FACULTAD DE CIENCIAS E INGENIERÍA

Permanent URI for this communityhttp://20.38.43.173:4000/handle/UCP/36

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Propuesta de Machine Learning sobre datos de historias clínicas para informar el estado de salud de pacientes COVID-19, ESSALUD – Tarapoto, 2021
    (Universidad Científica del Perú, 2021-07-05) Tapullima Tapullima, Merlith; Montalván Sajami, Gary Paolo; Castillo Chalco, Isaac Duhamel
    La presente investigación, tiene como problemática la falta de información hacia los familiares, una vez que el paciente ingresa al establecimiento de salud, en este caso es ESSALUD-Tarapoto, además de las demoras que se puedan suscitar en la toma de decisiones internas del área COVID, por falta de información en tiempo real. Par ello se plantea el siguiente objetivo: Proponer Machine Learning, sobre datos de historias clínicas, para informar el estado de salud de pacientes COVID-19, ESSALUD – Tarapoto, 2021, y como objetivos específicos: Analizar el contexto y realizar un diagnóstico situacional, Conocer información del estado de salud de los pacientes en hospitalización, Conocer información del estado de salud de los pacientes en cama UCI y diseñar un prototipo de sistema Machine Learning sobre datos de historias clínicas, para informar el estado de salud de pacientes COVID-19, ESSALUD – Tarapoto, 2021, tiene un alcance descriptivo y un diseño no experimental, la población de la investigación estará conformada por todos los profesionales del área COVID, que laboran en ESSALUD – Tarapoto, los familiares de los pacientes, y las historias clínicas de los pacientes COVID, que se han registrado en ESSALUD – Tarapoto en el último bimestre, de los cuales la muestra está conformada por 10 profesionales del área COVID, 20 familiares de los pacientes COVID y las historias clínicas de los pacientes COVID de los últimos 2 meses. Como técnica de recolección de datos se utilizó la encuesta y como instrumento el cuestionario, también se utilizó como técnica la observación y como instrumento una lista de chequeo y también se utilizó como técnica un análisis documental y como instrumento las historias clínicas. Como resultados se obtiene que el 70% manifiesta que nunca brinda información del estado del paciente a sus familiares y el 30% casi nunca; el 20% manifiesta que casi siempre cree que es necesario que los familiares conozcan el estado de salud de los pacientes, y el 80% cree que siempre; el 60% manifiesta que nunca ha existido algún canal de comunicación para poder brindar información sobre el estado de salud a los familiares del paciente, y el 40% responde que casi nunca; el 10% manifiesta que casi siempre es necesario que exista un medio digital para poder brindar información, sobre el estado de salud a los familiares y el 90% responde que siempre; el 70% manifiesta que los familiares nunca conocen si el paciente está para pasar de hospitalización a UCI; el 70% pág. 11 manifiesta que no conoce cuándo el paciente está para pasar a UCI y el 30% solo a veces; el 60% manifiesta que casi nunca tiene información en tiempo real de cuántos pacientes están en hospitalización, y el 40% manifiesta que a veces; el 70% manifiesta que casi nunca tiene información actualizada de la cantidad de pacientes que estuvieron hospitalizados por unidad de tiempo, y el 30% manifiesta que a veces; el 70% manifiesta que casi siempre tiene información en tiempo real de cuántos pacientes están en UCI, y el 30% manifiesta que siempre; el 70% manifiesta que nunca tuvieron información en tiempo real de la cantidad de pacientes que estuvieron en UCI por unidad de tiempo, y el 70% manifiesta que casi nunca; el 80% manifiesta que nunca tuvieron información de la cantidad de pacientes que puedan tener en hospitalización en los días venideros; el 80% manifiesta que nunca tuvieron información de la cantidad de pacientes que puedan tener en UCI en los días venideros.
  • Thumbnail Image
    Item
    Propuesta de machine learning sobre datos de historias clínicas para informar el estado de salud de pacientes covid-19, essalud – Tarapoto, 2021
    (Universidad Científica del Perú, 2021-07-05) Tapullima Tapullima, Merlith; Montalván Sajami, Gary Paolo; Castillo Chalco, Isaac Duhamel
    La presente investigación, tiene como problemática la falta de información hacia los familiares, una vez que el paciente ingresa al establecimiento de salud, en este caso es ESSALUD-Tarapoto, además de las demoras que se puedan suscitar en la toma de decisiones internas del área COVID, por falta de información en tiempo real. Par ello se plantea el siguiente objetivo: Proponer Machine Learning, sobre datos de historias clínicas, para informar el estado de salud de pacientes COVID-19, ESSALUD – Tarapoto, 2021, y como objetivos específicos: Analizar el contexto y realizar un diagnóstico situacional, Conocer información del estado de salud de los pacientes en hospitalización, Conocer información del estado de salud de los pacientes en cama UCI y diseñar un prototipo de sistema Machine Learning sobre datos de historias clínicas, para informar el estado de salud de pacientes COVID-19, ESSALUD – Tarapoto, 2021, tiene un alcance descriptivo y un diseño no experimental, la población de la investigación estará conformada por todos los profesionales del área COVID, que laboran en ESSALUD – Tarapoto, los familiares de los pacientes, y las historias clínicas de los pacientes COVID, que se han registrado en ESSALUD –Tarapoto en el último bimestre, de los cuales la muestra está conformada por 10 profesionales del área COVID, 20 familiares de los pacientes COVID y las historias clínicas de los pacientes COVID de los últimos 2 meses. Como técnica de recolección de datos se utilizó la encuesta y como instrumento el cuestionario, también se utilizó como técnica la observación y como instrumento una lista de chequeo y también se utilizó como técnica un análisis documental y como instrumento las historias clínicas. Como resultados se obtiene que el 70% manifiesta que nunca brinda información del estado del paciente a sus familiares y el 30% casi nunca; el 20% manifiesta que casi siempre cree que es necesario que los familiares conozcan el estado de salud de los pacientes, y el 80% cree que siempre; el 60% manifiesta que nunca ha existido algún canal de comunicación para poder brindar información sobre el estado de salud a los familiares del paciente, y el 40% responde que casi nunca; el 10% manifiesta que casi siempre es necesario que exista un medio digital para poder brindar información, sobre el estado de salud a los familiares y el 90% responde que siempre; el 70% manifiesta que los familiares nunca conocen si el paciente está para pasar de hospitalización a UCI; el 70% pág. 11 manifiesta que no conoce cuándo el paciente está para pasar a UCI y el 30% solo a veces; el 60% manifiesta que casi nunca tiene información en tiempo real de cuántos pacientes están en hospitalización, y el 40% manifiesta que a veces; el 70% manifiesta que casi nunca tiene información actualizada de la cantida de pacientes que estuvieron hospitalizados por unidad de tiempo, y el 30% manifiesta que a veces; el 70% manifiesta que casi siempre tiene información en tiempo real de cuántos pacientes están en UCI, y el 30% manifiesta que siempre; el 70% manifiesta que nunca tuvieron información en tiempo real de la cantidad de pacientes que estuvieron en UCI por unidad de tiempo, y el 70% manifiesta que casi nunca; el 80% manifiesta que nunca tuvieron información de la cantidad de pacientes que puedan tener en hospitalización en los días venideros; el 80% manifiesta que nunca tuvieron información de la cantidad de pacientes que puedan tener en UCI en los días venideros.
  • Thumbnail Image
    Item
    Análisis y diseño de sistema de información para la gestión y control de pacientes en atención del policlínico de la familia San Martín
    (Universidad Científica del Perú, 2018-08-10) Cuchca Gonzales, Paolo César; Correa Tello, Juan Carlos; Mori Marín, Levis
    La tesis Titulada “Análisis y Diseño de Sistema de Información para la Gestión y Control de Pacientes en Atención del Policlínico de la Familia San Martín”, ubicado en calle Alfonso Ugarte 469, de la ciudad de Iquitos, provincia de Maynas del departamento de Loreto, se elaboró con la finalidad de hacer el análisis y diseño de un sistema informático de soporte a la gestión de procesos de registro de pacientes, manejo de historias clínicas, automatización de la atención de los médicos, así mismo generar los reportes, siempre que se necesiten sin demora. La presente tesis responde a un estudio de tipo de investigación aplicada de método no experimental, descriptivo, para la recolección de datos se utilizó encuestas y entrevistas con la población del policlínico de la familia San Martin, personal médico y administrativo. Para la obtención de resultados y para el desarrollo del proyecto se utilizó la metodología ágil SCRUM, metodología de gestión ágil que toma como base varios principios establecidos por el PMI. Se aplicó la norma técnica de la salud para evaluar el uso del sistema de información, que sirve para definir la correcta composición de las historias clínicas y el manejo adecuado de la información.