971.46	24.73	
3	Viga de Concreto	18/03/2019	15/04/2019	28	15.39	15.77	46.50	20.06	2044.85	24.84	a
4	Viga de Concreto	18/03/2019	15/04/2019	28	15.37	15.52	46.50	16.71	1703.36	21.39	21.85
5	Viga de Concreto	18/03/2019	15/04/2019	28	15.54	15.57	46.50	16.77	1709.48	21.10	
6	Viga de Concreto	18/03/2019	15/04/2019	28	15.38	15.41	46.50	13.78	1404.69	17.88	
ESPECIFICACION	NES :	-	Los ensayos re	e realizaron segúr	n Norma ASTM	I C-78 y la NTF	P . 339.078.				
000000000000000000000000000000000000000	•							1			
OBSERVACIONE	S:	-	Las vigas de mortero fueron elaborados de acuerdo al diseño de mezcla solicitado. Las vigas se ensayaron en condiciones humedas.								
		-		lozalizó dentro de							
		-	Las dimension	nes promedio del	especimen se	realizaron e	n la sección d	e falla.			
RESULTADOS	:	-	El Modulo de	rotura del concre	to es de 21.85	kg/cm2					

GRÁFICO N° 60 Ensayo los 28 días

ENSAYO DE RESISTENCIA A FLEXION DE CONCRETO DE VIGA SIMPLE CON CARGA AL TERCIO MEDIO DE LA LUZ ASTM C-78 7 NEPLAST 8500 HP **EUCOCELL 1000** Superplastificante Incorporador f'c de diseño 50 < X > 175 Kg / cm2 Relacion aditivo / cemento 0.008 0.0001 28 días de curado Ancho Prom Fecha de Fecha de Alto Prom. Luz Prom. Carga Máx. Carga Máx. Res. Obt. Resist. Descripción Edad (días) N° Mst. (KN) Promedio vaciado ensayo (cm) (cm) (cm) (Kg) (kg/cm2) 16/04/2019 Viga de Concreto 19/03/2019 15.14 15.54 46.50 9.19 936.80 Viga de Concreto 19/03/2019 16/04/2019 15.22 15.39 46.50 11.31 1152.91 14.87 Viga de Concreto 19/03/2019 16/04/2019 28 15.58 15.63 46.50 10.3 1049.95 12.83 13.25 4 Viga de Concreto 19/03/2019 16/04/2019 28 15.45 15.40 46.50 8.14 829.77 10.53 Viga de Concreto 19/03/2019 16/04/2019 28 15.38 15.41 46.50 12.19 1242.61 15.82 6 Viga de Concreto 19/03/2019 16/04/2019 28 15.35 15.45 46.50 10.47 1067.28 13.54 ESPECIFICACIONES: Los ensayos re realizaron según Norma ASTM C-78 y la NTP . 339.078. OBSERVACIONES : Las vigas de mortero fueron elaborados de acuerdo al diseño de mezcla solicitado. Las vigas se ensayaron en condiciones humedas. La fractura se lozalizó dentro del tercio medio de la luz. Las dimensiones promedio del especimen se realizaron en la sección de falla. RESULTADOS El Modulo de rotura del concreto es de 13.25 kg/cm2 DESVIACIÓN ESTANDAR VARIANZA COEFICIENTE DE VARIACIÓN NEPLAST 8500 HP EUCOCELL 1000 8 Superplastificante Incorporador f'c de diseño 50 < X > 175 0.005 0.0001 Kg/cm2 Relacion aditivo / cemento 28 días de curado Fecha de Fecha de Ancho Prom Alto Prom. Luz Prom. Carga Máx. Carga Máx. Res. Obt. Resist. Edad (días) Descripción N° Mst. vaciado ensayo (cm) (cm) (cm) (KN) (Kg) (kg/cm2) Promedio Viga de Concreto 20/03/2019 17/04/2019 28 15.24 15.44 46.50 12.60 1284.40 16.44 1 2 Viga de Concreto 20/03/2019 17/04/2019 28 15.49 15.53 46.50 13.28 1353.72 16.85 3 Viga de Concreto 20/03/2019 17/04/2019 28 15.45 15.41 46.50 11.86 1208.97 15.32 18.90 4 Viga de Concreto 20/03/2019 17/04/2019 28 15.27 15.43 46.50 16.95 1727.83 22.10 5 Viga de Concreto 20/03/2019 17/04/2019 28 15.29 15.39 46.50 15.89 1619.78 20.80 Viga de Concreto 20/03/2019 17/04/2019 28 15.21 15.53 46.50 16.93 1725.79 21.88 6 ESPECIFICACIONES: Los ensayos re realizaron según Norma ASTM C-78 y la NTP . 339.078. OBSERVACIONES: Las vigas de mortero fueron elaborados de acuerdo al diseño de mezcla solicitado. Las vigas se ensayaron en condiciones humedas. La fractura se lozalizó dentro del tercio medio de la luz. Las dimensiones promedio del especimen se realizaron en la sección de falla. El Modulo de rotura del concreto es de 18.90 kg/cm2 RESULTADOS

GRÁFICO Nº 61 Ensayo los 28 días

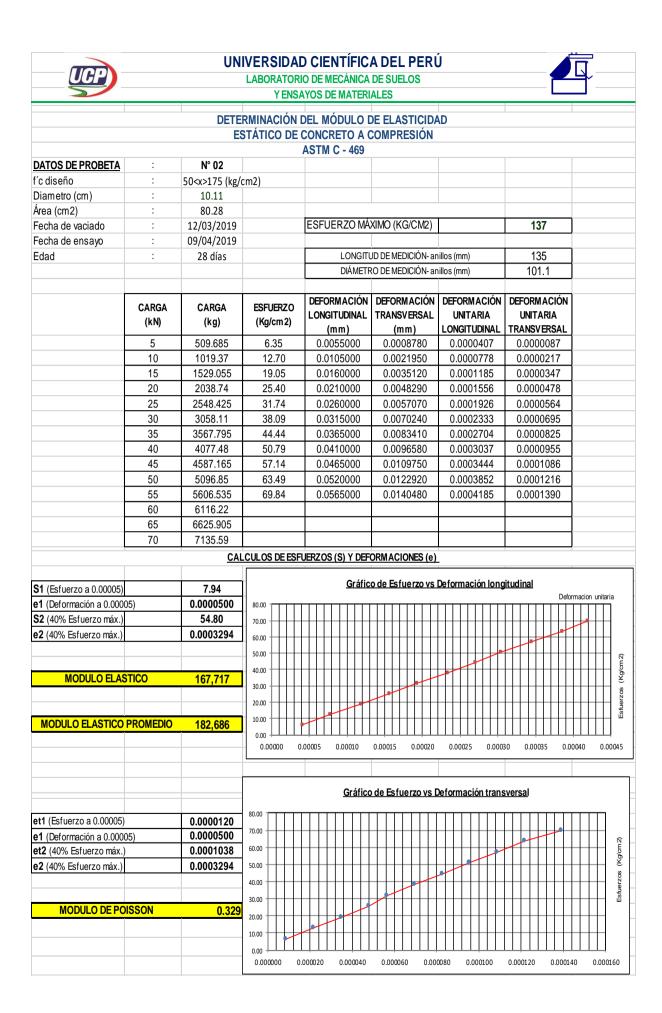

		ENSA	YO DE R	ESISTENCI	A A FLE	XION DI	E CONC	RETO			
			DE VIGA S	IMPLE CON CAR	GA AL TERCIO	O MEDIO DE	LA LUZ				
				AS	TM C-78						
9						8500 HP			ELL 1000		
					Superpla	Superplastificante		Incorp	orador		
f'c de diseño	50 < X > 175	Kg / cm2	Relacion ad	itivo / cemento	0.0	009		0.0	0001	28 días c	le curado
N° Mst.	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	Ancho Prom (cm)	Alto Prom. (cm)	Luz Prom. (cm)	Carga Máx. (KN)	Carga Máx. (Kg)	Res. Obt. (kg/cm2)	Resist. Promedio
1	Viga de Concreto	21/03/2019	18/04/2019	28	15.38	15.68	46.50	16.40	1671.76	20.56	
2	Viga de Concreto	21/03/2019	18/04/2019	28	15.23	15.58	46.50	13.58	1384.30	17.41	
3	Viga de Concreto	21/03/2019	18/04/2019	28	15.66	15.48	46.50	18.73	1909.28	23.66	19.58
4	Viga de Concreto	21/03/2019	18/04/2019	28	15.45	15.34	46.50	15.66	1596.33	20.42	19.58
5	Viga de Concreto	21/03/2019	18/04/2019	28	15.48	15.45	46.50	12.15	1238.53	15.59	
6	Viga de Concreto	21/03/2019	18/04/2019	28	15.35	15.58	46.50	15.58	1588.18	19.82	
ESPECIFICACIO	NES :	-	Los ensayos re	e realizaron segúr	n Norma ASTM	1 C-78 y la NTI	. 339.078.				
OBSERVACIONE	ES :	-	Las vigas de m	ortero fueron ela	aborados de a	cuerdo al dise	eño de mezcl	a solicitado.			
		-	Las vigas se er	nsayaron en cond	iciones hume	das.					
		-	La fractura se	lozalizó dentro de	el tercio medi	o de la luz.					
		-	Las dimension	nes promedio del	especimen se	realizaron e	n la sección c	le falla.			
RESULTADOS	:	-	El Modulo de	rotura del concre	to es de 19.58	kg/cm2					

GRÁFICO N° 62 Ensayo los 28 días

> Ensayo de módulo de elasticidad

GRÁFICO Nº 63 0.006 Neoplast y 0.0001 Eucocell -Diseño Patrón

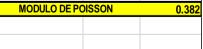
UCP		UN	LABORATORI	O CIENTÍFICA O DE MECÁNICA AYOS DE MATERI	DE SUELOS	j ————————————————————————————————————		
				i e				
			,	DEL MÓDULO I CONCRETO A O		AD		
		E		ASTM C - 469	COWIFRESION			
DATOS DE PROBETA	:	N° 01		A31W C - 409				
f'c diseño	:							
Diametro (cm)	:	50 <x>175 (kg/c</x>	(m2)					
Área (cm2)	:	80.28						
Fecha de vaciado	:	12/03/2019		ESFUERZO MÁ	XIMO (KG/CM2)		137	
Fecha de ensayo	:	09/04/2019		LOI OLIVZO WY	AUVIO (TO/OTVIZ)		137	
Edad	:	28 días		LONGITI	JD DE MEDICIÓN- ar	illos (mm)	135	
Luau	•	20 0103			RO DE MEDICIÓN- ar	, ,	101.1	
				DUNNETT	TO DE INIEDIOIOTI GI	IIIIOO (ITIITI)	101.1	
	CARGA (kN)	CARGA (kg)	ESFUERZO (Kg/cm2)	DEFORMACIÓN LONGITUDINAL (mm)	DEFORMACIÓN TRANSVERSAL (mm)	DEFORMACIÓN UNITARIA LONGITUDINAL	DEFORMACIÓN UNITARIA TRANSVERSAL	
	5	509.685	6.35	0.0045000	0.0004390	0.0000333	0.0000043	
	10	1019.37	12.70	0.0105000	0.0004390	0.0000333	0.0000043	
	15	1529.055	19.05	0.0160000	0.0035120	0.0000176	0.0000174	
	20	2038.74	25.40	0.0210000	0.0033120	0.0001165	0.0000347	
	25	2548.425	31.74	0.0255000	0.0061460	0.0001889	0.0000608	
	30	3058.11	38.09	0.0305000	0.0079020	0.0002259	0.0000782	
	35	3567.795	44.44	0.0360000	0.0092190	0.0002667	0.0000912	
	40	4077.48	50.79	0.0410000	0.0109750	0.0003037	0.0001086	
	45	4587.165	57.14	0.0460000	0.0127310	0.0003407	0.0001259	
	50	5096.85	63.49	0.0500000	0.0140480	0.0003704	0.0001390	
	55	5606.535	69.84	0.0545000	0.0158040	0.0004037	0.0001563	
	60	6116.22						
	65	6625.905						
	70	7135.59						
		CAL	CULOS DE ESF	ÚERZOS (S) Y DEF	ORMACIONES (e)	-		
				0-40-		D. (
S1 (Esfuerzo a 0.00005)		8.73		Granc	o de Esfuerzo vs	Deformacion long		rmacion unitaria
e1 (Deformación a 0.0000	05)	0.0000500	80.00					
S2 (40% Esfuerzo máx.)		54.80	70.00					
e2 (40% Esfuerzo máx.) MODULO ELAS	TICO	166,258	60.00 50.00 40.00					Estuerzos (Kg/cm.2)
			20.00					Esfuerzos
MODULO ELASTICO	PROMEDIO	182,686	0.00 0.00000 0.00000	.00005 0.00010	0.00015 0.00020	0.00025 0.0000	20 00025 00	0040 0.00045
				0.0001	0.00013	0.00023	0.0003	0.00013
				Gráfico	de Esfuerzo vs [Deformación trans	sversal	
et1 (Esfuerzo a 0.00005)		0.0000092	80.00					тт І
e1 (Deformación a 0.0000))5)	0.0000092	70.00	++++++	++++++	++++++	┼┼┼┼┼┼┼┼	╁╁╁┼┤
et2 (40% Esfuerzo máx.)	15)	0.0001195	60.00					m2)
e2 (40% Esfuerzo máx.)		0.0003271	50.00					Estuerzos (Kg/cm2)
(40.00					Z Z S Z
			30.00					student street
MODULO DE PO	ISSON	0.398						
			20.00					
			10.00					
			0.000000 0.0	00020 0.000040 0	0.000060 0.000080	0.000100 0.00012	0.000140 0.000	160 0.000180

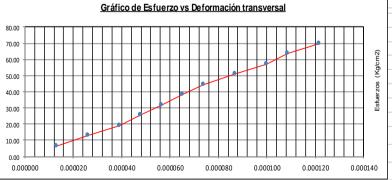
LABORATORIO DE MECÁNICA DE SUELOS Y ENSAYOS DE MATERIALES

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD ESTÁTICO DE CONCRETO A COMPRESIÓN

				ASTM C - 469				
DATOS DE PROBETA	:	N° 03						
f´c diseño	:	50 <x>175 (kg/d</x>	cm2)					
Diametro (cm)	:	10.11						
Área (cm2)	:	80.28						
Fecha de vaciado	:	12/03/2019		ESFUERZO MÁ	XIMO (KG/CM2)		137	
Fecha de ensayo	:	09/04/2019						
Edad	:	28 días		LONGITU	JD DE MEDICIÓN- ar	nillos (mm)	135	
				DIÁMETF	RO DE MEDICIÓN- ar	nillos (mm)	101.1	
	CARGA	CARGA	ESFUERZO	DEFORMACIÓN	DEFORM A CIÓN	DEFORM A CIÓN	DEFORM A CIÓN	
	(kN)	(kg)	(Kg/cm2)	LONGITUDINAL	TRANSVERSAL	UNITARIA	UNITARIA	
	(KIV)	(kg)	(Rg/CIII2)	(mm)	(mm)	LONGITUDINAL	TRANSVERSAL	
	5	509.685	6.35	0.0035000	0.0013170	0.0000259	0.0000130	
	10	1019.37	12.70	0.0075000	0.0026340	0.0000556	0.0000261	
	15	1529.055	19.05	0.0105000	0.0039510	0.0000778	0.0000391	
	20	2038.74	25.40	0.0140000	0.0048290	0.0001037	0.0000478	
	25	2548.425	31.74	0.0185000	0.0057070	0.0001370	0.0000564	
	30	3058.11	38.09	0.0220000	0.0065850	0.0001630	0.0000651	
	35	3567.795	44.44	0.0260000	0.0074630	0.0001926	0.0000738	
	40	4077.48	50.79	0.0295000	0.0087800	0.0002185	0.0000868	
	45	4587.165	57.14	0.0335000	0.0100970	0.0002481	0.0000999	
	50	5096.85	63.49	0.0370000	0.0109750	0.0002741	0.0001086	
	55	5606.535	69.84	0.0410000	0.0122920	0.0003037	0.0001216	
	60	6116.22						
	65	6625.905						

CALCULOS DE ESFUERZOS (S) Y DEFORMACIONES (e)


S1 (Esfuerzo a 0.00005)	11.50
e1 (Deformación a 0.00005)	0.0000500
S2 (40% Esfuerzo máx.)	54.80
e2 (40% Esfuerzo máx.)	0.0002372


70

7135.59

et1 (Esfuerzo a 0.00005) 0.0000236 0.0000500 e1 (Deformación a 0.00005) et2 (40% Esfuerzo máx.) 0.0000951 e2 (40% Esfuerzo máx.) 0.0002372

LABORATORIO DE MECÁNICA DE SUELOS Y ENSAYOS DE MATERIALES

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD ESTÁTICO DE CONCRETO A COMPRESIÓN ASTM C - 469

DATOS DE PROBETA	:	N° 04					
f´c diseño	:	50 <x>175 (kg/d</x>	cm2)				
Diametro (cm)	:	10.11					
Área (cm2)	:	80.28					
Fecha de vaciado	:	12/03/2019		ESFUERZO MÁ	XIMO (KG/CM2)		137
Fecha de ensayo	:	09/03/2019					
Edad	:	28 días		LONGITU	nillos (mm)	135	
				DIÁMETE	nillos (mm)	101.1	

CARGA	CARGA	ESFUERZO	DEFORM ACIÓN	DEFORM ACIÓN	DEFORM A CIÓN	DEFORM A CIÓN	
(kN)		(Kg/cm 2)	LONGITUDINAL	TRANSVERSAL	UNITARIA	UNITARIA	ĺ
(KIV)	(kg)	(Ng/CIII2)	(mm)	(mm)	LONGITUDINAL	TRANSVERSAL	
5	509.685	6.35	0.0045000	0.0000000	0.0000333	0.0000000	
10	1019.37	12.70	0.0100000	0.0013170	0.0000741	0.0000130	
15	1529.055	19.05	0.0150000	0.0021950	0.0001111	0.0000217	
20	2038.74	25.40	0.0195000	0.0030730	0.0001444	0.0000304	
25	2548.425	31.74	0.0250000	0.0043900	0.0001852	0.0000434	
30	3058.11	38.09	0.0305000	0.0057070	0.0002259	0.0000564	
35	3567.795	44.44	0.0360000	0.0070240	0.0002667	0.0000695	
40	4077.48	50.79	0.0410000	0.0079020	0.0003037	0.0000782	
45	4587.165	57.14	0.0460000	0.0092190	0.0003407	0.0000912	
50	5096.85	63.49	0.0510000	0.0100970	0.0003778	0.0000999	
55	5606.535	69.84	0.0570000	0.0114140	0.0004222	0.0001129	
60	6116.22						
65	6625.905						
70	7135.59						Г

CALCULOS DE ESFUERZOS (S) Y DEFORMACIONES (e)

\$1 (Esfuerzo a 0.00005)	8.95
e1 (Deformación a 0.00005)	0.0000500
S2 (40% Esfuerzo máx.)	54.80
e2 (40% Esfuerzo máx.)	0.0003271

 32 (40% Esfuerzo máx.)
 54.80

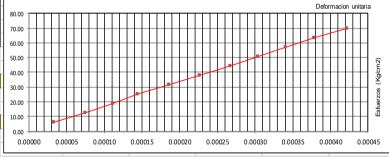
 32 (40% Esfuerzo máx.)
 0.0003271

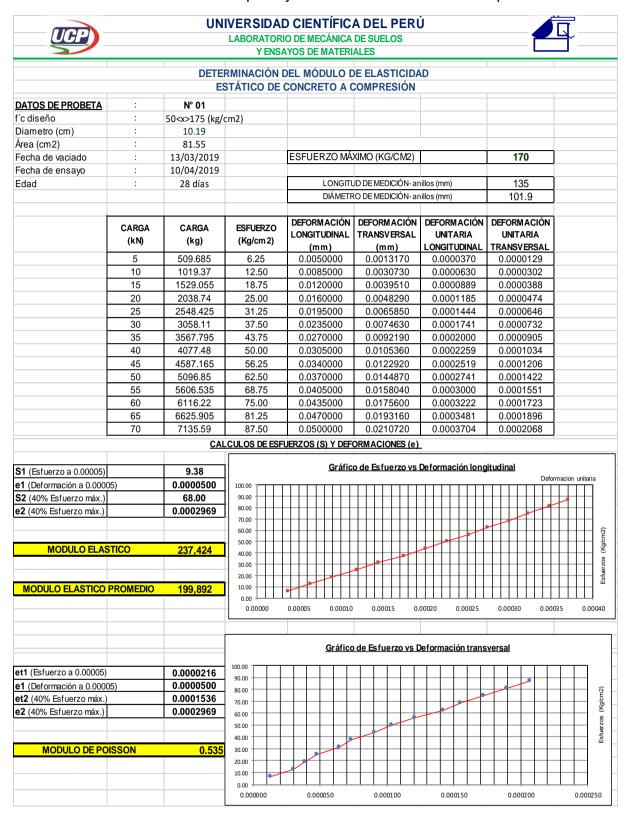
 MODULO ELASTICO

 165.464

182,686

MODULO ELASTICO PROMEDIO





Gráfico de Esfuerzo vs Deformación longitudinal

et1 (Esfuerzo a 0.00005)	0.0000053
e1 (Deformación a 0.00005)	0.0000500
et2 (40% Esfuerzo máx.)	0.0000864
e2 (40% Esfuerzo máx.)	0.0003271

GRÁFICO Nº 64 0.006 Neoplast y 0.00005 Eucocell -Diseño Optimo

LABORATORIO DE MECÁNICA DE SUELOS Y ENSAYOS DE MATERIALES

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD ESTÁTICO DE CONCRETO A COMPRESIÓN

ASTM C - 469

DATOS DE PROBETA	;	N° 02					
f'c diseño	:	50 <x>175 (kg/c</x>	cm2)				
Diametro (cm)	;	10.19					
Área (cm2)	;	81.55					
Fecha de vaciado	:	13/03/2019		ESFUERZO MÁ		170	
Fecha de ensayo	:	10/04/2019					
Edad	:	28 días		LONGITUD DE MEDICIÓN- anillos (mm)			135
				DIÁMETR	101.9		

CARGA	CARGA	ESFUERZO	DEFORMACIÓN	DEFORM A CIÓN	DEFORM A CIÓN	DEFORMACIÓN
(kN)	(kg)	(Kg/cm 2)	LONGITUDINAL	TRANSVERSAL	UNITARIA	UNITARIA
(KIV)	(Kg)	(rig/ciiiz)	(mm)	(mm)	LONGITUDINAL	TRANSVERSAL
5	509.685	6.25	0.0065000	0.0017560	0.0000481	0.0000172
10	1019.37	12.50	0.0085000	0.0026340	0.0000630	0.0000258
15	1529.055	18.75	0.0125000	0.0035120	0.0000926	0.0000345
20	2038.74	25.00	0.0170000	0.0043900	0.0001259	0.0000431
25	2548.425	31.25	0.0220000	0.0052680	0.0001630	0.0000517
30	3058.11	37.50	0.0275000	0.0065850	0.0002037	0.0000646
35	3567.795	43.75	0.0320000	0.0070240	0.0002370	0.0000689
40	4077.48	50.00	0.0365000	0.0083410	0.0002704	0.0000819
45	4587.165	56.25	0.0415000	0.0092190	0.0003074	0.0000905
50	5096.85	62.50	0.0465000	0.0105360	0.0003444	0.0001034
55	5606.535	68.75	0.0505000	0.0118530	0.0003741	0.0001163
60	6116.22	75.00	0.0560000	0.0131700	0.0004148	0.0001292
65	6625.905	81.25	0.0615000	0.0144870	0.0004556	0.0001422
70	7135.59	87.50	0.0655000	0.0158040	0.0004852	0.0001551

CALCULOS DE ESFUERZOS (S) Y DEFORMACIONES (e)

7.05
0.0000500
68.00
0.0003705

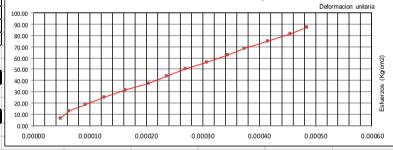
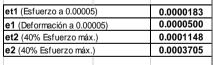



Gráfico de Esfuerzo vs Deformación longitudinal

WIODULU ELA	31160	190,172
MODULO ELASTICO	199,892	

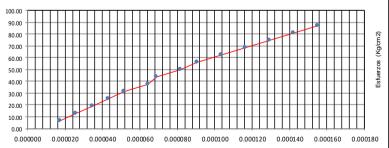


Gráfico de Esfuerzo vs Deformación transversal

MODULO DE POISSON 0.301

LABORATORIO DE MECÁNICA DE SUELOS Y ENSAYOS DE MATERIALES

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD **ESTÁTICO DE CONCRETO A COMPRESIÓN**

ASTM C - 469

DATOS DE PROBETA	:	N° 03					
f´c diseño	:	50 <x>175 (kg/c</x>	cm2)				
Diametro (cm)	:	10.19					
Área (cm2)	:	81.55					
Fecha de vaciado	:	13/03/2019		ESFUERZO MÁ	XIMO (KG/CM2)		170
Fecha de ensayo	:	10/04/2019					
Edad	:	28 días		LONGITU	JD DE MEDICIÓN- ar	nillos (mm)	135
				DIÁMETE	RO DE MEDICIÓN-ar	nillos (mm)	101.9
	CARGA	CARGA	ESFUERZO	DEFORMACIÓN	DEFORMACIÓN	DEFORM ACIÓN	DEFORMACIÓN
	(kN)	(kg)	(Kg/cm 2)	LONGITUDINAL	TRANSVERSAL	UNITARIA	UNITARIA
	(11.14)	(1.9)	(119/01112)	(mm)	(mm)	LONGITUDINAL	TRANSVERSAL
	5	509.685	6.25	0.0040000	0.0013170	0.0000296	0.0000129
	10	1019.37	12.50	0.0080000	0.0021950	0.0000593	0.0000215
	15	1529.055	18.75	0.0130000	0.0035120	0.0000963	0.0000345
	20	2038.74	25.00	0.0175000	0.0043900	0.0001296	0.0000431
	25	2548.425	31.25	0.0200000	0.0048290	0.0001481	0.0000474
	30	3058.11	37.50	0.0260000	0.0057070	0.0001926	0.0000560
	35	3567.795	43.75	0.0310000	0.0065850	0.0002296	0.0000646
	40	4077.48	50.00	0.0355000	0.0074630	0.0002630	0.0000732
	45	4587.165	56.25	0.0405000	0.0087800	0.0003000	0.0000862
	50	5096.85	62.50	0.0460000	0.0096580	0.0003407	0.0000948
	55	5606.535	68.75	0.0505000	0.0105360	0.0003741	0.0001034
	60	6116.22	75.00	0.0560000	0.0118530	0.0004148	0.0001163

0.0665000 CALCULOS DE ESFUERZOS (S) Y DEFORMACIONES (e)

0.0605000

S1 (Esfuerzo a 0.00005)	10.54
e1 (Deformación a 0.0000	5) 0.0000500
S2 (40% Esfuerzo máx.)	68.00
e2 (40% Esfuerzo máx.)	0.0003701

65

70

179,506

6625.905

7135.59

81.25

87.50

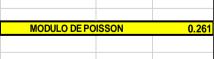
Gráfico de Esfuerzo vs Deformación longitudinal 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0.00000 0.00010 0.00020 0.00030 0.00040 0.00050 0.00060

0.0004481

0.0004926

0.0001249

0.0001336


0.0127310

0.0136090

MODULO ELASTICO PROMEDIO	199.892

MODULO ELASTIC

et1 (Esfuerzo a 0.00005)	0.0000188
e1 (Deformación a 0.00005)	0.0000500
et2 (40% Esfuerzo máx.)	0.0001024
e2 (40% Esfuerzo máx.)	0.0003701

LABORATORIO DE MECÁNICA DE SUELOS Y ENSAYOS DE MATERIALES

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD ESTÁTICO DE CONCRETO A COMPRESIÓN

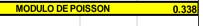
ASTM C - 469

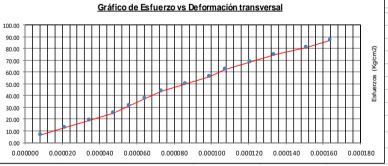
DATOS DE PROBETA	:	N° 04		
f'c diseño	:	50 <x>175 (kg/cm2)</x>		
Diametro (cm)	:	10.19		
Área (cm2)	:	81.55		
Fecha de vaciado	:	13/03/2019	ESFUERZO MÁXIMO (KG/CM2)	170
Fecha de ensayo	:	10/03/2019		
Edad	:	28 días	LONGITUD DE MEDICIÓN- anillos (mm)	135
			DIÁMETRO DE MEDICIÓN- anillos (mm)	101.9

	CARGA	CARGA	ESFUERZO	DEFORM A CIÓN	DEFORM A CIÓN	DEFORM A CIÓN	DEFORMACIÓN	
	(kN)	(kg)	(Kg/cm 2)	LONGITUDINAL	TRANSVERSAL	UNITARIA	UNITARIA	
	(KIV)	(kg)	(Ng/CIII2)	(mm)	(mm)	LONGITUDINAL	TRANSVERSAL	
	5	509.685	6.25	0.0030000	0.0008780	0.0000222	0.0000086	
	10	1019.37	12.50	0.0065000	0.0021950	0.0000481	0.0000215	
	15	1529.055	18.75	0.0115000	0.0035120	0.0000852	0.0000345	
	20	2038.74	25.00	0.0145000	0.0048290	0.0001074	0.0000474	
	25	2548.425	31.25	0.0190000	0.0057070	0.0001407	0.0000560	
	30	3058.11	37.50	0.0235000	0.0065850	0.0001741	0.0000646	
	35	3567.795	43.75	0.0285000	0.0074630	0.0002111	0.0000732	
	40	4077.48	50.00	0.0330000	0.0087800	0.0002444	0.0000862	
	45	4587.165	56.25	0.0365000	0.0100970	0.0002704	0.0000991	
	50	5096.85	62.50	0.0415000	0.0109750	0.0003074	0.0001077	
	55	5606.535	68.75	0.0460000	0.0122920	0.0003407	0.0001206	
	60	6116.22	75.00	0.0510000	0.0136090	0.0003778	0.0001336	
_	65	6625.905	81.25	0.0555000	0.0153650	0.0004111	0.0001508	
	70	7135.59	87.50	0.0595000	0.0166820	0.0004407	0.0001637	

CALCULOS DE ESFUERZOS (S) Y DEFORMACIONES (e)

S1 (Esfuerzo a 0.00005)	12.82
e1 (Deformación a 0.00005)	0.0000500
S2 (40% Esfuerzo máx.)	68.00
e2 (40% Esfuerzo máx.)	0.0003367





MODULO ELASTICO PROMEDIO 199,892

┪	Gráfico de Esfuerzo vs Deformación longitudinal
┥	Deformacion unitaria
Ц	100.00
	90.00
╗	80.00
7	70.00
4	60.00
	60.00 50.00 (2.50)
ı	40.00
٦	30,00
+	
4	
	10.00
7	0.00
+	0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040 0.00045 0.00050
4	

et1 (Esfuerzo a 0.00005)	0.0000222
e1 (Deformación a 0.00005)	0.0000500
et2 (40% Esfuerzo máx.)	0.0001191
e2 (40% Esfuerzo máx.)	0.0003367

ANEXO N°03: COMPARACION DE PRECIOS

Tabla N° 128 Costo m3 de concreto liviano no estructural CL-OP

DISEÑO	CONCRETO LIVIANO NO ESTRUCTURAL F´C 170 KG/CM2							
VALORES DE DISEÑO								
Cemento : 400.00 Kg/m3								
Agua			:	157.80	Lts/m3			
Agregado Fino			:	800.7	Kg/m3			
Perla de Poliestireno			:	3.50	Kg/m3			
Aditivo 01 (Neoplast 8500 H	IP)		:	2.40	Kg/m3			
Aditivo 02 (Eucocell 1000) : 0.02 Kg/m3								
PRI	PRECIO DE CONCRETO POR M3							
MATERIALES	UNIDAD	CANTIE	CANTIDAD		P.PARCIAL			
IVIATERIALES	UNIDAD	CANTIL	JAU	(S/.)	(S/.)			
CEMENTO	BLS	9.41	Ĺ	30.00	282.30			
AGUA	M3	0.16	5	7.00	1.10			
AGREGADO FINO	M3	0.59)	30.00	17.57			
PERLA DE POLIESTIRENO	E POLIESTIRENO M3 0.29				32.08			
NEOPLAST 8500 HP	KG	2.40		11.65	27.96			
EUCOCELL 1000	KG	0.02		19.20	0.38			
FLETE ADITIVO	KG	2.16		1.00	2.16			
				TOTAL	S/363.56			

Fuente: Elaboración propia (2019)

Tabla N° 129 Costo m3 de concreto cemento - arena f´c 175 kg/cm2

DISEÑO	CONCRETO LIVIANO NO ESTRUCTURAL F´C 175 KG/CM2							
VALORES DE DISEÑO								
Cemento : 425.00 Kg/m3								
Agua	Agua : 255.00 Lts/m3							
Agregado Fino	Agregado Fino : 1360.20 Kg/m3							
Pi	RECIO DE CON	CRETO PO	RM3	•				
MATERIALES	LINIDAD CANTI	CANTI	CANTIDAD		P.PARCIAL			
IVIATERIALES	UNIDAD	CANTIL			(S/.)			
CEMENTO	BLS	10.0	0	30.00	300.00			
AGUA	0.26		7.00	1.79				
AGREGADO FINO	M3	0.97		30.00	29.10			
				TOTAL	S/330.89			

Fuente: Laboratorio de Mecánica de Suelos y Ensayo de Materiales de la Universidad Científica del Perú (2019)

ANEXO N°04: CONSTRASTACIÓN ESTADISTICA DE LA HIPÓTESIS

EVALUACION ESTADÍSTICA DE MUESTRAS DEL CONCRETO LIVIANO (CONCRETO LIVIANO NO ESTRUCTURAL) ENSAYOS AL CONCRETO ENDURECIDO (PROPIEDAD MECÁNICA)

Análisis de compresión

1. Hipótesis

H0: $r_{neo} = r_{Eu} = r_{R7} = r_{R14} = r_{R28}$

HA: algún r_{ii} es diferente

2. Nivel de significación 5%=0.05

3. Decisión

Si p= significación bilateral es menor de 0.05, se rechaza la hipótesis nula, caso contrario se acepta

/VARIABLES=NEOPLAST EUCOCELL DENSIDAD RESISTENCIA7 RESISTENCIA14 RESISTENCIA28 /

Correlaciones

[ConjuntoDatos1] D:\TATIANA-\Tesis Pérez T. y Flores F. análisis de la Compresión. sav

Correlaciones

		NEOPLAST				RESISTEN	
		8500Hp	EUCOCELL			CIA 14	
		(relación	1000 (relación		RESISTEN	días	Resistencia
		aditivo/cement	aditivo/cement		CIA 7 días	(kg/cm2)di	a los 28
		0	0)	Densidad	(kg/cm2)	as	días
NEOPLAST	Correlación de Pearson	1	-,032	-,032	-,433*	-,449*	-,481*
8500Hp (relación aditivo/cemento	Sig. (bilateral)		,872	,874	,024	,019	,011
aditivo/cemento	N	27	27	27	27	27	27
EUCOCELL	Correlación de Pearson	-,032	1	-,043	-,428*	-,483*	-,455*
1000 (relación	Sig. (bilateral)	,872		,833	,026	,011	,017
aditivo /cemento)	N	27	27	27	27	27	27
Densidad	Correlación de Pearson	-,032	-,043	1	,110	,096	-,049
	Sig. (bilateral)	,874	,833		,583	,635	,807
	N	27	27	27	27	27	27
RESISTENCIA	Correlación de Pearson	-,433*	-,428*	,110	1	,941**	,948**
7 días (kg/cm2)	Sig. (bilateral)	,024	,026	,583		,000	,000
	N	27	27	27	27	27	27
RESISTENCIA	Correlación de Pearson	-,449*	-,483*	,096	,941**	1	,954**
14 días (kg/cm2)dias	Sig. (bilateral)	,019	,011	,635	,000		,000
	N	27	27	27	27	27	27
Resistencia a los	Correlación de Pearson	-,481*	-,455*	-,049	,948**	,954**	1
28 días	Sig. (bilateral)	,011	,017	,807	,000	,000	
	N	27	27	27	27	27	27

^{*.} La correlación es significativa en el nivel 0,05 (bilateral).

- a) NEOPLAST 8500Hp (relación aditivo/cemento) correlacionado significativamente con Resistencia a los 28 días
- EUCOCELL 1000 (relación aditivo /cemento) correlacionado significativamente con RESISTENCIA 14 días (kg/cm²) días

^{**.} La correlación es significativa en el nivel 0,01 (bilateral). Interpretación:

Análisis de tracción

SAVE OUTFILE='D:\TATIANA-\Tesis Pérez T. y Flores F. análisis de la tracción.sav'

/COMPRESSED.

/VARIABLES=NEOPLAST EUCOCELL DENSIDAD RESISTENCIA7 RESISTENCIA14 RESISTENCIA28

/PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE.

Correlaciones

[ConjuntoDatos1] D:\TATIANA-\Tesis Pérez T. y Flores F. análisis de la tracción.sav

Correlaciones

			aciones				
		NEOPLAST	EUCOCELL			RESIST	D i - 4
		8500Hp (relación	1000 (relación		RESISTEN	ENCIA 14 días	Resiste ncia
		aditivo/cemen	aditivo/cemen		CIA 7 días	(kg/cm2)	alos 28
		to	to)	Densidad	(kg/cm2)	dias	dias
NEOPLAST	Correlación de Pearson	1	,000	-,259	-,480 [*]	-,507**	-,546**
8500Hp (relación	Sig. (bilateral)		1,000	,192	,011	,007	,003
aditivo/cemento	N	27	27	27	27	27	27
EUCOCELL	Correlación de Pearson	,000	1	-,879**	-,283	-,239	-,272
1000 (relación	Sig. (bilateral)	1,000		,000	,152	,230	,170
aditivo/cemento)	N	27	27	27	27	27	27
Densidad	Correlación de Pearson	-,259	-,879**	1	,576**	,513**	,597**
	Sig. (bilateral)	,192	,000		,002	,006	,001
	N	27	27	27	27	27	27
RESISTENCIA 7	Correlación de Pearson	-,480 [*]	-,283	,576**	1	,518**	,777**
días (kg/cm2)	Sig. (bilateral)	,011	,152	,002		,006	,000
	N	27	27	27	27	27	27
RESISTENCIA	Correlación de Pearson	-,507**	-,239	,513**	,518**	1	,643**
14 días	Sig. (bilateral)	,007	,230	,006	,006		,000
(kg/cm2)dias	N	27	27	27	27	27	27
Resistencia alos	Correlación de Pearson	-,546**	-,272	,597**	,777**	,643**	1
28 dias	Sig. (bilateral)	,003	,170	,001	,000	,000	i
	N	27	27	27	27	27	27

^{*.} La correlación es significativa en el nivel 0,05 (bilateral).

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

Modulo flexión

EXECUTE.

DATASET ACTIVATE ConjuntoDatos1.

SAVE OUTFILE='D:\TATIANA-\Tesis Pérez T. y Flores F. análisis de laFlexión.sav'

/COMPRESSED.

CORRELATIONS

/VARIABLES=NEOPLAST EUCOCELL DENSIDAD RESISTENCIA28 /PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE.

Correlaciones

		NEOPLAST 8500Hp (relación aditivo/cemento	EUCOCELL 1000 (relación aditivo/cemento)	Densidad	Resistencia alos 28 dias
NEOPLAST 8500Hp	Correlación de Pearson	1	,000	-,151	-,065
(relación	Sig. (bilateral)		1,000	,277	,641
aditivo/cemento	N	54	54	54	54
EUCOCELL 1000	Correlación de Pearson	,000	1	-,829**	-,370**
(relación	Sig. (bilateral)	1,000		,000	,006
aditivo/cemento)	N	54	54	54	54
Densidad	Correlación de Pearson	-,151	-,829**	1	,629**
	Sig. (bilateral)	,277	,000		,000
	N	54	54	54	54
Resistencia alos 28	Correlación de Pearson	-,065	-,370**	,629**	1
dias	Sig. (bilateral)	,641	,006	,000	
	N	54	54	54	54

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

Análisis Modulo elástico

DATASET ACTIVATE ConjuntoDatos1.

SAVE OUTFILE='D:\TATIANA-\Tesis Pérez T. y Flores F. análisis del modulo elastico.sav' /COMPRESSED.

CORRELATIONS

/VARIABLES=NEOPLAST EUCOCELL DENSIDAD RESISTENCIA28 /PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE.

Correlaciones

Correlaciones

		Correlacion			,
					NEOPLAST
				EUCOCELL	8500Hp
			Resistencia a los	1000 (relación	(relación
		Densidad	28 días	aditiva/cemento)	aditiva/cemento
Densidad	Correlación de Pearson	1	,630**	-,829**	-,251
	Sig. (bilateral)		,000	,000	,139
	N	36	36	36	36
Resistencia a los	Correlación de Pearson	,630**	1	-,515**	-,191
28 días	Sig. (bilateral)	,000		,001	,265
	N	36	36	36	36
EUCOCELL	Correlación de Pearson	-,829**	-,515 ^{**}	1	-,032
1000 (relación	Sig. (bilateral)	,000	,001		,851
aditiva/cemento)	N	36	36	36	36
NEOPLAST	Correlación de Pearson	-,251	-,191	-,032	1
8500Hp (relación	Sig. (bilateral)	,139	,265	,851	
aditiva/cemento	N	36	36	36	36

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

EMENTO SOL

ANEXO N°05: FICHAS TÉCNICAS DEL PRODUCTO

> FICHA TÉCNICA DE CEMENTO SOL TIPO I

UNACEM

CEMENTO SOL

Descripción:

- Es un Cemento Tipo I, obtenido de la molienda conjunta de Clinker y veso.
- Cuenta con la fecha y hora de envasado en la bolsa en beneficio de los consumidores, ya que permite una mayor precisión en la trazabilidad.

Beneficios:

- El acelerado desarrollo de resistencias iniciales permite un menor tiempo en el desencofrado.
- · Excelente desarrollo de resistencias en Shotcrete.
- Ideal para la producción de prefabricados en concreto.

Usos:

- Construcciones en general y de gran envergadura cuando no se requieren características especiales o no especifique otro tipo de cemento.
- Fabricación de concretos de mediana y alta resistencia a la compresión.
- Preparación de concretos para cimientos, sobrecimientos, zapatas, vigas, columnas y techado.
- Producción de prefabricados de concreto.
- Fabricación de bloques, tubos para acueducto y alcantarillado, terrazos y adoquines.
- Fabricación de morteros para el desarrollo de ladrillos, tarrajeos, enchapes de mayólicas y otros materiales.

Características Técnicas:

 Cumple con la Norma Técnica Peruana 334.009 y la Norma Técnica Americana ASTM C 150.

Formato de distribución:

- Bolsas de 42.5 Kg: 04 plicgos (03 de papel + 01 film plástico).
- Granel: A despacharse en camiones bombonas y Big Bags.

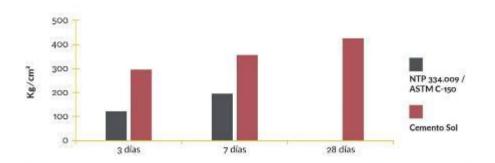
Recomendaciones

Dosificación:

- Se debe dosificar según la resistencia deseada.
- Respetar la relación agua/cemento (a/c) a fin de obtener un buen desarrollo de resistencias, trabajabilidad y performance del cemento.
- Realizar el curado con agua a fin de lograr un buen desarrollo de resistencia y acabado final.

Manipulación:

- Se debe manipular el cemento en ambientes ventilados.
- Se recomienda utilizar equipos de protección personal.
- Se debe evitar el contacto del cemento con la piel, los ojos y su inhalación.


Almacenamiento:

- Almacenar las bolsas bajo techo, separadas de paredes y pisos. Protegerlas de las corrientes de aire húmedo.
- No apilar más de 10 bolsas para evitar su compactación.
- En caso de un almacenamiento prolongado, se recomienda cubrir los sacos con un cobertor de polietileno y en dos pallet de altura.

221

Requisitos mecánicos

Comparación resistencias NTP 334.009 / ASTM C-150 vs. Cemento Sol

Propiedades físicas y químicas

Parámetro	Unidad	Cemento Sol Tipo I	Requisitos 334.009 / ASTM C-150	
Contenido de aire	%	6.62	Máximo 12	
Expansión autoclave	%	0.08	Máximo o.8o	
Superficie específica	cm ² /g	3361	Máximo 2600	
Densidad	g/ml	3.12	No Especifica	
Resistencia a la Compresión	307,440.0		and the second	
Resistencia a la compresión a 3 días	kg/cm ^a	296	Minimo 122	
Resistencia a la compresión a 7 días	kg/cm ²	357	Mínimo 194	
Resistencia a la compresión a 28 días	kg/cm ³	427	No especifica	
Tiempo de Fraguado				
Fraguado Vicat inicial	min	127	Minimo 45	
Fraguado Vicat final	min .	305	Máximo 375	
Composición Química				
MgO	%	2.93	Máximo 6.0	
503	%	3.08	Máximo 3.5	
Pérdida al fuego	%	2.25	Máximo 3.0	
Residuo insoluble	%	0.68	Máximo 1.5	
Fases Mineralógicas				
C2S	%	13.15	No especifica	
C3S	96	53.60	No especifica	
C3A	%	9.66	No especifica	
C4AF	96	9.34	No especifica	

NEOPLAST 8500 HP®

ADITIVO REDUCTOR DE AGUA DE ALTO RANGO Y SUPERPLASTIFICANTE SIN RETARDO

DESCRIPCIÓN

NEOPLAST 8500 HP es un aditivo para concreto especialmente desarrollado para incrementar el tiempo de trabajabilidad, reductor de agua de alto rango sin retardo y optimizador de cemento en mezclas de concreto, está diseñado para ser empleado en climas cálidos y trios.

APLICACIONES PRINCIPALES

- · Concreto autocompactados.
- · Concreto de baja relaciones agua/cemento.
- · Concreto de alta resistencia.
- · Concreto fluido de alto asentamiento,
- Concreto reforzado.

BENEFICIOS

- Produce concreto fluidos sin retardo.
- · Permite que el concreto o mortero sea transportado a largas distancias.
- Reduce m\u00e4s de 45% del agua de amasado.
- · Reduce la segregación y exudación en el concreto plástico.
- Reduce las fisuras y permeabilidad en el concreto endurecido.

> FICHA TÉCNICA DE ADITIVO 01 - NEOPLAST 8500 HP

INFORMACIÓN TÉCNICA

Densidad : 1.10 kg/L Color : Ámbar oscuro Apariencia : Liquido

ESPECIFICACIONES /NORMA

El NEOPLAST 8500 HP cumple con la clasificación de la norma NTP 334.088 y ASTM C-494, Tipo F. (*).

1

Química Suíza Industrial del Perú S.A. T+51-1710 4000 Anexos: 2421 / 1211 ventasconstruccion@quindustrial.bz ingenieria.po@esindustrial.biz www.qaindustrial.biz

NEOPLAST 8500 HP®

ADITIVO REDUCTOR DE AGUA DE ALTO RANGO Y SUPERPLASTIFICANTE SIN RETARDO

INSTRUCCIONES DE USO

NEOPLAST 8500 HP se presenta listo para su uso y debe incorporarse a la mezcla cuando ésta se encuentra húmeda dentro del mezclador, ya sea en la planta o en la obra. Agregue NEOPLAST 8500 HP al agua restante del amasado de la mezcla o directamente. No debe entrar en contacto directo con el cemento seco.

Las variaciones en la pérdida de asentamiento y fraguado están en función a la cantidad usada del aditivo, característica del cemento y el diseño de mezcla elegido

DOSIFICACIÓN

El NEOPLAST 8500 HP es recomendado usar a una dosificación 0.2- 2.0% por peso del cemento. Se recomienda hacer ensayos previos para establecer la dosis según los requerimientos establecidos en obra.

PRESENTACIÓN

- Tangues 1100 kg
- Cilindro 180 kg
- Balde 20 kg

PRECAUCIONES / RESTRICCIONES

- Se debe proteger el NEOPLAST 8500 HP contra el congelamiento. Nunca agite con aire.
- Los cambios en los tipos de cemento, agregados y temperatura modifican el desempeño de los aditivos en la mezcla de concreto, variando resultados en el concreto fresco y endurecido.
- · No es compatible con los aclitivos base naftalenos.
- Se debe consultar con nuestros. Asesores Técnicos cada vez que se tenga dudas respecto al uso del producto. De esta manera, podrá definir la solución que otrezca un mejor costo-beneficio a nuestro cliente.
- EL producto debe almacenarse en su envase original, bien cerrado, bajo techo, en un lugar freso y seco.
 (*) NEOPLAST 8500 HP clasifica la norma en la dosis de 0.5%.

MANEJO Y ALMACENAMIENTO

NEOPLAST 8500 HP debe almacenarise en su envase original herméticamente cerrado y bajo techo.

Vida útil de almacenamiento: 12 meses.

Química Suíza Industrial del Perú S.A. T+51-1710 4000 Anexos: 2421 / 1211 ventasconstruccion@gsindustrial.bz ingenieria.pc@gsindustrial.biz www.qsindustrial.biz

Hoja Técnica / JM Versión 01-QSI Enero 2016

2

> FICHA TÉCNICA DE ADITIVO 02 - EUCOCELL 1000

EUCOCELL 1000 ®

ADITIVO INCORPORADOR DE AIRE PARA CONCRETO LIGERO

DESCRIPCIÓN

EUCOCELL 1000 es un aditivo liquido diseñado para la fabricación de concretos y morteros fluidos, con altos contenidos de aire, baja densidad y resistencia a compresión. No es recomendado para concreto convencional.

APLICACIONES PRINCIPALES

- EUCOCELL 1000 es un aditivo para fabricación de morteros fluidos utilizados en invección empleado en:
- Relleno Fluido.
- · Concreto de densidad controlada.
- Dar apoyo bajo y detrás de estructuras y revestimientos de túneles.
- Relleno de cavidades dificilmente accesibles.
- · Rellenos provisionales.
- Inyección bajo pavimentos.

CARACTERÍSTICAS / BENEFICIOS

Los rellenos fluidos para inyección y los morteros celulares son materiales más ligeros que los concretos convencionales y son una alternativa económica en donde se requiere un relleno cementicio.

- Aditivo líquido listo para usar.
- El relleno tiene alta fluidez y trabajabilidad.
- Reduce la contracción y aumenta el asentamiento.
- Es autonivelante, no requiere vibrado.
- No requiere alta mano de obra. y sin segregación

INFORMACIÓN TÉCNICA

Apariencia ; Liquido.

Color : Transparente turbio.

Densidad : 1,05 kg/l.

DOSIFICACIÓN

EUCOCELL 1000 se dosifica a razón de 1% a 2.5% del peso del cemento.

Se recomienda realizar ensayos previos en la obra para determinar la dosificación adecuada, lo cual puede ser diferente a las dosificaciones recomendadas.

Los resultados varian debido a las diversas condiciones de cada obra y tipo de materiales empleados.

1

Cualquier consulta contacte al Departamento de Construcción Química Suiza Industrial.

Química Suiza Industrial del Perú S.A. T+51-1710 4000 Anexos: 2421 / 1211 ventasconstruccion@osindustrial.biz ingenieria po@osindustrial.biz www.qsindustrial.biz

EUCOCELL 1000 ®

ADITIVO INCORPORADOR DE AIRE PARA CONCRETO LIGERO

PRESENTACIÓN

Cilindro 200kg = 50.3 galones*
*galones americanos aproximados.

DIRECCIONES PARA SU USO

- . EUCOCELL 1000 se aplica directamente en la mixer inmediatamente después de cargado.
- La mezcia óptima se obtiene cuando la consistencia es fluida.
- . Después de adicionado el EUCOCELL 1000 es necesario dar como mínimo 8 minutos de mezcla.
- Debido a que el material puede incorporar del 35 45% de aire, el peso unitario estará entre el rango de 1500 2100 Kg/m² mientras un mortero y concreto convencional normal puede tener de 2200 - 2400 Kg/m².
- Contenido de aire: se recomienda determinar el porcentaje de aire según norma ASTM C-173 Método Volumétrico.
- Se pueden obtener variaciones en la resistencia a la compresión entre 10 y 100 kg/cm2 haciendo variación en la desificación del cemento.
- El diseño de las mezclas puede variar en función de las necesidades y de las aplicaciones especificas requeridas.
- Los resultados a obtener varian con los diversos tipos de cementos y la calidad de agregados utilizados.
- Se recomienda realizar ensayos previos en la obra para determinar la dosificación adecuada, de acuerdo al tipo de obra o proyecto a realizar.
- EUCOCELL 1000 no contiene cloruro de calcio u otros ingredientes potenciales de corrosión.

PRECAUCIONES / RESTRICCIONES

- Nunca lo agite con aire o lanza de aire.
- · Cuando se utilice con otros aditivos, cada uno debe dosificarse por separado.
- No utilice aire para su agitación.
- . No lo dosifique directamente sobre el cemento seco.
- . Limple con agua las herramientas y el equipo antes que se endurezca el mortero y/o mortero.
- Durante la manipulación usar las medidas de seguridad apropiadas. Usar el equipo de protección personal apropiado.
- Evitar el contacto con la piel, ojos y vias respiratorias. En caso de contacto con la piel, lavar con abundante agua, para mayor información consultar la hoja de seguridad del producto.

Química Suiza Industrial del Perú S.A. T+51-1710 4000 Anexos: 2421/1211 ventasconstruccion@qsindustrial.biz ingenieria po@qsindustrial.biz www.qsindustrial.biz

EUCOCELL 1000 ®

ADITIVO INCORPORADOR DE AIRE PARA CONCRETO LIGERO

MANEJO Y ALMACENAMIENTO

EUCOCELL 1000 debe almacenarse en su envase original herméticamente cerrado y bajo | techo. Vida útil de almacenamiento: 1 año.

Ouimica Suiza Industrial del Perú S.A. T +51-1 710 4000 Anexos: 2421 / 1211 ventasconstruccion@osindustrial biz ingenieria pe@gsindustrial.biz www.qsindustrial.biz

> HOJA DE SEGURIDAD - EUCOCELL 1000

1-152711-009

HOJA DE SEGURIDAD- EUCOCELL 1000

SECCION 1- IDENTIFICACION DE PRODUCTO

Nombre comercial: EUCOCELL 1000

Representante en el Perú: Química Suiza Industrial del Perú S.A. Teléfono: 710 – 4000 anexo 4065- 4066

Teléfono de Emergencia: 452-0709 anexo 8123

Dirección: Av. República de Panamá 2577 La Victoria
Uso del producto: Aditivo espumante para inyecciones de

concretos y morteros.

SECCION 2 - IDENTIFICACION DE PELIGROS

Resumen de emergencias

Liquido ligeramente viscoso, incoloro, sin serios efectos bajo condiciones de uso normales. Respirar aire fresco. Evitar sobre exposición. Si los síntomas persisten consultar a un médico.

Efectos potenciales para la salud/vías de exposición

Inhalación: Sin serios efectos bajo condiciones de uso

normales.

Ojos: Contacto directo puede causar ligera

irritación.

Ingestión: Puede causar irritación gastrointestinal,

nauseas y vómitos.

Piel; Puede causar ligera irritación.

SECCION 3 - COMPOSICION DEL PRODUCTO

Descripción Quimica

Tensoactivo orgánico.

Componentes peligrosos CAS-N * %

SECCION 4 - MEDIDAS DE PRIMEROS AUXILIOS

Conseguir atención médica inmediata en cualquier caso de exposición prolongada.

Inhalación: Respirar aire fresco. Monitorear problemas respiratorios.

Dar oxigeno de ser necesario, si se presenta una tos persistente o tiene problemas en respirar, buscar atención

médica inmediata.

Osimico Sapo Indintral dei Però SA Au Repúblico de Persona 2577 (Ann. 17 - 50) www.quinkseria.bis

T | 15-2 T0 4032 F(433-0 710 4060

HOJA DE SEGURIDAD- EUCOCELL 1000

Ojos: Lavar los ojos por 15 min, si persiste el malestar o irritación

buscar atención médica inmediata.

Plel: Lavar la parte afectada, si persiste el escozor o irritación

buscar atención médica inmediata.

Ingestión: Conseguir atención médica. No inducir al vómito.

SECCION 5 - MEDIDAS DE LUCHA CONTRA INCENDIOS

Medios de extinción:

No se espera que este producto arda bajo condiciones de uso normal. Usar producto químico seco, aspersor de

agua, dióxido de carbono.

Productos de combustión peligrosos:

Monóxido de carbono y dióxido de carbono pueden

formar humo.

Equipo de protección contra incendios:

Son aceptadas técnicas contra incendios. Usar ropa contra incendios, incluyendo aparatos para la respiración.

Condiciones de explosión y fuego:

No se espera que este producto se encienda bajo

condiciones de uso normal.

SECCION 6 - MEDIDAS A TOMAR EN CASO DE DERRAME ACCIDENTAL

Detener derrame, alejarlo del agua. Absorber derrame con arena, tierra u algún otro material adecuado. Transferirlo a adecuados contenedores para su desecho. Usar equipo adecuado. Evitar contacto con el material.

SECCION 7 - ALMACENAJE YMANIPULACIÓN

Manipule el producto con higiene. Alejarlo de Tugares fríos no use en áreas poco ventilladas. Prevenga inhalaciones de vapor ingestión y contacto con la piel u ojos y ropa. Mantenerlo cerrado cuando no sea usado. Las precauciones también aplican a contenedores vacíos. Almacenar en contenedores sellados y en lugares ventillados y secos.

Opinion Saga Indicated del Però SA A. Repúblico de Paramo 2577 Janu 11 - Sani svenopia/komicidas

HOJA DE SEGURIDAD- EUCOCELL 1000

SECCIÓN 8 - CONTROL DE EXPOSICION / PROTECCION PERSONAL

Equipo de protección personal

T 100 51 1002 F1480-0700 4080

Respiratoria: No requerida bajo condiciones de uso normal. Usar

equipo de respiración adecuado cuando la ventilación

no es suficiente o si es necesario.

Protección de las manos: Usar guantes de goma e indumentaria protectora para

reducir exposición.

Protección para los ojos: Usar gafas protectoras.

Protección para la piel: Prevenir el contacto con los zapatos y la ropa. Usar

delantal de goma y protectores para los zapatos.

SECCIÓN 9 - PROPIEDADES FISICAS Y QUIMICAS

Forma: Liquido, ligeramente viscoso.

Color: Transparente
Punto de lusión: No determinado
Punto de congelamiento: No determinado
Punto de descomposición: No determinado
Punto de ebullición: No determinado
Solubilidad en agua: Soluble
Densidad (g'mL): 1,006 – 1,086
pH: 6,00 – 8,00

SECCIÓN 10 - REACTIVIDAD / ESTABILIDAD

Evitar sustancias: Ácidos y bases fuertes

Establidad: Estable.
Polimerización peligrosa: No ocurrirá.

SECCIÓN 11 - INFORMACION TOXICIDAD/COMPONENTES PELIGROSOS

No existe datos disponibles.

SECCIÓN 12 - INFORMACION ECOLOGICA

Ningún dato disponible.

Opimino Supo Industrial del Però SA No Papolitico de Parlanti 2517 (Ano 17 - Rojo serregiadoscia del

T R.J 70 4000 FIRST-E7004050

HOJA DE SEGURIDAD- EUCOCELL 1000

SECCIÓN 13 - CONSIDERACIONES SOBRE SU ELIMINACION

Desechar en cumplimiento con los reglamentos del estado y locales.

SECCIÓN 14 - TRANSPORTACION/DATOS DE EMBARQUE

TGD / DOT Descripción de embarque: MERCADERIA NO PELIGROSA

SECCIÓN 15 - INFORMACION LEGAL REGULATORIA

Etiquetado según 88/379/EEC

Según directivas CE y la legislación nacional correspondiente, el producto no requiere etiqueta.

SECCIÓN 16 - INFORMACION ADICIONAL

SALUD	1	
FLAMABILIDAD	0	
REACTIVIDAD	0	
PPE	В	

0 = mínimo 1 = ligero 2 = moderado 3 = serio 4 = severo

Osimina Satta Indicatoral del Però SA Au Pepút Ico de Paranta 2577 Line 31 - Forti serropiadoscia del

HOJA DE SEGURIDAD- EUCOCELL 1000

Información Adicional

F (450-075) 1000 F (450-0750-4080

Solo para uso industrial. Manténgase alejado de los niños. Las informaciones de precaución son ofrecidas únicamente para la consideración del usuario. Sujeta a su propia investigación de acuerdo a las regulaciones aplicables, incluyendo el uso de seguro de este producto bajo condiciones previsibles.

Central de emergencias de los bomberos : 116 ó 2220222

La información contenida esta basada en datos considerados exactos. Pero no se expresa garantía que implique la consideración de exactitud de estas datos o el resultado obtenido por su uso. El vandador no asuma responsabilidades por daños al comprador o terceras personas causadas por el material. Si los procedimientos razonables de seguridad no son adheridos como se estipuía en la hoja de datos adicional, el vendedor no asuma esponsabilidad por daños el comprador o terceras personas causadas por uso inadecuado del material incluso si los procedimientos de seguridad son seguidos, además, el comprador asume el riesgo del uso del material.

> HOJA DE SEGURIDAD - NEOPLAST 8500

Guimica Suiza Industrial del Perú SA Au Nacottora de Panarol 2º T++51-0 710 4000 €1+51-11700 4050

Av. República de Panarná 25/7 Limo 13 - Porú www.guiadestrial.bús

HOJA DE SEGURIDAD- NEOPLAST 8500 HP

SECCION 1- IDENTIFICACION DE PRODUCTO

Nombre comercial : NEOPLAST 8500 HP

 Compañía
 : Química Suiza Industrial del Perú S.A

 Teléfono
 : 211 - 4000 anexo 4065- 4066

 Teléfono de Emergencia
 : 452-0709 anexo 8123

Dirección : Av. República de Panamá 2577 La Victoria

Uso del producto : Aditivo reductor de agua de alto rango y superplastificante sin retardo

SECCION 2 - IDENTIFICACION DE PELIGROS

Resumen de emergencias

Liquido ámbar, sin serios efectos bajo condiciones de uso normales. Respirar aire fresco. Evitar sobre exposición.

Si los síntomas persisten consultar a un medico.

Efectos potenciales para la salud/vías de exposición

Inhalación : Sin serios efectos bujo condiciones de uso normales.

Ojos : Contacto directo puede causar ligera irritación.

Ingestión : Puede causar irritación gastrointestinal, nauseas y vómitos

Piel : Puede causar ligera irritación.

SECCION 3 - COMPOSICION DEL PRODUCTO

Descripción Química

Solución acuosa de poli acrilato - vinil

Componentes peligrosos CAS-N° %

SECCION 4 - MEDIDAS DE PRIMEROS AUXILIOS

Conseguir atención medica inmediata en cualquier caso de exposición

Inhalación ; Respirar aire fresco. Monitorear problemas respiratorios. Dar oxigeno de ser necesario, si se presenta

una tos persistente o tiene problemas en respirar, buscar atención médica inmediata.

Ojos : Lavar los ojos por 15 min, si persiste el escozor o irritación buscar atención médica inmediata.

Piel : Limpiar área de contacto con jabón y agua si la irritación persiste conseguir ayuda medica.

Ingestión : Conseguir atención médica. No inducir al vomito.

Versión 01 Setiembre 2015

1

Guimica Suiza Industrial del Perú SA Av República de Panarnii 25/7 Limo 13 - Perú www.quiadastrial.bús T++53-0; 710 4000 ≸1+51-11700 4050

HOJA DE SEGURIDAD- NEOPLAST 8500 HP

SECCION 5 - DATOS SOBRE PELIGRO DE EXPLOSION Y FUEGO

Medios de extinción : No se espera que este producto arda bajo condiciones de uso normal.

Productos de combustión : Monóxido de carbono y dióxido de carbono pueden formar humo.

Peligrosos

Equipo de protección contra : Son aceptadas técnicas contra incendios. Usar ropa contra incendios,

scendios incluyendo equipos para la respiración.

Condiciones de explosión y : No se espera que este producto se encienda bajo

Fuego condiciones de uso normal.

SECCION 6 - MEDIDAS CONTRA DERRAMES ACCIDENTALES

Detener derrame, alejarlo del agua. Absorber derrame con arena, tierra u algún otro material adecuado. Transferirlo a adecuados contenedores para su desecho. Usar equipo adecuado. Evitar contacto con el material.

SECCION 7 - ALMACENAJE Y MANIPULACION

Manipule el producto con higiene. Lavarse las manos antes de usar el producto. Alejarlo de lugares fríos no use en áreas poco ventiladas. Prevenga inhalaciones de vapor ingestión y contacto con la piel u ojos y ropa. Mantenerlo cerrado cuando no sea usado. Las precauciones también aplican a contenedores vacíos. Almacenar en contenedores sellados y en lugares ventilados y secos.

SECCIÓN 8 - CONTROL DE EXPOSICION / PROTECCION PERSONAL

Respiratoria : No requerida bajo condiciones de uso normal. Usar equipo de respiración adecuado cuando

la ventilación no es suficiente o si es necesario.

Protección de las manos : Usar guantes de goma e indumentaria protectora para reducir exposición.

Protección para los ojos : Usar adecuados protectores para los ojos. Use gafas protectoras y/o protectores para el rostro

para prevenir contacto visual, No use lente de contacto. No tocarse los ojos si hace

contacto con el producto.

Protección para la piel : Prevenir el contacto con los zapatos y la ropa. Usar delantal de goma y protectores para

los zapatos.

Medidas de orden técnico : No requeridas bajo condiciones de uso normal.

Versión 01 Setiembre 2015

Química Suiza Industrial del Perú SA Av. Regultura de l'anamà 25. T++53-0; 710 4000 F1+51-1(710 4050

del Perù SA Av República de Panarià 25/7 Lima 11 - Perú www.quadenrial.bia

HOJA DE SEGURIDAD- NEOPLAST 8500 HP

SECCIÓN 9 - PROPIEDADES FISICAS Y QUIMICAS

Forma : Líquido
Color : Ámbar
Punto de Congelamiento : No determinado
Punto de ebullición : No determinado
Solubilidad en agua : Soluble
Densidad (g/mL) : 1.086 – 1.116
pH : 5.13 – 6.13

SECCIÓN 10 - REACTIVIDAD / ESTABILIDAD

Evitar sustancias : Ácidos y bases fuertes Estabilidad : Estable.

Estabilidad : Estable.

Polimerización peligrosa : No ocurrirá.

SECCIÓN 11 - INFORMACION TOXICIDAD/COMPONENTES PELIGROSOS

No existen datos disponibles.

SECCIÓN 12 - INFORMACION ECOLOGICA

Ningún dato disponible

SECCIÓN 13 - CONSIDERACIONES SOBRE SU ELIMINACION

Desechar en cumplimiento con los reglamentos del estado y locales.

SECCIÓN 14 - TRANSPORTACION/DATOS DE EMBARQUE

TGD / DOT Descripción de embarque: MERCADERIA NO PELIGROSA

SECCIÓN 15 - INFORMACION LEGAL REGULATORIA

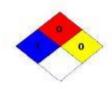
Etiquetado según 88/379/EEC

Según directivas CE y la legislación nacional correspondiente, el producto no requiere etiqueta.

SECCIÓN 16 - INFORMACION NFPA 704

Versión 01 Setiembre 2015

3


Guimica Suitta Industrial del Perú SA Av República de Panarna 35/7 Lima (3 - Perú www.piadastrial.bia

T+53-0 710 4000 F1+51-1(710 4050

HOJA DE SEGURIDAD- NEOPLAST 8500 HP

SALUD	1316	
INFLAMABILIDAD	0	
REACTIVIDAD	0	
EPP	0	_

0 = minimo 1 = ligero 2 = moderado 3 = serio 4 = severo

Información Adicional

Solo para uso industrial. Manténgase alejado de los niños. Las informaciones de precaución son ofrecidas únicamente para la consideración del usuario. Sujeta a su propia investigación de acuerdo a las regulaciones aplicables, incluyendo el uso de seguro de este producto bajo condiciones previsibles.

Central de emergencias de los bomberos : 116 ó 2220222

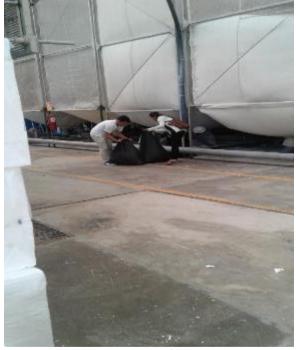
La información contenida esta basada en datos considerados exactos. Pero no se expresa garantía que implique la consideración de exactitud de estos datos o el resultado obtenido por su uso. El vendedor no asume responsabilidades por daños al comprador o terceras personas causadas por el material. Si los procedimientos razonables de seguridad no son adheridos como se estipula en la hoja de datos adicional, el vendedor no asume responsabilidad por daños al comprador o terceras personas causadas por uso inadecuado del material incluso si los procedimientos de seguridad son seguidos, además, el comprador asume el nesgo del uso del material.

Versión 01 Setiembre 2015

ANEXO N°06: PANEL FOTOGRAFICO MATERIALES Y EQUIPOS

FOTO N° 01: Lugar de donde se adquirió el agregado fino "cantera Irina Gabriela".

Fuente: Elaboración propia (2019).


FOTO N° 02: Agregado fino, transportado en costales hasta él laboratorio.

Fuente: Elaboración propia (2019).

FOTO N° 03: Lugar de donde se adquirió las perlas de poliestireno, " acua trade".

Fuente: Elaboración propia (2019).

FOTO N° 04: obtención de las perlas de poliestireno dentro del almacén.

FOTO N° 05: Moldes cilíndricas de 4" x 8" de la marca Forney.

FOTO N° 06: Aditivo NEOPLAST 8500 HP y

EUCOCELL 1000

Fuente: Elaboración propia (2019).

FOTO N° 07: Discos de Desbaste de la marca Forney, que sirven para rotura de probetas.

Fuente: Elaboración propia (2019).

FOTO N° 08: Almacenamiento del cemento Sol.

FOTO N° 09: Alquiler de trompo.

FOTO N° 10: Mezclado del agregado fino en tres capas.

Fuente: Elaboración propia (2019).

ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO

FOTO N° 11: Toma de muestra.

Fuente: Elaboración propia (2019).

FOTO N° 12: Colocación del agregado fino en horno.

FOTO N° 13: Recipientes con las muestras retiradas del horno.

FOTO N° 14: Tamices para el análisis granulométrico.

Fuente: Elaboración propia (2019).

PESO ESPECÍFICO Y PORCENTAJE DE ABSORCIÓN DEL AGREGADO FINO

FOTO N° 15: Toma de muestra.

Fuente: Elaboración propia (2019).

FOTO N° 16: Secado a mano

FOTO N° 17: Prueba de cono de absorción, para verificar si las partículas del agregado fino están secas.

FOTO N° 18: Llenado de agua en los frascos volumétricos.

Fuente: Elaboración propia (2019).

FOTO N° 19: Peso del agua con el frasco volumétrico.

Fuente: Elaboración propia (2019).

FOTO N° 20: Colocación y peso del agregado fino en el frasco con agua.

FOTO N° 21: Vista de las muestras en los frascos volumétricos.

FOTO N° 22: Colocación de las muestras de los frascos en un recipiente.

Fuente: Elaboración propia (2019).

FOTO N° 23: Colocación de los recipientes con las muestras en el horno.

Fuente: Elaboración propia (2019).

FOTO N° 24: Recipientes con las muestras retiradas del horno .

MATERIAL QUE PASA POR TAMIZ Nº 200 DE AGREGADO FINO.

FOTO N° 25: Peso de las taras para la colocación del material.

Fuente: Elaboración propia (2019).

FOTO N° 26: Lavado del material.

Fuente: Elaboración propia (2019).

FOTO N° 27: Colocación del material lavado del tamiz N° 200 en el horno.

Fuente: Elaboración propia (2019).

FOTO N° 28: Recipientes con las muestras retiradas del horno .

PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO FINO

FOTO N° 29: Vista de la toma de muestra. Fuente: Elaboración propia (2019).

FOTO N° 30: Proceso de secado.

Fuente: Elaboración propia (2019).

FOTO N° 31: Proceso de llenado en 3 capas,

en el molde
Fuente: Elaboración propia (2019).

FOTO N° 32: Peso de la muestra.

ANÁLISIS GRANULOMÉTRICO DEL AGREGADO GRUESO

FOTO N° 33: Toma de muestra de las perlas de poliestireno.

Fuente: Elaboración propia (2019).

FOTO N° 34: Tamices que se usaron.

Fuente: Elaboración propia (2019).

FOTO N° 35: Realización del analisis granulometrico.

Fuente: Elaboración propia (2019).

FOTO N° 36: Vista del proceso de granulometria.

PESO ESPECÍFICO Y PORCENTAJE DE ABSORCIÓN DEL AGREGADO GRUESO

FOTO N° 37: Llenado de agua en los frascos volumétricos.

Fuente: Elaboración propia (2019).

FOTO N° 38: Peso de los frascos volumetricos con agua.

Fuente: Elaboración propia (2019).

FOTO N° 39: Proceso de llenado de las perlas de poliestireno.

Fuente: Elaboración propia (2019).

FOTO N° 40: Peso del frasco volumentrico con agua y las perlas de poliestireno

PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO

FOTO N° 31: Ensayo del Peso unitario suelto, de las perlas de poliestireno.

Fuente: Elaboración propia (2019).

FOTO N° 32: Proceso de nivelacion de la muestra con el molde.

Fuente: Elaboración propia (2019).

FOTO N° 33: Ensayo del peso unitario compactado, mediante varillado, por 3 capas.

Fuente: Elaboración propia (2019).

FOTO N° 34: Peso de la muestra.

MATERIALES Y EQUIPOS A USAR PARA EL CONCRETO EN ESTADO FRESCO

FOTO N° 35: Peso del agregado fino. Fuente: Elaboración propia (2019).

FOTO N° 36: Peso de las perlas de poliestireno para el diseño de mezclas.

Fuente: Elaboración propia (2019).

FOTO N° 37: Peso de las perlas de poliestireno para el diseño de mezclas.

Fuente: Elaboración propia (2019).

FOTO N° 38: Vista de los materiales.

FOTO N° 39: Peso del agregado fino para el contenido de humedad del diseño.

FOTO N° 40: Moldes a usar.

Fuente: Elaboración propia (2019).

PROCESO DE LA ELABORACION DE LA MEZCLA

FOTO N° 41: Vaciado de los materiales al trompo.

Fuente: Elaboración propia (2019).

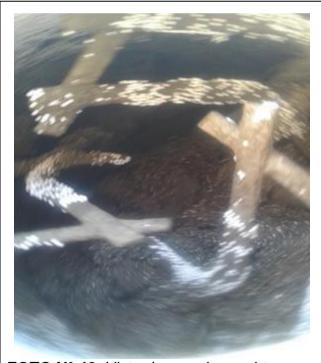
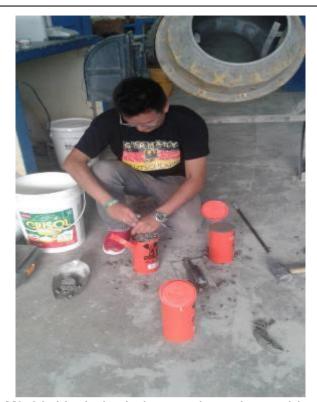



FOTO N° 42: Vista de mezcla en el trompo.

FOTO N° 43: Vaciado de la mezcla en carretilla para el transporte.

N° 44: Vaciado de la mezcla en los moldes cilindricos.

Fuente: Elaboración propia (2019).

FOTO N° 45: Chuseado de la mezcla en los moldes.

Fuente: Elaboración propia (2019).

46: Vista panoramica de los moldes con mezcla de concreto.

ENSAYO DEL PESO UNITARIO

FOTO N° 47: Recogo de la mezcla para ser colocado en el molde.

FOTO N° 48: Proceso de ensayo con varilla

FOTO N° 48: Proceso de ensayo con varilla de 5/8" para obtener el Peso unitario de la mezcla.

Fuente: Elaboración propia (2019).

Fuente: Elaboración propia (2019).

ENSAYO DEL ASENTAMIENTO

FOTO N° 49: limpieza del piso, para evitar polvo.

Fuente: Elaboración propia (2019).

FOTO N° 50: Colocacion del cono de abrahams, para empezar con el ensayo.

FOTO N° 53: Enrazamos la superficie hasta que la mezcla quede en el nivel del cono.

FOTO N° 52: Compactación de la mezcla por capa en 25 golpes con la varilla uniformemente.

Fuente: Elaboración propia (2019).

FOTO N° 54: Se procedió a levantar verticalmente el molde en 5 ± 2 segundos, sin girarlo o moverlo lateralmente.

FOTO N° 55: Con la regla metálica se obtendra el nivel de asentamiento.

FOTO N° 56: Se tomó la medida del asentamiento desde el centro de la masa asentada del concreto hasta la parte inferior de la varilla.

Fuente: Elaboración propia (2019).

TEMPERATURA DEL CONCRETO

FOTO N° 57: Termometro, dispositivo de medicion de temperatura.

Fuente: Elaboración propia (2019).

FOTO N° 58: Se dejo el dispositivo en el cocnreto durante al menos 2 minutos.

CONCRETO EN ESTADO ENDURECIDO – RESISTENCIA A LA COMPRESIÓN

FOTO N° 59: Desmolde de las probetas de los cilindros plasticos.

Fuente: Elaboración propia (2019).

FOTO N° 60: Vista de las Probetas desmoldadas.

Fuente: Elaboración propia (2019).

FOTO N° 61: Identificacion de las probetas para el manejo de dia de rotura.

Fuente: Elaboración propia (2019).

FOTO N° 62: Se sumergio a las probetas en agua para su curado.

FOTO N° 63: Se retiro las probetas del agua a los 7, 14 y 28 días de curado, para rotura, antes de ello se toma la medida del diametro.

FOTO N° 64: Se colocó la probeta en la maquina para obtencion de la resistencia en los 7, 14 y 28 dias, respectivamente.

Fuente: Elaboración propia (2019).

FOTO N° 65: Vista de la probeta despues de

Fuente: Elaboración propia (2019).

66: Fisuras de la probeta despues de rotura.

RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL

FOTO N° 67: Desmolde de las probetas de los cilindros plasticos.

Fuente: Elaboración propia (2019).

FOTO N° 68: Se sumergio a las probetas en agua para su curado.

Fuente: Elaboración propia (2019).

FOTO N° 69: Se retiro las probetas del agua a los 7, 14 y 28 días de curado, para rotura,

Fuente: Elaboración propia (2019).

FOTO N° 70: se toma la medida del diametro.

FOTO N° 71: Se colocó la probeta en la maquina para obtencion de la resistencia en los 7, 14 y 28 dias, respectivamente

FOTO N° 72: Vista de la forma en que debe ser colocado la probeta para el ensayo.

Fuente: Elaboración propia (2019).

FOTO N° 73: Vista de la probeta despues de rotura.

Fuente: Elaboración propia (2019).

74: Probetas despues de rotura.

RESISTENCIA A LA FLEXION DEL CONCRETO

FOTO N° 75: Desmolde de las vigas de los moldes.

Fuente: Elaboración propia (2019).

FOTO N° 76: Vista de las vigas desmoldadas.

Fuente: Elaboración propia (2019).

FOTO N° 77: Vista de las vigas en agua para su curado en 28 días.

Fuente: Elaboración propia (2019).

FOTO N° 78: Se procedió al ensamblaje respectivo para la rotura .

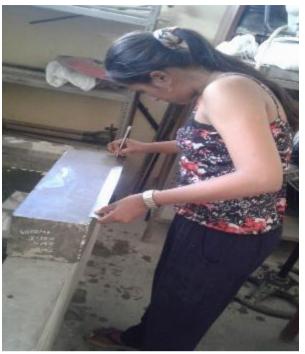


FOTO N° 79: Vista despues del ensamblaje y colocacion de lo instrumentos necesarios para rotura.

FOTO N° 81: Colocacion de la viga en los instrumentos ya ensamblados.

Fuente: Elaboración propia (2019).

FOTO N° 80: Se procedio a sacar la viga del agua, luego con un lapiz se dibuja las medidas correctas para rotura, este proceso es para cada viga.

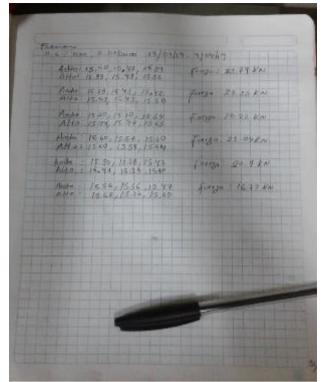

Fuente: Elaboración propia (2019).

FOTO N° 82: Viga despues de rotura.

FOTO N° 83: Se toma las medidas ancho y alto de la viga despues de rotura.

FOTO N° 84: Cuaderno de apuntes de la fuerza de rotura y londitudes ancho, alto y diametro.

Fuente: Elaboración propia (2019).

MODULO DE ELASTICIDAD

FOTO N° 85: Retiro de las probetas del agua a los 28 días de curado.

Fuente: Elaboración propia (2019).

FOTO N° 86: Vista de las probetas retiradas.

FOTO N° 87: Vista del aparato medidor de las deformaciones mediante un exometro.

FOTO N° 88: Se procedió a colocar la probeta dentro del medidor.

Fuente: Elaboración propia (2019).

FOTO N° 89: Colocación del aparato medidor y la probeta dentro de la maquina de rotura.

Fuente: Elaboración propia (2019).

FOTO N° 90: Se procedio a colocar los datos dentro de la pantalla y las cargas cada 5KN para obtencion de la deformaciones.

FOTO N° 91: Vista de la probeta dentro de la maquina y el aparato medidor.

FOTO N° 93: Apuntes de las deformaciones cada 5 KN.

Fuente: Elaboración propia (2019).

FOTO N° 92: Vista de la pantalla cuando llega a su carga de resistencia permisible..

Fuente: Elaboración propia (2019).

FOTO N° 94: Vista de la probeta luego de ser retirada del aparato medidor.